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Purpose: The present study was undertaken to investigate whether transforming growth factor-β (TGF-β) isoforms (TGF-
β1, TGF-β2, and TGF-β3) and SMADs (SMAD2 and SMAD3) are involved in herpes simplex virus type 1 (HSV-1) corneal
infection.
Methods: Human corneal epithelial cells (HCE) were infected with HSV-1 at a multiplicity of infection of 5. Cell
morphological changes were observed under phase-contrast microscopy. Levels of mRNA for TGF-β isoforms 1, 2, and
3 as well as for SMAD2 and SMAD3 were measured by reverse transcription polymerase chain reaction (RT–PCR) at 0
h, 4 h, 8 h, 12 h, and 24 h after infection. Protein expression of TGF-β1, TGF-β2, SMAD3, and phospho-SMAD3 were
analyzed by indirect immunofluorescence at 0 h, 12 h, and 24 h post-infection (p.i.) in HCE cells. Protein expression of
TGF-β1 was also evaluated by ELISA.
Results: Following HSV-1 infection, a cytopathic effect in HCE cells was observed at 8 h p.i. and became significant at
24 h p.i. Compared with normal cells, the mRNA levels of TGF-β1 in HSV-1 infected HCE cells decreased significantly
at 8 h, 12 h, and 24 h p.i. (p<0.01), and the expression of SMAD3 was also dramatically decreased 12 h and 24 h p.i.
(p<0.01). No noticeable changes were found as a result of infection with respect to levels of TGF-β2, TGF-β3, and
SMAD2 in HCE cells. Protein expression of TGF-β1, SMAD3, and phospho-SMAD3 decreased in infected cells at 12 h
and 24 h p.i. compared with normal cells, but TGF-β2 had no change.
Conclusions: TGF-β1 and SMAD3 may be involved in the pathology of corneal diseases associated with HSV-1 infection.

Herpes simplex virus type 1 (HSV-1) is a large,
enveloped, double-stranded DNA virus with a genome of
approximately 150 kbp. HSV-1 is widespread in the human
population and commonly causes infections of the skin or
mucosal surfaces. Occasionally, it can cause serious diseases
such as sporadic encephalitis and ocular infections [1,2]. In
the eye, HSV-1 infection usually results in blepharitis,
conjunctivitis, corneal epithelial keratitis, and ulcerative and/
or stromal keratitis [3]. The pathologies of these diseases are
associated with several events such as the infiltration of
neutrophils and mononuclear lymphocytes and the expression
of growth factors, proinflammatory factors, and cytokines,
which include transforming growth factor-β (TGF-β), IL-2,
IL-6, IL-8, TNF-α, and interferon-β (IFN-β) [4-6]. These
studies suggest that growth factors and cytokines are
extremely important in regulating the body’s reaction to viral
infection.

TGF-β is a superfamily of cytokines, which affect a range
of biological processes such as cell growth, differentiation,
matrix production, migration, and apoptosis [7]. Furthermore,
the TGF-β pathway is an important target for several viral
proteins that interfere with signal transduction and
transcription control in infected cells [8-11]. Upon activation
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of the TGF-β signaling pathway, TGF-β family members bind
to the TGF-β type II receptor (TβR-II). TβR-II then recruits
and phosphorylates TGF-β type I receptors (TβR-I), which in
turn phosphorylates the intracellular effectors (i.e., SMAD2
and SMAD3). Subsequently, SMAD2 and SMAD3
complexes, which are associated with SMAD4, are
translocated into the nucleus and regulate the transcription of
target genes [7,12,13]. A previous study demonstrated that
TGF-β isoforms are expressed in the human cornea [14,15],
and TGF-β is believed to be one of the major factors involved
in cell migration in the cornea and corneal wound healing
[16-18]. Furthermore, TGF-β signaling through the SMAD
pathway is activated in response to corneal wounds in which
the basement membrane is removed [16]. Earlier studies
suggested that TGF-β might be important in the pathology of
various disease processes involved with viral infection. This
has been demonstrated for a variety of viruses including
cytomegalovirus (CMV), human immunodeficiency virus
(HIV), canine distemper virus, rhinovirus, HSV-1, and human
T-cell leukemia virus (HTLV) [8,9,19-22]. Corneal epithelial
cells are the first line of defense against microbial infection
and against further damage to the underlying stroma.
Therefore, we must understand the role of TGF-β in the
pathology of viral infection in the corneal epithelium. It is
reasonable to suppose that TGF-β and SMADs play a critical
role in the pathology of HSV-1 infection in the cornea. The
present study was undertaken to examine whether TGF-β
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isoforms and SMADs (SMAD2 and SMAD3) are involved in
HSV-1 corneal epithelial infection in vitro.

