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Abstract: In this study, adding CsPbI3 quantum dots to organic perovskite methylamine lead triiodide
(CH3NH3PbI3) to form a doped perovskite film filmed by different temperatures was found to
effectively reduce the formation of unsaturated metal Pb. Doping a small amount of CsPbI3 quantum
dots could enhance thermal stability and improve surface defects. The electron mobility of the
doped film was 2.5 times higher than the pristine film. This was a major breakthrough for inorganic
quantum dot doped organic perovskite thin films.
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1. Introduction

Organic perovskite CH3NH3PbI3 (MAPbI3) is considered to be the most potential
light-absorbing material for perovskite solar cells (PSCs) due to its high optical absorp-
tion characteristics and long diffusion length [1]. Compared with silicon solar cells, and
although they dominate the solar industry with efficiencies of over 20%, silicon solar
cells remain relatively expensive to manufacture [2]. In the industry, in order to ensure
large-scale production and meet future energy consumption needs, there is an urgent
need to significantly reduce manufacturing costs. In recent years, perovskite solar cells
(PSCs) have received widespread attention based on very low material costs. According
to previous reports, the conversion efficiency of organic perovskite solar cells has rapidly
increased from 9.2% to 20.5% [3,4], and the mobility of perovskite samples is calculated to
be 60–75 cm2 V−1 s−1 [5]. However, organic perovskite MAPbI3 still has many problems
that need to be overcome. For example, it is easily degraded for organic perovskite in air
and the hygroscopicity of methylammonium (MA) cations will trap moisture in the air,
which will increase the crystal size and cause pollution [6,7]. Therefore, improving the
organic perovskite MAPbI3 has become a concern in recent years. Amalie Dualeh et al.
used control of the film formation temperature to improve the photoelectric conversion
efficiency (PCE) of MAPbI3 [8]; Xiao Bing et al. used inorganic PbCl2 to increase the carrier
mobility of perovskite solar cells [9]; LC Chen et al. used doped FAPbI3 quantum dots
(QDs) to enhance the photoelectric conversion efficiency of MAPbI3 [10]. It can be found
that passivation treatment and doping with inorganic materials have become an important
basis for improving organic perovskite MAPbI3. Based on the above, doping inorganic
quantum dots (CsPbI3) into MAPbI3 is still poorly studied. Therefore, in this article, a
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detailed investigation of improvements in the light-absorption capacity and carrier mobil-
ity of MAPbI3 by doping with inorganic quantum dots CsPbI3 and changing the filming
temperature is presented.

2. Results

As shown in Figure 1a, when the filming temperature is 80–100 ◦C, pristine MAPbI3
can still show a typical perovskite absorption spectrum; however, when the filming temper-
ature is further heated to 120–140 ◦C, the pristine MAPbI3 shows a significant decrease in
the absorption spectrum, and the decomposed to PbI2 phase dominated. The decomposi-
tion of MAPbI3 can change from dark brown to yellow, similar to previous reports [11,12].
Figure 1b shows the absorption spectrum for CsPbI3-QD doped perovskite thin films. It
can be found that when the filming temperature exceeds 120 ◦C, the typical perovskite
absorption peak can still be observed at 750 nm. This is due to the addition of CsPbI3-QDs,
which stabilize the structure of the perovskite film surface and make MAPbI3 difficult
to degrade. In addition, after increasing the filming temperature, the absorption area
increases significantly in the entire spectral range (350–850 nm), and the long-wavelength
absorption (750 nm) is significantly improved. This is because the energy gap of CsPbI3
QD is wider and a small strain occurs at the QDs–MAPbI3 interface [12–14]. Therefore,
adding CsPbI3 QDs can not only stabilize the MAPbI3 film at a higher filming temperature,
but also improve the absorption of the film at long wavelengths, and further enhance
the absorption capacity of CsPbI3-QD doped perovskite thin films in the active layer of
perovskite solar cells.
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Figure 1. (a) Absorption spectrum of pristine MAPbI3. (b) Absorption spectrum of CsPbI3 -QD doped MAPbI3 under
different filming temperatures (FTs) from 80 to 160 ◦C.

