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Human papillomavirus (HPV) clearance is important in eliminating cervical

cancer which contributes to high morbidity and mortality in women.

Nevertheless, it remains largely unknown about key players in clearing pre-

existing HPV infections. HPV antigens can be detected by the most important

cervical antigen-presenting cells (Langerhans cells, LCs), of which the activities

can be affected by cervicovaginal microbiota. In this review, we first introduce

persistent HPV infections and then describe HPV-suppressed LCs activities,

including but not limited to antigen uptake and presentation. Given specific

transcriptional profiling of LCs in cervical epithelium, we also discuss the

impact of cervicovaginal microbiota on LCs activation as well as the promise

of exploring key microbial players in activating LCs and HPV-specific

cellular immunity.

KEYWORDS
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Introduction

Persistent high-risk human papillomavirus (hrHPV) infections causes the highest

risk of invasive cervical cancer (ICC), one of the most common cancers threatening

women’s health worldwide (1). Prophylactic HPV vaccines can not cover all HPV

subtypes in ICC cases and thus provide limited benefits to eliminate pre-existing HPV

infections (2, 3) which affect large populations in developing countries. Though screening

is effective in preventing the progression of HPV infection and cervical dysplasia to ICC,
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it takes a long time to make it widely utilized, especially in low-

income countries due to high financial and human resource

burden. Clearance of HPV infection is encouraging alternative to

eliminate ICC. Our and other prospective observational studies

indicated that 85%, 50% and 5-10% of HPV infections could be

cleared spontaneously in cervical intraepithelial neoplasia (CIN)

1, 2 and 3 respectively (4–6). Nevertheless, mechanisms of

natural HPV clearance were largely unknown.

Langerhans cells in cervicovaginal mucosa represented key

players in HPV antigen presentation and cellular immunity

activation (7, 8). Emerging studies found LCs number or

maturation levels reduced after HPV infections, and

implicated the association of LCs with HPV clearance as well

as CIN regression (9–14). In vitro experiments also indicated

that LCs activation primed T cells and caused HPV-specific

cellular immunity (15–18). Recent studies indicated

unique transcriptional profiling of LCs in cervicovaginal

microenvironments as compared to the skin and blood (19,

20), which may be caused by the impact of Lactobacillus and

Candida on LCs immune functions (21, 22).

This review discusses how cervicovaginal HPV infections

impair LCs immune functions, and what factors in

cervicovaginal microenvironment hold the potential to activate

LCs promoting HPV clearance, all of which will provide

extensive insights into ICC prevention.
Carcinogenesis by persistent
HPV infections

HPV infections require access of viral DNA, capsid

protein L1 and L2 to the basal lamina binding to heparin

sulfate proteoglycan on basal keratinocytes (23, 24). Once
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internalized, virions undergo endosomal transport and

uncoating, with L2 protein-DNA complex (episome) ensuring

correct nuclear entry of viral genomes while L1 protein retained

in the endosome being degraded (25, 26). Before entry to the

nucleus, E2 protein inhibits the expression of E6/E7 proteins

which directly relate to the increasing severity of neoplasia by

driving cell proliferation as well as inducing immune system

dysfunction (27–29). If HPV episomes escape from host

immune clearance, accumulation of E6/E7-induced genetic

errors will eventually promote integration of viral episomes

into the host cell chromosome (30–32) (Figure 1), together with

overexpression of E6 and E7 led by dysregulation of E2 protein.

Life cycle of HPV during persistent infections completes

through the expression of minor coat protein L2 and

major coat protein L1, as well as virus maturation in

dying keratinocytes.

Immune evasion plays key role in the above-mentioned life

cycle of HPV. Keratinocytes function as immune sentinels via

expressing pathogen recognition receptors (PRRs) to recognize

pathogen-associated molecular patterns of HPV. Nevertheless,

viral infection can suppress activities of PRRs such as toll-like

receptors(TLRs) (33). For instance, E7 oncoprotein repressed

TLR9 transcription by recruiting histone modifying enzyme

EZH2 to the TLR9 promoter region (34). In consistence, E7

downregulates TLR9 expression through recruiting histone

deacetylase HDAC1 and histone demethylase JARID1B to the

regulatory region of the TLR9 promoter (35). Upon viral

recognition, PRRs transduce intracellular signals to initiate the

production of proinflammatory cytokines such as interferon

(IFN)a and IFNb. However, E6 and E7 proteins can block

PRRs signal transduction cascades through two pathways:

binding to interferon regulatory transcription factor (IRF) to

inhibit its transcriptional activity and upregulating the
FIGURE 1

HPV infection and carcinogenesis. The HPV is internalized into the squamous cells first and persistent infection can cause DNA integration. Then
infected cells are in dysfunction and develop to cancer. Created in BioRender.com.
frontiersin.org

https://biorender.com/
https://doi.org/10.3389/fimmu.2022.918190
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2022.918190
deubiquitinating enzyme Ubiquitin C-Terminal Hydrolase L1

(UCHL1) to prevent TNF-receptor-associated factor 3 (TRAF3)

activation (36–38).

The downregulation of NF-kB pathway is another critical

strategy applied by HPV oncoproteins for immune evasion. NF-

kB plays a key role in immune surveillance through promoting

the expression of genes involved in antigen presentation and

cytokine production (39). There is evidence supporting HPV16

E6 and E7 can inhibit NF-kB activity in keratinocytes which

were cultured from the human cervical transformation zone

(40). Moreover, high-risk HPV-infected keratinocytes

upregulate UCHL1 to prevent the nuclear translocation of NF-

kB (38). E6 and E7 can also bind to the coactivator of NF-kB
[P300/CBP-associated factor (PCAF)] and then downregulate

the NF-kB signaling pathway (41, 42).

Besides to impaired immune alarm functions of

keratinocytes, above-mentioned inhibition of keratinocyte

activities also modulates immune network to further facilitate

persistent infection. For example, E5 protein reduces the

expression of the major histocompatibility complex (MHC) I

and CD1d to the cell surface, and then prevents cytotoxic T

lymphocytes recognition of HPV antigens (43–45). In addition,

E7 protein can interact with MHC I promoter, leading to

repression of MHC I, LMP2, and TAP1 gene (46–48).

Furthermore, HPV oncoproteins are capable of inhibiting the

migration of antigen-presenting cells (APCs) to infected sites

and repressing the APCs activities (49–53), further facilitating

persistent infection.
Suppressed LCs activities caused by
cervical HPV infections

Since LCs are the only APCs with which HPV will come into

contact during HPV infections and initiate cell-mediated

immune responses against HPV (7, 8, 19, 20), LCs are the

most important and primary antigen-presenting cells (APCs)

in the cervical epithelium. Suppression of LCs activities

facilitated an immunosuppressive microenvironment that is

permissive for HPV persistence (51–53), which was

documented by reduced LCs number and maturation levels in

cervical epithelium under HPV infections and squamous

intraepithelial lesion (9–12).
Recruiting and remaining LCs
in epidermis

Monocytes should be differentiated into competent and

immature Langerhans cells which can detect pathogenic

antigens. Nonetheless, HPV infection can block this
Frontiers in Immunology 03
differentiation and then inhibit the production of LCs (15).

Immature LCs maintain the immune surveillance of the

epithelium by presenting antigens and stimulating T

lymphocytes following antigen uptake. After viral infections,

immature LCs are recruited to the epidermis via chemokine (C-

C-motif) receptor 6 (CCR6), which is the receptor for

chemokine (c-c-motif) ligand 20 (CCL20) increasingly

expressed by infected cervical keratinocytes (54, 55). Then LCs

adhere to infected keratinocytes via LCs-expressed E-cadherin,

as shown in Figure 2A. Nevertheless, HPV was reported to

interfere with keratinocyte-derived CCL20 expression and HPV

E6/E7 proteins promoted downregulation of CCL20, inhibiting

LCs migration to the epidermis of inflammation (49, 50).