METHODS
Cell culture: The human corneal epithelial cell line (HCEC)
that we used was described previously [23]. Cells were
cultured in DMEM/high glucose supplemented with 10% fetal
bovine serum (FBS; Hyclone, Logan, UT), 10 ng/ml human
epidermal growth factor (EGF; Sigma, St Louis, MO), 5 μg/
ml insulin, 5 μg/ml human transferrin (Sigma), and 0.4 μg/ml

hydrocortisone (Gibco BRL, Grand Island, NY). The cells
were incubated at 37 °C in a 5% CO2-95% air incubator.
Experiments were performed when cells were at 80%-90%
confluence.
Virus infection: Stocks of the HSV-1 (F strain) used in this
study were propagated on HEp-2 cells grown in DMEM/F12,
which contained 10% newborn bovine serum. The titer of
virus stocks was determined according to a previously
described method [24]. After cells were grown to 80%-90%
confluence, cells were infected at a multiplicity of infection

TABLE 1. PRIMER SEQUENCES AND LENGTH OF AMPLICONS.

Gene Primer sequences Product size (bp)
TGF-β1 forward: 5′-GGGACTATCCACCTGCAAGA-3′ 239

 reverse: 5′-CCTCCTTGGCGTAGTAGTCG-3′
TGF-β2 forward: 5′-GTGGAGGTGCCATCAATA-3′ 499

 reverse: 5′-GAGGAGCGACGAAGAGTA-3′
TGF-β3 forward: 5′-CAA AGGGCTCTGGTGGTC-3′ 216

 reverse: 5′-CGGGTGCTGTTGTAAAGTG-3′
SMAD3 forward: 5′-AGGAGAAATGGTGCGAGA A-3′ 197

 reverse: 5′-CCACAGGCGGCAGTAGAT-3′
SMAD2 forward: 5′-TCACAGTCATCATGAACTCAAGG-3′ 471

 reverse: 5′-TGTGACGCATGGAAGGTCTCTC-3′
DNA polymerase forward: 5′-ATCAACTTCGACTGGCCCTT-3′ 179

 reverse: 5′-CCGTACATGTCGATGTTCAC-3′
VP16 forward: 5′-GGTCGCAACAGAGGCAGTCA-3′ 418

 reverse: 5′-CCCGAACGCACCCAAATC-3′
GAPDH forward: 5′-GCACCGTCAAGGCTGAGAAC-3′ 138

 reverse: 5′- TGGTGAAGACGCCAGTGGA-3′

Figure 1. Morphological changes of
human corneal epithelial cells infected
with HSV-1. A: Normal human corneal
epithelial cells exhibited a cobblestone
appearance. B: The cytopathic effect
could be seen at 8 h p.i. The space
between infected cells increased. After
cells were infected with HSV-1 for 12 h
(C) and 24 h (D), the cobblestone
appearance disappeared and many giant
multinucleated cells could be seen.
Magnification: 200X.
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(MOI) of 5. After 1 h of adsorption at 37 °C with intermittent
rocking, the inoculum was removed, and the medium was
replaced with serum-free DMEM/high glucose. At the
indicated times, cells were harvested for further experiments.
To confirm virus infection, two virus genes (i.e., DNA
polymerase and VP16) of HSV-1 were examined by reverse
transcription polymerase chain reaction (RT–PCR) using the
primers listed in Table 1. Two genes were detected in HSV-1
infected cells, which implied that HCE cells were successfully
infected by HSV-1.
RNA isolation and reverse transcription polymerase chain
reaction analysis: Cells were harvested and washed with
phosphate buffered saline (PBS). Total RNA was isolated
with TRIzol reagent (Invitrogen, Carlsbad, CA) according to
the manufacturer’s instructions. The quantity and quality of
total RNA were estimated by spectrophotometry and agarose
electrophoresis. Subsequently, RNA was reverse-transcribed
into cDNA using a RevertAidTM First Strand cDNA synthesis
kit (Fermentas, Glen Burnie, MD). cDNA was then amplified
by GoTaq® Green Master mix (Promega, Madison, WI) using
the specific primers listed in Table 1. The PCR products were
electrophoresed in GoldViewTM stained 2% agarose gels (SBS
Genetech, Beijing, China). Quantification of the bands was
performed using a BioImaging System (UVP, Upland, CA)
and Gel-pro software (Media Cybernetics, Bethesda, MD),
and the level of mRNA was expressed as the ratio of integrated
optical density (IOD) of specific PCR products over
GAPDH IOD.