Figure 2a demonstrates the X-ray diffraction (XRD) pattern of CsPbI3-QD doped
perovskite thin films when the filming temperature is 80–160 ◦C. Based on the spectra
of conventional MAPbI3 films [14], the peak position for MAPbI3 in CsPbI3-QD doped
perovskite thin films under different filming temperatures appeared at 14◦ and 28◦ and all
the films demonstrated strongest intensity along (110). There is an additional new peak
at 12.7◦, which is attributed to PbI2. The intensity of the PbI2 peak of the control sample
(pristine MAPbI3) is much greater than that of BT-140, and there is almost no PbI2 peak
in FT-140. This is due to the better thermal stability that effectively inhibits the formation



Molecules 2021, 26, 4439 3 of 9

of PbI2 and the doping of CsPbI3 QDs avoids the degradation of MAPbI3 which is due to
the decrease in hydrogen bonds in MAPbI3 and the increase in the octahedral tilt due to
the Cs-ion exchange process [15]. When the filming temperature is increased to 160 ◦C,
the peak intensity of PbI2 (001) is much stronger than the perovskite peak. Generally, the
change in the filming temperature can be used to remove impurities or organic substances
from the surface of the film to optimize it. When the filming temperature is lower than
140 ◦C, excess ligands (oleylamine, oleic acid) or PbI2 is removed, but when the filming
temperature is 160 ◦C, MAPbI3 degrades, resulting in a large amount of PbI2 that will
damage the structure of the doped thin film. Figure 2b shows the details of the preferred
peaks of the QD doped film. According to previous research, it is found that when the
filming temperature is up to 140 ◦C, the ratio of the peak area CsPbI3/MAPbI3 is close to 1
and the perovskite crystallinity is optimal [12].
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Figure 2. (a) XRD patterns of CsPbI3-QD doped perovskite thin films under 80–160 ◦C. (b) XRD patterns under the scale of
14◦~16◦.

In order to explain the charge recombination effect introduced by CsPbI3-QDs, the
XPS spectrum of the film was measured and it was understood that changing the film
formation temperatures may affect the surface stability of the MAPbI3 film. Figure 3
shows the core-level spectra of CsPbI3-QD doped perovskite thin films at different filming
temperatures. The deconvolution characteristic of the carbon peak shows the binding state
of carbon material and atmospheric oxygen. The peak at 283.97 eV corresponds to C-O and
the peak at 285.4 eV corresponds to C=O [16]; the carbon configuration combined with
oxygen can be found in the spectra of the control group (pristine MAPbI3), which is due to
the moisture absorption of the MAPbI3 film when it is exposed to air and the perovskite
thin films surface will be oxidized; therefore, it will lead to the appearance of a C-O peak
and C=O peak. After adding CsPbI3-QDs, the C=O peak disappeared and was converted
to a C-C peak; even after the filming temperature was increased to 140 ◦C, the C-O peak
disappeared. This could be due to the higher temperature which will eliminate the weakly
bound organic components.
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Figure 3. XPS core-level spectra of C 1s (a) Pristine MAPbI3 and CsPbI3-QD doped MAPbI3 under
different filming temperatures (FTs) from 80 to 100 ◦C. (b) CsPbI3-QD doped MAPbI3 under different
filming temperatures (FTs) from 120 to 160 ◦C.

Figure 4 shows the deconvoluted XPS spectrum of the I 3d doublet. The values of
619.5 and 631 eV correspond to the I3

− charge state, while 619.37 and 630.87 eV correspond
to the I2+ charge state. Figure 5 shows the deconvoluted XPS spectrum of the Pb 4f doublet.
The values of 136.23 and 141.18 eV correspond to metallic lead (Pb), while 138.07 and
142.97 eV correspond to Pb (II) in perovskite. From the Pb XPS spectra, it can be found that
after adding quantum dots and increasing the film forming temperature, the percentage
of Pb (II) species is relatively higher than that of metal Pb, even if the temperature is
increased to 160 ◦C. This shows that the iodine atom interacts with the lead atom and forms
a donor–acceptor complex. This is because the low electronegativity Pb atom provides the
excess unpaired electrons to the high electronegativity I(I), and in the process of electron
transfer, the Pb atom is oxidized to Pb2+ and provides two electrons to reduce the iodine
atom to 2I−, and is further reduced to triiodide(I3

−). It can be clearly understood by the
following equation:

Pb→ Pb2+ + 2e−

I + 2e− → 2I−

I2 + I− → I−3



Molecules 2021, 26, 4439 5 of 9

However, when the filming temperature is increased to 140 ◦C, the peak of metallic
lead disappears. Recent studies have shown that the peak of metallic lead is derived from
unsaturated lead, and the presence of unsaturated lead atoms is related to the lack of
iodide [17], and the metal lead is compounded as recombination point, leading to poor
performance. Due to its thermal stability, Cs atoms replace some MA, resulting in the loss
of molecular groups and fewer iodine atoms at the A site of the perovskite, and unsaturated
Pb is effectively suppressed.