Reduced E-cadherin levels caused by E7 protein also suggested

the blockade of LCs adhesion with infected keratinocytes (56,

57), negatively affecting antigen uptake in epidermis after HPV

infections. Moreover, the LC-keratinocyte crosstalk was

dysregulated including decreased expression of interleukin-34

and depletion of immune-stimulatory LCs (58).
Capturing and processing antigens
by LCs

When remained in cervical epidermis, immature LCs can

capture HPV antigens via C-type lectin langerin (CD207) and

toll-like receptors (TLRs) (59), as shown in Figure 2B. Cell-

membrane langerin functions as endocytic receptor and

internalizes antigens to LCs-specific intracellular Birbeck

granules where antigens are degraded or delivered to antigen-

presenting CD1a and major histocompatibility complex I

(MHC-I) (60–64). Nevertheless, prior reports suggested that

HPV significantly impaired langerin-CD1a antigen processing

(10, 12). Besides to langerin, LCs also capture HPV antigens via

TLRs which are common pathogen-recognition receptors

(PRRs) on cell surface (59). However, LCs isolated from

cervical tumors had decreased TLRs expression, such as TLR7/

8/9, and were functionally anergic to TLR ligands, while a

number of studies found that selective TLR agonists could

promote the maturation of LCs (65–69). Additionally, HPV

oncoproteins can activate the phosphoinositide 3-kinase (PI3-K)

pathway to inhibit immune responses to HPV infection (16).
Migration of mature LCs to lymph node

LCs downregulate their endocytic and antigen processing

capacity after binding pathogens, and then become mature as

well as migratory (70). To present captured antigens, LCs should

migrate to the lymph nodes via CCR7 which is only expressed by

mature LCs and functions as receptor for T cell-derived

chemokine CCL21 (55, 71), as shown in Figure 2B. Though
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there lacked reports on CCR7 levels of LCs after HPV infections,

cervical cancer cells suppressed the induction of CCR7 in

phenotypically mature dendritic cells (DCs), while specific co-

stimulatory molecules upregulated CCR7 expression on LCs

surface (65, 68, 72, 73).
Presenting antigens via LCs to activate
cell-mediated immunity

CD1a, which is a lipid-presenting molecule abundantly

expressed on LCs, can bind antigens in Birbeck granules and

recycle to the cell surface presenting lipid/glycolipid antigens to

CD1a-restricted T cells (63). HPV infections reduced the density

of CD1a+ LCs in cervical epithelium, and CD1a+ LCs number

correlated positively with prognosis of HPV-infected cases (10, 12,

13). Cell-membrane MHC-I molecules cross-present pathogen-

derived peptides which can be recognized by cytotoxic

lymphocytes, while MHC-II molecules are mainly expressed on

APCs surfaces presenting antigens to helper T cells. HPV E7
Frontiers in Immunology 04
protein was reported to directly block the MHC-I heavy chain

promoter and E5 protein retained human leukocyte antigen A/B

(HLA-A/B) (44, 46, 74), which may explained the partial loss of

MHC-I in cervical cancer (75). MHC-II levels on LCs surface also

reduced in cervical biopsy collected from CIN patients (11), while

TLR agonists activating LCs immune functions or bacterial vector

vaccines could up-regulate expression of MHC molecules and

elicit CD4+/CD8+ CMI (65, 68, 76, 77).

Unlike typical DCs, co-stimulatory molecules CD80/86 and

CD40 on LCs, belonging to tumor necrosis factor (TNF)

receptor family, are needed in presenting antigens to T cells

and inducing CMI (78–81) (Figure 2C). CD80/86 binds T cell-

derived CD28 to prevent the induction of T cell anergy, while the

CD80/86 ligand (cytotoxic T lymphocyte associate protein-4,

CTLA-4) plays an inhibitory role by inducing T cell anergy.

CD40 is another type of TNF receptors on LCs and functions by

binding T cell membrane CD40L to prevent anergic status of T

cells. In vitro experiments found higher levels of CD80/86 and

CD40 in monocytes-derived LCs exposed to HPV VLPs after

introduction of TLR agonists (65, 68).
A B

C

FIGURE 2

HPV antigen uptake and presentation of LCs. (A) Infected keratinocytes increase expression of CCL20 to attract Langerhans cells, which then
migrate to inflammatory epidermis and adhere to keratinocytes via LCs-derived E-cadherin. (B) LCs maintained in inflammatory site capture
HPV antigens via TLRs and langerin. Antigen uptake by TLRs are displayed on cell-membrane MHC-II molecules for presentation. Langerin-
captured antigens are processed in intracellular Birbeck granules, being loaded on CD1a molecules in Birbeck granules or displayed in MHC-I
molecules. CD1a molecules then cycle back to cell surfaces to present antigens. After antigen uptake and processing, LCs are migratory to
lymph nodes via CCR7 which are receptors for T cell-derived CCL21. (C) Co-stimulatory molecules promote antigen presentation to CD4+ and
CD8+ T cells. This Figureure was created in BioRender.com.
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Modulation of LCs activities and
clearance of HPV infections in
cervicovaginal microenvironment