Indirect immunofluorescence: HCE cells were cultured on a
glass coverslip in 12 well chamber dishes and infected with
HSV-1 as described above. At the indicated times, changes in
cellular morphology were photographed using a phase-
contrast microscope. Slide-mounted cells were used for
indirect immunofluorescence analysis according to the
method described previously [25]. The cells were blocked by
endogenous peroxidase-blocking solution and followed by
goat serum (each for 10 min at 37 °C). After blocking
nonspecific binding, cells were incubated with rabbit anti-
human monoclonal/polyclonal antibodies that recognize
TGF-β1 (Santa Cruz, Delaware Avenue, CA), TGF-β2 (Santa
Cruz), SMAD3, and phospho-SMAD3 (both from Cell
Signaling, Danvers, MA) at 4 °C overnight. Cells were then
incubated with FITC-conjugated secondary goat anti-rabbit
IgG (Zhongshan Goldenbridge, Beijing, China) at 37 °C for
1 h. Prior to mounting, cells were stained with propidium
iodide (PI) for 10 min. Cells were then observed using a
confocal laser scanning microscope (Carl Zeiss, Jena,
Germany). Cells incubated with PBS (instead of the first
antibody) were used as negative controls.
Measurement of TGF-β1 protein in human corneal epithelial
cells by ELISA: At 0 h, 12 h, and 24 h p.i., HSV-1 infected
HCE cells were lysed with lysate buffer (Pierce, Rockford,
IL). The samples were sonicated and centrifuged at 12,000

rpm for 30 min at 4 °C to remove cellular debris. Protein
content in the supernatant was determined by the
bicinchoninic acid method using BSA as the standard. The
TGF-β1 levels of cell homogenate were assayed using a
specific TGF-β1 enzyme-liked immunosorbent assay kit
(Boster, Wuhan, China), and human TGF-β1 was used to
construct a standard curve. The amount of TGF-β1 protein in
the cell was normalized to the total amount of cellular protein.
Absorbance values were read at 450 nm by an ELISA enzyme-
labeled device.
Statistical analysis: Statistical analysis of data was performed
by one-way ANOVA and a Student–Newman–Keuls test to

Figure 2. Reverse transcription polymerase chain reaction analysis
of the TGF-β isoforms in human corneal epithelial cells infected with
HSV-1. A: Products of RT-PCR that were run on 2% agarose gel
electrophoresis. The intensities of TGF-β1 bands decreased
significantly at 8 h, 12 h, and 24 h p.i., while that of TGF-β2 and
TGF-β3 bands unchanged. GAPDH was used as an internal control.
B: The level of mRNA was expressed as the ratio of integrated optical
density (IOD) of specific PCR products over GAPDH IOD. Each
data was the mean value of three independent experiments. Single
asterisks indicate significant differences (p<0.05).
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determine statistically significant differences (p<0.05)
between uninfected and HSV-1 infected cells.

RESULTS
Morphological changes of HSV-1 infected human corneal
epithelial cells: Cell morphological changes were observed

under phase-contrast microscopy. Normal HCE cells
exhibited a typical cobblestone appearance (Figure 1A).
Following HSV-1 infection and up to 8 h p.i., the cell
morphology of infected groups was similar to the uninfected
group. Compared with control cells, a cytopathic effect (CPE)
in HCE cells could be observed at 8 h and 12 h p.i. (Figure

Figure 3. Protein expression of TGF-β1 and TGF-β2 in human corneal epithelial cells infected with HSV-1. In A and B, indirect
immunofluorescence analysis was used to find the protein expression in cells. FITC marked the secondary antibody (green; left), and PI dyed
the nucleus (red; middle). Merged images were showed at the right of A and B. Scale bar: 10 μm. C: The expression of TGF-β1 by ELISA in
HCE cells infected with HSV-1 was measured at 0 h, 12 h, and 24 h p.i. Significant decreases of the TGF-β1 protein in cell lysates were seen
in both 12 h and 24 h post-infected cells (p<0.05). Each data was the mean value of four independent assays.
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1B,C). The space between infected cells increased, and the
cobblestone appearance disappeared. At 24 h p.i., most of the
infected cells exhibited a CPE (dead cells were observed
floating in the medium), and many giant multinucleated cells
could be seen (Figure 1D).
Expression of TGF-β isoforms in HSV-1 infected human
corneal epithelial cells in vitro: First, the mRNA level of
TGF-β isoforms (i.e., TGF-β1, TGF-β2, and TGF-β3) in HCE
cells infected with HSV-1 was estimated using RT–PCR
(Figure 2). The mRNA level of TGF-β1 decreased
significantly by 40.3%, 57.3%, and 70.4% at 8 h, 12 h, and 24
h p.i., respectively, when compared with uninfected cells
(p<0.01). However, mRNA profiles of TGF-β2 and TGF-β3
in infected cells at 8 h, 12 h, and 24 h p.i were similar to that
of uninfected cells (p>0.05).

