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In recent years, controlled human infection models (CHIMs) have become available for a range of infectious agents and have proved 
invaluable for understanding the disease process, pathogenesis, and mechanisms of immunity. CHIM studies have also contributed 
significantly to advancing development of a number of vaccines by providing an indication of vaccine efficacy. The Shigella CHIM 
has been established in 3 sites in the United States, and it is likely that the CHIM will play an important regulatory role for advancing 
the range of Shigella vaccine candidates that are currently in development. This supplement describes the harmonization of best 
practices across sites, with a view to maximizing the contribution that CHIM studies can make to Shigella vaccine development.
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Controlled human infection models (CHIMs) involve the delib-
erate administration of a predetermined quantity of infectious 
agent to healthy human volunteers. Such an infectious challenge 
is followed by carefully monitoring the clinical course of volun-
teers, using both clinical observation and laboratory investigation, 
through to a predefined clinical endpoint, often followed by the 
administration of antibiotics. Subsequent monitoring takes place 
until complete clearance of the infection can be proven with rea-
sonable confidence. Safety is paramount among such studies, along 
with ensuring that shedding and transmission to the environment 
do not occur. Prior to enrollment, volunteers are carefully screened 
against predefined inclusion and exclusion criteria, to minimize 
the risk of a serious adverse event occurring. While taking part in 
a CHIM study, volunteers are subjected to continuous monitoring 
by clinical staff, often in a residential clinical facility.

CHIMs have been established for a range of pathogens in-
cluding bacteria (Vibrio cholerae [1], Salmonella enterica serovar 
Typhi [2], and Shigella flexneri 2a and Shigella sonnei [3]), vir-
uses (influenza [4]), and parasites (Plasmodium falciparum [5]). 
Where deliberate infection with a pathogen is not possible on 
safety grounds (eg, tuberculosis), live attenuated vaccines (eg, 
BCG [6]) have been used as a surrogate for the pathogen.

CHIM studies permit the detailed analysis of the infectious 
disease process. They provide valuable opportunities to make 
key insights into infectious disease pathogenesis and mechan-
isms of immunity to infection, including the identification of 

correlates of protection. Importantly for this supplement, such 
studies are proving increasingly valuable in the clinical devel-
opment of candidate vaccines. CHIM studies permit an early 
understanding of the efficacy of candidate vaccines under de-
velopment. This allows down-selection prior to making the 
large financial commitment required to take a candidate vac-
cine through late-stage clinical development.

More recently, CHIM studies themselves have proven piv-
otal in late-stage clinical development: first, for the licensing of 
the Vaxchora cholera vaccine (PaxVax, Inc), where a field effi-
cacy study was not possible [7, 8]. Second, and more recently, 
a CHIM study provided supportive evidence for the World 
Health Organization (WHO) prequalification of a first typhoid 
conjugate vaccine, Typbar TCV (Bharat Biotech, Hyderabad, 
India) [2]. The vaccine was licensed in India several years previ-
ously based on immunogenicity data assessed against field effi-
cacy of a historic typhoid conjugate vaccine in Vietnam [9]. The 
clinical protection observed in the CHIM study contributed 
to a strong policy recommendation from the WHO Strategic 
Advisory Group of Experts on Immunization [10].

Shigellae are gram-negative bacteria that cause both acute di-
arrheal disease and dysentery in young children and in adults 
[11]. Our understanding of the magnitude of the global burden 
of disease attributable to Shigella has been greatly enhanced 
over the past few years through large epidemiological studies. 
Reanalysis of data from the Global Enteric Multicenter Study 
in low- and middle-income countries (LMICs) [12] using mo-
lecular diagnostics indicates that Shigella is the most attribut-
able cause of moderate to severe diarrhea in children <5 years of 
age and is particularly prevalent among children aged 1–5 years 
[13]. It is now apparent that shigellosis is associated with growth 
stunting among children in LMICs [14]. Moreover, Shigella is 
on the WHO pathogen priority list due to growing levels of 
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antimicrobial resistance among field isolates, particularly to 
fluoroquinolones [15].