Given the key roles of mucosal LCs in presenting HPV

antigens and inducing CMI in cervical microenvironment,

activation of suppressed LCs holds the potential to promote

HPV clearance, partially supported by prior reports suggesting

that LCs number was a strong and independent prognostic

factor for HPV-infected cases in cervical, head and neck, lung

carcinoma (13, 14, 82). Dorotheıé Duluc et al. identified cervical

mucosa-specific LCs transcriptional fingerprints compared to

skin and blood (19, 20), suggesting the impact of cervicovaginal

microenvironment on LCs activities.
The complexity of
cervicovaginal microbiota

A number of studies found predominance of one or few

Lactobacillus species in CVM in healthy lower reproductive tract,

like Lactobacillus crispatus (community-state type I, CST I),

Lactobacillus gasseri (CST II), Lactobacillus iners (CST III) and

Lactobacillus jensenii (CST V) () (83–87). In contrast, depletion of

Lactobacillus (CST IV) was frequently found in women with genital

infections (88–95). Microbe-microbe and -host interactions

determined the complexity of CVM. Vaginal Lactobacillus spp. can

produce lactic acid via glycogen fermentation, maintaining acidic

environment to inhibit the colonization of pathogens such as

Chlamydia trachomatis, Neisseria gonorrhoeae and Gardnerella

vaginalis. In addition, Lactobacillus-derived bacteriocins exhibited

inhibitory effects on common pathogenic bacteria and certain fungi,

like G. vaginalis and Candida (96–98). Biosurfactants excretion was

also applied by Lactobacillus to alter surface tension and bacterial

adhesion, thus then preventing overgrowth of pathogenic anaerobes,

especially G. vaginalis (99–102). Additionally, CVM can modulate a

finely-tuned immune response balancing reproductive tolerance with

protection against genital infections (83, 103, 104).
The association of CVM with HPV
infections and clearance

Imbalanced CVM was widely identified in women with

persistent HPV infections and cervical intraepithelial neoplasia

(CIN), including decreased bacterial diversity, depletion of

Lactobacillus and accumulation of Gardnerella and Sneathia

(88–93). Further analysis found significant differences of CVM

and cervical immune microenvironment between HPV- or CIN-

negative women and HPV-positive women with CIN or cervical
Frontiers in Immunology 05
cancer (105–108). For example, inhibitory immune checkpoint

protein PD-L1 and LAG-3 were in negative correlation with

Lactobacillus levels, whereas TLR2 correlated positively with

Lactobacillus abundance. In contrast, PD-L1 and LAG-3

positively correlated with pathogen Gardnerella, Sneathia,

Atopobium and Prevotella. Additionally, L. jensenii and L.

crispatus were in negative relationship with PD-L1, and L.

gasseri was negatively associated with LAG-3. A 12-month

observational study also demonstrated the critical role of

cervicovaginal bacteria in modulation of cervicovaginal immune

responses and the host susceptibility to HIV (103). Additional

studies showed that L. cripatus-dominated CVM provided higher

protection against pathogenic infections, compared to L. iners-

dominated and non-Lactobacillus-dominated CVM (109–112)

(Figure 3). Longitudinal studies further suggested high

proportion of HPV clearance or CIN regression for HPV-

positive populations with dominant L. crispatus in CVM (111,

112). Besides to bacterial components in CVM, vaginal fungi were

associated with persistence of HPV infections (112), though a

retrospective study involving 100,605 women found that Candida

was not in significant association with the risk of CIN (113).
Modulating LCs activities via
cervicovaginal microbial components

Though the potential role of CVM in modulating immune

responses is largely unknown, co-culturing of monocytes-

induced LCs and vaginal Lactobacillus indicated that

peptidoglycans (PGN) in cell wall of specific L. crispatus strain

increased the levels of LCs surface marker (langerin) which is

pivotal in antigen capture (21). Further analysis demonstrated

that PGN induced higher levels of langerin via elevated

expression of recognized receptors of L. crispatus, such as

TLR2 and TLR6 (21). Other studies also suggested that lipid

polysaccharides (LPS), common bacterial product and potent

TLR4 agonist activated LCs being assessed by upregulated

MHC-II and CD80/86 molecules (72).