To further verify the results of PCR, indirect
immunofluorescence was used to observe the changes of
TGF-β1and TGF-β2 protein expression in HCE cells infected

Figure 4. Reverse transcription polymerase chain reaction analysis
of SMAD2 and SMAD3 in human corneal epithelial cells infected
with HSV-1. A: Agarose gel pattern of RT–PCR products. The band
intensities of SMAD3, not SMAD2, decreased during the period of
post-infection. GAPDH was used as an internal control. B: The level
of mRNA was expressed as the ratio of IOD of specific PCR products
over the GAPDH gene IOD. The mean values of three independent
experiments are shown. Single asterisks indicate significant
differences (p<0.05).

with HSV-1 (Figure 3). The intensity of immunostaining for
TGF-β1 decreased at 12 h and 24 h p.i. compared with the
control (Figure 3A). The decrease of TGF-β1 protein in
HSV-1 infected HCE cells was also found by ELISA
measurement (Figure 3C). Significant decreases in the levels
of TGF-β1 protein were observed using two immunomethods.
However, compared with normal cells, TGF-β2 protein
remained present in infected cells at both 12 h and 24 h p.i.
when we examined the cells by immunocytochemical staining
(Figure 3B).
Expression of SMAD2 and SMAD3 in HSV-1 infected HCE
cells: The expression of SMAD2 and SMAD3 in HCE cells
infected with HSV-1 was detected by RT–PCR (Figure 4).
This study found a clear reduction in mRNA level coding for
SMAD3 in HSV-1 infected cells. Compared with normal cells,
SMAD3 mRNA levels decreased significantly by 37.5% (12
h p.i.) and 53.1% (24 h p.i.; p<0.01) in infected cells.
However, the mRNA levels of SMAD2 remained unchanged
during the course of infection (p>0.05).

DISCUSSION
The cornea contains three principal cell types, epithelial cells,
keratocytes, and endothelial cells. Previous studies have
shown that corneal epithelial cells are capable of supporting
efficient HSV-1 replication [26,27]. Balliet et al. [28] reported
that a recombinant HSV-1 virus, KOS-CMVGFP, expressing
enhanced green fluorescent protein (EGFP) could infect mice
as efficiently as a wild-type virus. They found that
fluorescence was observed in eyes as distinct small foci on the
cornea at day 1 p.i., and that the fluorescence spread
throughout the eye between days 1 and 3 p.i. Finally, the foci
grew larger and coalesced, resulting in large, dendritic corneal
lesions. Consistent with the studies described above, our work
also demonstrated that the HCE cell is highly permissive to
HSV-1 infection in vitro. When HCE cells were infected with
HSV-1 at a MOI of 5, a cytopathic effect was observed at 8 h
p.i. HSV-1 infection caused an increase in the number of dead
cells, which may be the reason for the dendritic keratitis
observed in vivo. Furthermore, we also observed expression
of two viral genes (DNA polymerase and VP16) in infected
cells by RT–PCR, which implies that HSV-1 caused a
productive infection of HCE cells. Therefore, HCE cells are
susceptible to HSV-1 infection, and it can provide a useful in
vitro model for research of HSV-1 infection in the cornea.

TGF-β isoforms and SMAD family members have been
identified in mammalian cells. In the eye, TGF-β isoforms are
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expressed in different ocular tissues [14,15,29]. In the cornea,
SMAD2 and SMAD4 were expressed and translocated into
the nuclei, and SMAD7 was overexpressed during corneal
epithelial wound repair [16,30]. In the cultured retinal
pigment epithelial cell line (D407), TGF-β can stimulate the
translocation of SMAD2 (but not SMAD1) from the
cytoplasm into the nuclei [31]. Therefore, TGF-β isoforms
and SMADs may play important roles in the pathogenesis of
ocular diseases. However, there is limited research on the
effect of TGF-β isoforms and SMADs in cells infected by
HSV-1. Accordingly, the objective of the present study was
to investigate whether the expression of TGF-β isoforms and
SMADs in HCE cells is affected by HSV-1 infection in vitro.

