
Real-time surgical instrument detection in robot-assisted surgery using
a convolutional neural network cascade

Zijian Zhao1 ✉, Tongbiao Cai1, Faliang Chang1, Xiaolin Cheng2

1School of Control Science and Engineering, Jinan, Shandong, People’s Republic of China
2Laboratory of Laparoscopic Technique and Engineering, Qilu Hospital of Shandong University, Jinan, Shandong,
People’s Republic of China
✉ E-mail: zhaozijian@sdu.edu.cn

Published in Healthcare Technology Letters; Received on 24th September 2019; Accepted on 2nd October 2019

Surgical instrument detection in robot-assisted surgery videos is an import vision component for these systems. Most of the current deep
learning methods focus on single-tool detection and suffer from low detection speed. To address this, the authors propose a novel frame-
by-frame detection method using a cascading convolutional neural network (CNN) which consists of two different CNNs for real-time
multi-tool detection. An hourglass network and a modified visual geometry group (VGG) network are applied to jointly predict the
localisation. The former CNN outputs detection heatmaps representing the location of tool tip areas, and the latter performs bounding-box
regression for tool tip areas on these heatmaps stacked with input RGB image frames. The authors’ method is tested on the publicly
available EndoVis Challenge dataset and the ATLAS Dione dataset. The experimental results show that their method achieves better
performance than mainstream detection methods in terms of detection accuracy and speed.
1. Introduction: Robot-assisted minimally invasive surgery
(RMIS) systems, like the daVinci surgical system (dVSS), have
gained more and more attention in recent years. Rather than
cutting patients open, RMIS allows surgeons to operate by tele-
manipulation of dexterous robotic tools through small incisions,
which results in less pain and fast recovery time. With RMIS
systems, surgeons sit at a console near the operating table and
utilise joysticks to perform complex procedures. Such systems
will translate surgeons’ hand movements into small movements
of the surgical instruments in real time. The location of surgical
instruments is a common requirement to provide surgeons with
important information for observing tool trajectory and can
lighten their burden of finding the instruments during an
operation. On the other hand, having real-time knowledge of the
motions of the surgical tools can help in the modelling of
gestures and skills for the real-time automated surgical video
analysis [1], which is good for training the novice surgeons [2].
Hence, in this study, we focus on real-time instrument detection.
Many methods for tool detection have been proposed in the last

decade, including optical tracking [3], kinematic template matching
[4], image-based detection methods [5], and so on. Nowadays, the
image-based (vision-based) methods have become increasingly
popular as they require no modification to surgical tool design for
providing localisation information [6]. Some early image-based
methods utilised low-level feature representations computed over
video frames for tool detection, and are comparatively fast. For
example, colour segmentation methods [7] by CIELab colour
space transformation and thresholding were proposed to extract
tool shapes from image frames. Another example of feature repre-
sentation is gradient features [8] which are often leveraged to
retrieve tool edge lines via the Hough transform. However, these
methods have significant shortcomings. Noise in image frames,
such as lighting change, can easily lead to bad detection results.
To overcome these challenges, more robust feature representations,
such as scale invariant feature transformation (SIFT) [9] and
colour-SIFT [10], have been utilised to detect instruments.
Recently, convolutional neural network (CNN)-based methods
have become a popular choice for different visual detection tasks
such as pedestrian detection, human pose estimation etc. These
have also been applied for the analysis of surgical videos, such as
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instrument presence detection [11, 12], phase recognition
[13, 14], tool location [15–17], and tool pose estimation [2, 18].
For example, a cascading model, which consists of a rough location
network and a fine-grained search network, was proposed by
Mishra et al. [19] to locate the tool tip. In the work of Chen et al.
[20], a CNN is trained with the datasets labelled by a line
segment detector to detect a tool’s tip, and then the spatial and
temporal context algorithm [21] is utilised to detect the tool in
real time. These methods exhibit good performance in single surgi-
cal tool detection, but they fail to satisfy the need of multi-tool
detection. To overcome this problem, a multi-modal CNN based
on a faster region convolutional neural network (RCNN) [22] is
used by Sarikaya et al. [23] for multi-instrument detection. This
method achieves good results for detection accuracy but cannot
detect the surgical tools in real time (operating at <20 fps).

In this Letter, we propose a novel frame-by-frame real-time
detection and location method for multi-instruments, which consists
of an hourglass network [24] and a modified VGG-16 [25] network.
The former heatmap network is used as a fully convolutional regres-
sion network to output the heatmaps which represent the location
of the instruments tip area. The latter performs bounding-box
regression on these heatmaps stacked with input RGB image
frames. In this way, we can simultaneously predict the tools’ loca-
tion and perform recognition. Our method is more like human be-
haviour. Humans glance at an image and instantly know what
objects are in the image and their approximate location (heatmap
network), and then locate them precisely in the image (bounding-
box network). To evaluate the performance of the proposed
method, we evaluated our method on the publicly available multi-
instrument ATLAS Dione [23] and EndoVis Challenge [2] datasets.
Our approach obtains better performance than three state-of-art
detection methods in terms of detection accuracy and speed.

