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Abstract
Accumulation of somatic mutations in antibody variable regions is critical for antibody affinity

maturation, with HIV-1 broadly neutralizing antibodies (bnAbs) generally requiring years to

develop. We recently found that the rate at which mutations accumulate decreases over

time, but the mechanism governing this slowing is unclear. In this study, we investigated

whether natural selection and/or mutability of the antibody variable region contributed signif-

icantly to observed decrease in rate. We used longitudinally sampled sequences of immu-

noglobulin transcripts of single lineages from each of 3 donors, as determined by next

generation sequencing. We estimated the evolutionary rates of the complementarity deter-

mining regions (CDRs), which are most significant for functional selection, and found they

evolved about 1.5- to 2- fold faster than the framework regions. We also analyzed the pres-

ence of AID hotspots and coldspots at different points in lineage development and observed

an average decrease in mutability of less than 10 percent over time. Altogether, the correla-

tion between Darwinian selection strength and evolutionary rate trended toward signifi-

cance, especially for CDRs, but cannot fully explain the observed changes in evolutionary

rate. The mutability modulated by AID hotspots and coldspots changes correlated only

weakly with evolutionary rates. The combined effects of Darwinian selection and mutability

contribute substantially to, but do not fully explain, evolutionary rate change for HIV-1-tar-

geting bnAb lineages.
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Author Summary

In an infected individual, the HIV-1 Env gene evolves at a rate of about 0.015 substitutions
per site per year. Changes in viral epitopes in turn stimulate the co-evolution of recogniz-
ing antibody lineages. We previously showed that young antibody lineages can evolve at a
rate ~10-fold faster than observed for HIV-1 and the rate of antibody evolution decreases
over time. Here we investigate two factors, Darwinian selection and genetic mutability,
which have been shown to influence evolutionary rates in other settings. We quantified
both of these factors for three broadly HIV-1-neutralizing antibody lineages, and analyzed
the association of these factors with changes in evolutionary rate. We found that Darwin-
ian selection is a major factor in the slowing of evolutionary rate, while genetic mutability
modulates antibody evolutionary rate weakly. Moreover, the combined effects of the two
factors are unlikely to fully account for the slowing of antibody evolutionary rate.

Introduction
Antibody affinity maturation is an iterative process of B cell proliferation, somatic hypermuta-
tion (SHM) of immunoglobulin variable gene regions, and selection. In germinal centers
(GCs), B cells bearing antigen specific receptors (BCRs) take up antigens from the surface of
follicular dendritic cell and present digested antigen peptides for recognition by CD4+ T follic-
ular helper (Tfh) cells [1–5]. Once engaged with a Tfh cell, the B cell receives Tfh cell-derived
cytokines and chemokines that are essential for survival and proliferation [6, 7]. Because there
are limited numbers of Tfh cells in a germinal center, B cells compete for Tfh cell binding. B
cells having BCRs with better binding affinity against a specific antigen will capture more anti-
gen and thus present more antigen peptides on the cell surface, in turn leading to an enhanced
chance to engage with Tfh cells [1, 2, 8]. Thus, beneficial mutations can be selected and accu-
mulated in the immunoglobulin gene to promote BCR engagement [8, 9].

Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to require high
levels of SHM (up to 40%) for development of neutralization breadth and potency, and the
maturation process usually takes several years [10–12]. This is because HIV-1 evolves quickly
in the host, allowing the pathogen to escape antibody neutralization [10–13]. In response, cog-
nate antibodies have to frequently rediversify their paratopes to keep engaged with the epitope.
The necessary maturation cannot be accomplished in a single GC reaction, but rather requires
cycles of reentry by memory B cells into new GCs for further proliferation and diversification
[14, 15]. Over the long term, antibodies co-evolve with HIV-1 [10–12, 16], which can be
approximated as a continuous process; however, the characterization of this evolutionary
development is still limited.