The effect of viral infection on TGF-β expression has
been described for several viruses including HIV, CMV, and
HSV-1 in other tissues [19,32,33]. In CMV infection, TGF-
β1 was detected in increasing amounts in infected human
foreskin fibroblast and astrocyte supernatants, and TGF-β1
transcription was significantly increased when compared to
that of uninfected cells [22,33]. In vitro HSV-1 infection of
human mononuclear cells resulted in a significant time-
dependent increase in the release of TGF-β1 protein into
supernatants [19]. These studies showed that virus infection
could induce the overexpression of TGF-β1 with respect to
protein expression and mRNA levels. However, in a study on
mouse cornea infected with HSV-1, Hu et al. [4] showed that
levels of TGF-β mRNA decreased in inflamed corneas. Our
study demonstrated that the expression of TGF-β1 at both the
mRNA and protein level was down-regulated in HCE cells

infected by HSV-1 at 8 h p.i. and beyond. However, during
the course of HSV-1 infection, the transcription of TGF-β2
and TGF-β3 remained unchanged compared to uninfected
cells. These results suggested that TGF-β expression in
response to HSV-1 infection is specific to cell type.

The current study also showed that HSV-1 infection
caused a decline in the transcription of SMAD3 in HCE cells
but had no effect on the expression of SMAD2. Similarly, by
confocal laser scanning microscopy, HSV-1 infected HCE
cells displayed weak immunostaining for SMAD3 and
phospho-SMAD3. Although measuring protein levels with a
quantitative method such as western blot would provide more
convincing evidence of protein expression change, the
immunostaining result was consistent with the data of RT–
PCR analysis for SMAD3. These results suggested that
SMAD3 decreased in both mRNA and protein levels in HSV-1
infected HCE cells.

It has been demonstrated that in virus infections, TGF-β
could be regulated by the SMAD subfamily. In HPV infected
cells, viral E7 oncoprotein blocks through its constitutive
interactions with SMAD2, SMAD3, and SMAD4, both
SMAD transcriptional activity and the ability of TGF-β to
inhibit DNA synthesis [10]. E6 oncoprotein of HPV-5 inhibits
SMAD3 transactivation by interacting with SMAD3,
destabilizing the SMAD3/SMAD4 complex, and inducing the
degradation of both proteins [34]. Virus proteins also interfere
with TGF-β signaling via SMAD proteins as observed in
HTLV-1 infected ATL cells [8] and in Kaposi's sarcoma-
associated herpes virus infection [11]. These results show that

Figure 5. Colocalization of SMAD3 and phospho-SMAD3 protein in human corneal epithelial cells. FITC marked the secondary antibody
(green; left), and PI dyed the nucleus (red; middle). Merged images were showed at the right of A and B. Both SMAD3 (A) and phospho-
SMAD3 (B) were more weakly expressed at 12 h and 24 h p.i. compared to the uninfected cells. Scale bar: 10 μm.
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suppression of SMAD-mediated TGF-β signaling in virus
infected cells might contribute to the carcinogenesis. The
present study focuses on HSV-1 infected corneal epithelial
cells, which characterizes recurrent inflammation of the
cornea in vivo. The fundamental physiologic roles of SMAD3
are involved in the processes of tissue repair and fibrosis
[35]. Decreased SMAD3 expression could reduce formation
and nuclear import of transcriptionally active SMAD
heterocomplexes and decrease transcription of TGF-β1
regulated target genes, which result in reduced inflammatory
cell infiltrates, reduced auto-induction of TGF-β, and reduced
elaboration of collagen [36]. This may be the cause of the
observed decreases of TGF-β1 and SMAD3 in HSV-1
infected HCE cells in this study, which occurred as an in vivo
inflammatory process.

The interplay between HSV-1 and its host involves
numerous factors, and the virus employs several mechanisms
to combat many antiviral responses enacted by the infected
cell [37]. Expression of TGF-β1 and SMAD3 in HSV-1
infected HCE cells decreased in this study, which suggested
that they may be involved in corneal diseases that are
associated with HSV-1 infection. The specific function of
TGF-β1 and SMAD3 in HSV-1 corneal infection requires
further investigation.
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