2. Methodology
2.1. Heatmap network: The overall design of our CNN-based
surgical instrument detection model is shown in Fig. 1. This
section will describe the architecture of each sub-network of our
detection-regression network in more detail. In the proposed
framework, the heatmap-regression network (Section 2.1) takes
the RGB image frame as input and outputs heatmaps which are
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Fig. 1 Framework of the proposed detection model
confidence maps of the tool tip areas. These heatmaps guide
the bounding-box regression network (Section 2.2) to focus on
the location of instruments in the input image. Finally, it outputs
four real-valued numbers for each tool which encodes the
bounding-box position in the image coordinate system.

In our first sub-network, an hourglass network, which takes an
RGB image frame of size 640 × 480 × 3 as input, is employed
to output M heatmaps which are confidence maps, one for each
surgical instrument. As shown in Fig. 1, the network is composed
of 5 maximum pooling layers, 4 upsample layers, and 13 con-
volutional blocks of which each consists of several residual
modules [24]. Thus, the output heatmaps have a resolution of
320 × 240 pixels. The batch normalisation (BN) layer is added
before every rectified linear unit (ReLU) to improve the perform-
ance of the network.

We approach a rough instrument location as a binary-
classification problem in each heatmap. The ground truth for our
regression network is encoded as a set of M binary maps, one for
each surgical instrument. As shown in Fig. 2, in each ground-truth
heatmap, we set the values within a certain radius around the centre
of an object bounding box to 1 as the foreground, and the remaining
Fig. 2 Process of obtaining the ground truth of the output of the heatmap networ
a Represents the foreground, and the remaining area is background
b Shows the binary maps, one for each instrument
c Shows the ground-truth heatmaps
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values are set to 0 as the background. The bigger the object bound-
ing box is, the larger the radius is in the ground-truth heatmap. As
we treat the heatmap regression as a multiple binary-classification
problem, we train the hourglass network using a pixel-wise
sigmoid cross-entropy loss function which is defined as follows:

lh =
1

M

∑M

m=1

∑

X (i,j)[S

[pmij · log p̂mij + (1− pmij ) · log (1− p̂mij )] (1)

where pmij and p̂mij represent the ground-truth value and correspond-
ing sigmoid output at a pixel location X (i, j) in the mth heatmap of
size S.

2.2. Bounding-box network: For the bounding-box regression
network, we apply a modified and extended VGG-16 network
originally used for image classification, which contains six
convolutional blocks, six pooling layers and three fully connected
layers as shown in Fig. 1. The BN layer is also added before
every ReLU layer. This network takes the heatmaps stacked with
the RGB image frame, which is resized to 320 × 240 × 3, as input
k. The yellow coloured area
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and outputs four real-valued numbers that encode the bounding-box
position for each instrument in the image coordinate system. The
benefit of this stacked architecture is to guide the bounding-box
regression network to focus on the instrument tip area.
The goal of this regression network is to predict a precise region

box for each instrument. In contrast to bounding-box regression
from the faster RCNN, we train our network using a multiple L1
loss function defined as follows:

lb =
1

M

∑M

m=1

|Tm − T̂m|. (2)

where Tm(t
x
m, t

y
m, t

w
m, t

h
m) and T̂m(t̂

x
m, t̂

y
m, t̂

w
m, t̂

h
m) represent the

corresponding predicted object bounding box and ground-truth
bounding box, respectively, in the image coordinate system, and
T (tx, ty, tw, th, ) is defined as

tx = x/W , ty = y/H , tw = w/W , th = h/H . (3)

where x, y, w, h denote the centre coordinates of the box and its
width and height. The size of the input image frame is W × H × 3.

3. Experiments and results: To evaluate the performance of the
proposed method, we apply the method to two multi-instrument
datasets, namely the ATLAS Dione dataset and the EndoVis
Challenge dataset. We compare the method with three other
mainstream detection methods in terms of detection accuracy and
speed.

3.1. Datasets and implementation details: The ATLAS Dione dataset
[11] consists of 99 action video clips of 10 surgeons from the
Roswell Park Cancer Institute (RPCI) (Buffalo, NY) performing
6 different surgical tasks (subject study) on the dVSS with anno-
tations of robotic tools per frame. Each frame has a resolution of
854 × 480. To train our model, we divide the entire set of video
clips into two subparts: 90 video clips (20,491 frames) for training
and the remaining 9 video clips (1976 frames) for testing. In the
MICCAI’15 EndosVis Challenge dataset, there are 1083 frames
of 720 × 576 pixels from ex-vivo video sequences of interventions.
Similarly, this dataset is separated into a training set (876 frames)
and a test set (217 frames). The ATLAS Dione dataset is more
challenging than the EndoVis dataset because there are more
Fig. 3 Detection examples for two datasets. The two columns on the left are from t
As shown in the example frames: our method is in blue, Faster RCNN in green, Y
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disturbing factors, such as motion blurring, fast movement, and
background change.