Figure 6 shows the relationship between the I/Pb atomic mass ratio calculated from
the integral area of Pb 4f and I 3d and the total atomic mass percentage of O 1s and the
filming temperature. Research has pointed out that the thickness of the film is related to
the combination of surface oxygen [18]; however, the thickness of the film is 295 nm at
different filming temperatures. Therefore, it can be further inferred that the total atomic
concentration of the I 3d peak gradually increases relative to the total concentration of the
Pb 4f peak, which is related to the reduction in surface oxides. Therefore, it can be seen that
when the filming temperature is 140 ◦C (I/Pb ratio is closest to 3), the CsPbI3-QD doped
perovskite thin films surface can be effectively stabilized and prevented from oxidation.
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Figure 4. XPS core-level spectra of I 3d (a) Pristine MAPbI3 and CsPbI3 -QD doped MAPbI3 under
different filming temperatures (FTs) from 80 to 100 ◦C. (b) CsPbI3 -QD doped MAPbI3 under different
filming temperatures (FTs) from 120 to 160 ◦C.



Molecules 2021, 26, 4439 6 of 9
Molecules 2021, 26, x FOR PEER REVIEW 6 of 9 
 

 

 

 

(a) (b) 

Figure 5. XPS core-level spectra of Pb 4f (a) Pristine MAPbI3 and CsPbI3 -QD doped MAPbI3 under different filming tem-

peratures (FTs) from 80 to 100 °C. (b) CsPbI3 -QD doped MAPbI3 under different filming temperatures (FTs) from 120 to 

160 °C 

Figure 6 shows the relationship between the I/Pb atomic mass ratio calculated from 

the integral area of Pb 4f and I 3d and the total atomic mass percentage of O 1s and the 

filming temperature. Research has pointed out that the thickness of the film is related to 

the combination of surface oxygen [18]; however, the thickness of the film is 295 nm at 

different filming temperatures. Therefore, it can be further inferred that the total atomic 

concentration of the I 3d peak gradually increases relative to the total concentration of 

the Pb 4f peak, which is related to the reduction in surface oxides. Therefore, it can be 

seen that when the filming temperature is 140 °C (I/Pb ratio is closest to 3), the CsPbI3-

QD doped perovskite thin films surface can be effectively stabilized and prevented from 

oxidation. 

132 134 136 138 140 142 144 146 148

Pb(II)

Pb(0)

FT-80

Binding Energy (eV)

132 134 136 138 140 142 144 146 148

Pb(0)

Pb(II)

FT-100

Binding Energy (eV)

132 134 136 138 140 142 144 146 148

MAPbI
3

Binding Energy (eV)

Pb(II)

PbO
N

o
rm

al
iz

ed
 i

n
te

n
si

ty
 (

a.
u

.)

132 134 136 138 140 142 144 146 148

Pb(0)

Pb(II)

FT-120

Binding Energy (eV)

132 134 136 138 140 142 144 146 148

Pb(II)

FT-140

Binding Energy (eV)

132 134 136 138 140 142 144 146 148

FT-160

Binding Energy (eV)

Pb(II)

PbO

N
o

rm
al

iz
ed

 i
n
te

n
si

ty
 (

a.
u

.)

Figure 5. XPS core-level spectra of Pb 4f (a) Pristine MAPbI3 and CsPbI3 -QD doped MAPbI3 under
different filming temperatures (FTs) from 80 to 100 ◦C. (b) CsPbI3 -QD doped MAPbI3 under different
filming temperatures (FTs) from 120 to 160 ◦C.
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Figure 6. Quantified XPS results highlighting atomic mass ratio for I/Pb and oxygen atomic mass
percentage for different filming temperatures.
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It can be found from Table 1 that after the filming temperature is increased, the
mobility is significantly increased. This is attributed to the addition of CsPbI3 QDs, which
effectively prevents the formation of metallic lead and reduces the chance of electron-hole
recombination.

Table 1. The mobility, resistivity and carrier concentration of the control group and different filming
temperatures.