Given effective role of TLR agonists in therapeutic vaccines

against HPV infections (114–119), emerging reports suggested

the promise of selective microbial components as “natural”

adjuvant in therapeutic HPV vaccines (111–125), partly due to

their potential in enhancing LCs functions via activating TLRs

through wide range of pathogen-associated molecular pattern

molecules and damage-associated molecular pattern molecules.

For instance, mouse model indicated that Lactobacillus lactis and

Lactobacillus casei immobilizing HPV E7 peptides were effective

in inducing HPV-specific CMI (124, 125). Candin, produced by

common vaginal fungi Candida, was also applied as effective

adjuvant in therapeutic vaccine against HPV infections,
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inducing wart resolution and elevated T-helper type 1 cells

which promoted viral clearance (111, 112).
Concluding remarks and
future perspectives

Cervicovaginal LCs play an important role in recognizing

HPV antigens and activating HPV-specific CMI, and prior

reports found the association of natural clearance of HPV

infections with increased LCs activities (13, 14, 82). Though

some LCs activators, like TLR agonists and products of vaginal

microbes can activate LCs (21, 22, 65, 68), associated adjuvants

were not always effective in promoting HPV clearance and CIN

regression (114–116, 118–125). This may be explained by inter-

individual CVM differences which can impact LCs functions as

well as natural clearance of pre-existing HPC infections.

Nevertheless, it remains unclear for the mechanisms how

CVM modulate LCs activities to promote HPV clearance.

Though in vitro experiments indicated the positive impact of

specific vaginal Lactobacillus strains on LCs activities (21),

functional redundancy for microbiota (126–128) and

Lactobacillus strain-specific functions (129–133) necessitated

the exploration of “functionally key microbial products” in

modulating LCs activities.

To determine the promise of activating cervicovaginal LCs as

novel therapies to clear HPV infections, the following research

strategies are recommended. Firstly, prospective cohort study on

HPV-positive women without CIN or with low-grade CIN are
Frontiers in Immunology 06
conducted to analyze the association of CVM-host interactions with

clinical outcomes of HPV infections in cervicovaginal

microenvironment. Secondly, multi-omics technologies, such as

meta-transcriptomics, should be applied to explore the candidates

of microbial products which can increase the level of infected

keratinocyte-derived CCL20, attracting migration of LCs to HPV-

infected site. Additionally, we also need to analyze candidate

microbial products and associated gene sequences which hold the

potential to activate LCs as TLR agonists or co-stimulatory

molecules. Thirdly, in vivo cellular and animal models should be

applied to assess the role of aforementioned microbial products in

modulating LCs activities and clearing HPV, including W12 cell

lines which were isolated from women with HPV16 infection and

low-grade CIN as well as dog, rabbit and mouse models with

relative papillomavirus (134). Lastly, sub-clinical and even clinical

trial will be applied to assess the efficacy of above-mentioned

microbial products in activating LCs and promoting

HPV clearance.

Though activating cervicovaginal LCs is promising in clearing

HPV infections, more solid evidence will be needed to explore the

association of LCs activities with HPV clearance. For instance, the

NF-kB signaling pathway that can regulate the expression of CCL20

and a variety of cytokines was inhibited in HPV-associated pre-

cancerous CIN but activated significantly in cervical cancer (38–42,

135), which can be explained by dramatically changed immune

microenvironment for cervical cancer (39, 135–138). Given ever-

updating findings on HPV-host interaction (138–140), immune

microenvironments such as lymph nodes and LCs-related T cell

responses should be considered when exploring the role of CVM-

LCs interactions in HPV clearance.
FIGURE 3

CVM modulate immunity to promote HPV clearance. Microbial key players in specific cervicovaginal environment activate suppressed LCs,
migrating to lymph nodes, presenting antigens and attracting effector T cells to infected epidermis. This illustration was created in BioRender.
com.
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