There is a long history of CHIM studies involving Shigella. 
Following initial attempts in the 1940s [16], the first informa-
tive studies were conducted by the team of Drs Herbert DuPont 
and Samuel Formal at the University of Maryland, first with 
S. flexneri 2a in the 1960s [17] and subsequently with S. sonnei 
[18]. The S.  sonnei CHIM was also established at the US 
Armed Forces Research Institute of Medical Sciences facility in 
Bangkok to provide a CHIM in an endemic setting [19]. When 
subsequently used to test for efficacy with the live attenuated 
S. sonnei vaccine WRSS1, the CHIM identified no efficacy. This 
finding could be due in part to the low attack rate of dysentery 
at 20% (compared with 75% in a previous study in Thailand) 
and the small numbers of subjects investigated (10 vaccinees 
and 10 controls) [20]. In addition, the CHIM study had no clear 
primary clinical endpoint, thereby emphasizing the need for 
standardization of the model across sites.

There have been several issues identified with the potential 
utilization of the Shigella CHIM, which have been reviewed 
previously [3] and include the variety of Shigella strains that 
might be required and the dose ranging of each of these strains; 
standardized challenge strains with expected diarrhea attack 
rates; the administration with or without buffer and specified 
buffering solutions; clinical endpoints for standardized evalua-
tion across models; and clinical sampling and assay standardi-
zation. To fully optimize the potential use of the Shigella CHIM 
for advancing multiple vaccine candidates, these issues need 
to be addressed. This was the topic of an earlier workshop that 
served to bring together some of the key stakeholders to assess 
these key questions [21]. The manuscripts reported in this sup-
plement are the next step to achieving an optimal pathway for 
utilizing the CHIM model to advance effectively Shigella vac-
cine candidates.

The Shigella CHIM has  been established/reestablished at 3 
sites in the eastern United States: in Baltimore, both at Johns 
Hopkins University and the University of Maryland, and in 
Cincinnati, at the Cincinnati Children’s Hospital Medical 
Center. With multiple Shigella candidate vaccines in clinical 
development, and several of these being tested in clinical trials 
involving CHIM, it is important to achieve harmonization of 
the model, including the model itself, clinical endpoints, and 
immunological assays across these 3 sites, as mentioned above.

Harmonization is needed to ensure sharing of best practices 
and to permit comparability of Shigella CHIM study results across 
sites. Among other studies, recently a monovalent bioconjugate 
S. flexneri 2a vaccine (Limmatech, GlaxoSmithKline [GSK]) has 
been tested in a CHIM study at Johns Hopkins University [22]. 
A S. sonnei monovalent outer membrane vesicle–based vaccine 
(GSK Vaccines Institute for Global Health) is currently being 
tested in Cincinnati [23]. Plans are advanced for a monovalent 
synthetic O-antigen–based conjugate vaccine (Institut Pasteur) 

to be tested at the University of Maryland. There are other vac-
cine constructs that have been, or will need to be, evaluated in 
CHIM studies, including live attenuated strains, killed whole-
cell candidates, and other subunit vaccines [24].

With the objective of harmonizing the Shigella CHIM across 
sites, the Bill & Melinda Gates Foundation convened a set of 
workshops in 2017 and 2018 bringing together global experts 
on CHIM and Shigella, including representatives from the 3 
Shigella CHIM sites in the United States, vaccine developers, 
and global health policy makers. These workshops resulted in 
the establishment of a consensus position across the field, the 
outputs of which are contained in this supplement to Clinical 
Infectious Diseases. The supplement consists of 3 articles, in 
addition to this introduction, focusing on the general con-
duct of the Shigella CHIM (Talaat et al), Shigella CHIM clinical 
endpoints (MacLennan et al), and Shigella CHIM laboratory as-
says (Kaminski et al).

Our intention is that the reports will form the guidelines for 
conducting Shigella CHIM studies going forward. Feedback on 
the degree of success of the guidelines will provide the best indica-
tion of their suitability and will be important for iterative improve-
ment in the future as more Shigella CHIM study data become 
available. Finally, we hope that this process of harmonization of 
the CHIM in the Shigella field will form a template for a similar 
process to take place in other infectious disease areas, particularly 
where CHIMs have been established at multiple sites.
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