Before training the proposed framework, we initialise both the
hourglass network and the modified VGG-16 network using the
default initialisation approach in Pytorch 0.4.1. The image frames
fed into our model are all resized to 640 × 480 pixels. We apply a
two-step training approach: firstly, we train the hourglass network
using stochastic gradient descent (SGD) with a learning rate of
5× 10−9, momentum of 0.9, and weight decay of 5× 10−5.
Then, we keep this fixed and train the modified VGG-16 network
using SGD with initial learning rate of 2× 10−3, momentum of
0.9, and weight decay of 5× 10−5. The learning rate progressively
decreases every five epochs by 10%. We implement the proposed
detection method and the compared methods (Section 3.2) on
Pytorch 0.4.1, Ubuntu 16.04 LTS using an NVIDIA GeForce
GTX TITAN X GPU accelerator.
3.2. Comparison with different methods: We compared our method
with three other detection methods on the two datasets introduced
above. Fig. 3 shows some detection examples in the video
frames. In recent years, many object detection models have been
applied to surgical instrument detection tasks [1, 23] and
achieved great performance. The three anchor-based methods we
chose are: Faster R-CNN proposed by Ren et al. [22] (the
backbone of VGG-16), Yolov3-416 proposed by Redmon et al.
[26] (the backbone of Darknet-53), and Retinanet proposed by
He et al. [27] (the backbone of Resnet-50). Non-maximum
suppression (NMS) with a threshold of 0.5 is applied to get the
final proposals in these methods. Since our proposed anchor-free
method does not need extra NMS time, our method has better
time efficiency than the other networks. To evaluate the accuracy
of our detection method, we use the following evaluation method:
if the intersection over union of the predicted bounding box and
the ground truth is bigger than 0.5, we consider the instruments
to be successfully detected in this frame. As shown in Table 1,
our method achieves a mean Average Precision (mAP) of 91.60%
for the ATLAS Dione dataset, a mAp of 100% for the Endovis
Challenge dataset and mean computation time of 0.023 s for
instrument detection in each image frame. This demonstrates that
the proposed method achieves better performance than the other
three methods.

We also evaluate our method based on a distance evaluation
approach. If the distance between the centre of the predicted
he ATLAS Dione dataset and the final columns are from the Endovis dataset.
olov3 in cyan, Retinanet in yellow, and the ground truth is in red
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bounding box and the centre of ground-truth bounding-box is less
than a threshold in the image coordinates, the surgical instrument
is considered to be correctly detected. The experimental results
are shown in Fig. 4. Retinanet achieves a better performance
than our approach for the ATLAS Dione dataset at the cost of
3× lower detection speed. Our method shows the best performance
for the Endovis Challenge dataset.
Table 1 Detection accuracy and speed of all methods. AP1 and AP2
represent the detection mAP on the ATLAS Dione and EndoVis Challenge
datasets, respectively

Methods mAP1,% mAP2,% Detection time
(per frame), s

Faster RCNN (VGG-16) 90.36 100.00 0.064
Yolov3 (Darknet-53) 90.92 99.07 0.034
Retinanet (Resnet-50) 89.39 100.00 0.070
our method 91.60 100.00 0.023

Fig. 4 Detection accuracy of surgical instrument tips for the two datasets

Fig. 5 RGB input images of which red channel is replaced by the predicted heatma
dataset and the final columns are from the Endovis dataset. The red coloured are
Tool_1 is not in this image, so there is no red coloured area, in other words, the
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Compared with the other three methods, another advantage of
the method is that our method can distinguish between surgical
instruments with the same appearance in an image frame. The
instruments in two datasets are of the same appearance and the com-
pared method takes them as one class, so they cannot differentiate
these instruments. As for our method, the output of the heatmap
network is heatmaps which are actually confidence maps, one for
each surgical instrument. Fig. 5 shows the RGB input images of
which red channel is replaced by the predicted heatmap of each
instrument. Based on this, our method can track each instrument
although they are of the same appearance in an image frame.
4. Conclusion: In this Letter, we presented a novel frame-by-frame
detection method for real-time multi-instrument detection and
location using a cascading CNN which consists of an hourglass
network and a modified VGG-16 network. The hourglass
network is applied to detect a heatmap of each instrument, and
the modified VGG is responsible for bounding-box regression.
To train our model, we use a two-step training strategy: firstly,
we train the hourglass network using a pixel-wise sigmoid
cross-entropy loss function, and then keep this fixed and train the
p of each instrument. The two columns on the left are from the ATLAS Dione
a represents the tool tip area. As shown in second image of the first rows,
values in the heatmap of Tool_1 are close to 0
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whole framework using a multiple L1 loss function. The proposed
detection model is validated on two datasets: the ATLAS Dione
dataset and the Endovis Challenge dataset. The experimental
results for these two datasets show that our method achieves a
better tradeoff between detection accuracy and speed than the
other considered state-of-the-art methods. Moreover, our method
can distinguish between instruments of the same appearance
while other methods cannot. We think that we can further
improve the detection accuracy by replacing VGG-16 with a
deeper CNN, but this will reduce the speed correspondingly.
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