Mobility
(cm2/Vs)

Resistivity
(cm2/C)

Carrier Concentration
(cm−2)

pristine MAPbI3 1.95× 103 8.86× 108 3.61× 106

FT-80 1.97× 103 8.84× 108 3.65× 106

FT-100 2.45× 103 5.35× 108 3.48× 106

FT-120 3.46× 103 3.78× 108 3.27× 106

FT-140 4.91× 103 2.67× 108 6.97× 106

FT-160 3.34× 103 2.75× 108 4.62× 106

3. Materials and Methods
3.1. Materials

All materials contain cesium carbonate (Cs2CO3, 99.9%), lead(II) iodide (PbI2, 99.9985%),
oleic acid (C18H34O2, analytical reagent 90%), oleyl amine (C18H35NH2, 90%), 1-octadecene
(ODE, technical grade 90%), toluene (anhydrous, 99.8%), hexane (analytical reagent, 97%),
methyl acetate (MeOAc, anhydrous 99.5%), methylammonium iodide (CH3NH3I, 99%),
dimethyl sulfoxide ((CH3)2SO, 99%) and gamma-butyrolactone (C4H6O2, 99.9%), as shown
in Table 1. All the chemicals in this work were used without further treatment.

3.2. Solution Preparation and Synthesis for Cs-Oleate Precursor, CsPbI3 QDs and CH3NH3PbI3

The experimental method is the modified hot-injection method previously reported [12].
All experiments were performed in a glove box filled with nitrogen, H2O < 1 ppm and
O2 < 1 ppm.

3.3. Synthesis of Cs-Oleate

Cs2CO3 (0.1 g), OA (0.5 mL) and ODE (10 mL) were loaded into a 50 mL sample bottle
and stirred for 1 h at 120 ◦C. We used heating and air extraction to remove moisture and
internal air. Then, the solution was heated at 150 ◦C until the solution was clear. Finally,
the Cs-oleate was stored at 100 ◦C to avoid precipitation.

3.4. Synthesis of CsPbI3 QDs

Both ODE (10 mL) and PbI2 (0.173 g) were added into a 50 mL sample bottle and were
dried at 120 ◦C for 1 h. Then, 1 mL of OA and 1 mL of OAM (preheated at 70 ◦C) were
poured. The solution was degassed until the PbI2 completely dissolved and the solution
became clear. The solution was then heated to 185 ◦C. The Cs-oleate (0.0625 M, 1.6 mL)
precursor was swiftly injected into the solution. After 5 s, the reaction solution was cooled
by immediately immersing the sample bottle into an ice bath.

3.5. Purification of CsPbI3 QD

The prepared CsPbI3 QDs were separated by adding MeOAc (volume ratio of crude
solution/MeOAc is 1:3), and then they were centrifuged at 8000 rpm for 5 min. After
that, the supernatant was discarded, and the precipitation that contained the QDs was
dissolved in 3 mL of hexane. Then, the CsPbI3 QDs were precipitated again by adding
MeOAc (volume ratio of crude solution/MeOAc is 1:1) and centrifuging at 8000 rpm for
2 min. Finally, the QDs were dispersed in 3 mL of hexane and centrifuged at 4000 rpm for
5 min to remove excess PbI2 and precursor.
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3.6. Synthesis of CH3NH3I

We added CH3NH3I (198.75 mg) and PbI2 (576.25 mg) into the 50 mL sample bottle,
and then added C2H6OS (0.5 mL) and C6H6O2 (0.5 mL) into the sample bottle in the glove
box and stirred at 300 rpm for 24 h.

3.7. Fabrication of Thin Films

CH3NH3I (50 µL) and CsPbI3 (1 mg) were mixed and spin-coated on the glass substrate
in the glove box and then filmed by different filming temperatures from 80–160 ◦C.

3.8. Characteristic Measurements

The absorption spectra of the thin film were measured by ultraviolet/visible (UV/vis)
absorption spectroscopy (HITACHI, U-3900, Hitachi High-Technologies Corporation Tokyo,
Japan). X-ray diffraction (XRD) data of films were recorded by the Bruker D8 Discover
(Bruker AXS Gmbh, Karlsruhe, Germany) X-ray diffractometer with Grazing Incidence
X-ray Diffraction (GIXRD) and X-ray photoelectron spectroscopy (XPS) data of films were
recorded by a PHI 5000 (ULVAC-PHI, Kanagawa Prefecture, Japan) VersaProbe/Scanning
ESCA Microprobe.

4. Conclusions

We successfully manufactured CsPbI3-QD doped perovskite thin films and clearly
analyzed the surface of this film through an XPS core-level configuration. By increasing the
temperature of film formation, the light-absorption capacity can be effectively improved
and the precursors and organics can be reduced. The doping of a small amount of CsPbI3
QDs can reveal better thermal stability to improve the surface trap state. Therefore, this
kind of QD doped perovskite thin film will become an important key to improve the
efficiency of perovskite solar cells in the future.
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