The diversification of antibody V(D)J genes is initiated by activation-induced cytidine deam-
inase (AID)[3, 17]. AID mutates the antibody variable region at a rate of about 10−3 mutations
per site per B cell generation [18]. However, only a portion of these mutations is non-deleterious
and therefore have the potential to become fixed in the lineage. By approximating antibody evo-
lution as a continuous process, the accumulation of these substitutions over time can be mea-
sured. This is termed the evolutionary rate. In our previous study, we estimated the evolutionary
rates of three broadly neutralizing antibody (bnAb) lineages against HIV-1: CH103, VRC01,
and CAP256-VRC26 (referred to hereafter as VRC26) [16]. During their respective study peri-
ods, the VRC26, CH103, and VRC01 lineages evolved with mean rates of approximately 7, 10
and 2 percent substitutions per nucleotide site per year respectively. We demonstrated the evo-
lutionary rate of an antibody lineage to be at least comparable to that of the HIV-1 (~1.5 percent
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substitutions per site per year within host [16, 19]). However, the evolutionary rates of the
VRC26 and CH103 lineages were found to be 3–5 fold faster than that of the VRC01 lineage,
suggesting heterogeneity of evolutionary rates among lineages. Further analysis showed that the
evolutionary rate of the VRC01 lineage was faster during the early part of the study period than
during the later part. The observed inter- and intra- lineage evolutionary rate heterogeneity sug-
gested that the rate of antibody evolution may be regulated by specific biological mechanisms.

Here, we estimate intra-lineage longitudinal evolutionary rate changes of VRC26 and
CH103 lineages and compare these to the reported rate changes of the VRC01 lineage. The
results confirm that a decreasing evolutionary rate is common to all three lineages. To help
determine the mechanisms which modulate antibody lineage evolutionary rate, we examine
selection pressure and variations in sequence mutability of these antibody lineages. We further
discuss other possible factors that could underlie the slowing of evolutionary rates.

Results

Levels of somatic hypermutation under rapid antibody evolution
A simple way to estimate how fast an antibody lineage evolves is to count the number of muta-
tions accumulated in the variable region within a period of time. Usually, the level of SHM is
measured as the divergence from a reference sequence such as the germline V gene. However,
the drawback of using the germline V gene as a reference is that the complementary determin-
ing region 3 (CDR3) and the framework 4 region would be excluded from the calculation. In
this study, we analyzed the changes of the levels of SHM over time for three broadly neutraliz-
ing antibody (bnAb) lineages (Fig 1) using published next-generation sequencing (NGS) data
[10, 11, 16, 20]. We used the published unmutated common ancestors (UCAs) as references to
calculate mean levels of mutation at each time point for the VRC26 and CH103 lineages [10,
11]. Because the evolution of the VRC01 lineage initiated several years before the study period
(Fig 1), the UCA cannot be inferred from the available NGS data. Moreover, the lineage com-
prises several clades, which evolved independently for a long period of time after divergence
from the UCA, with sequence divergence between clades reaching more than 30% [16]. We
specifically examined the heavy and light chains of clades 03+06 and 08, the heavy chain of
clade H3, and the light chain of clade L3 [16] and inferred the most recent common ancestor
(MRCA) of each clade using MEGA6 [21]. These MRCAs were then used as references for cal-
culating the levels of SHM.

The levels of mutations in complementary determining regions (CDRs) and framework
regions (FWRs) of both heavy and light chain genes increased at early phases of evolution until
substitution saturation, at which point later substitutions mostly occur at previously mutated
sites. After substitution saturation, the levels of SHM are comparable between time points (Fig
2, roughly compared by the 95% confidence interval). Due to mutation bias and natural selec-
tion, only a portion of antibody positions can mutate easily, and the sequence divergence level
from a reference plateaus once the most mutable positions have been changed. Thus, the diver-
gence level does not accurately reflect the total number of accumulated mutations after satura-
tion. Substitution saturation was reached at roughly 20–40% and 10–30% for CDRs and FWRs,
respectively (Fig 2).

Longitudinally, the VRC26 lineage evolved for about 2.5 years (from about 30 weeks post
infection (wpi) to 159 wpi) before reaching substitution saturation (about 34% and 10% SHM
for CDRs and FWRs respectively) (Fig 2A). This evolutionary process also took about 2 years
(from 14 wpi to 92 wpi) for CH103 light chain, while heavy chain did not reach saturation dur-
ing the study period (Fig 2B). However, because we only have sequence data for three time
points of the CH103 lineage, we have low confidence in the observed trends of substitution
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saturation. Furthermore, while it apparently took 7 years (from 1995 to 2002) for the VRC01
lineage to reach substitution saturation from the MRCAs of each clade (Fig 2C, 2D and 2E), this
time period includes only 3 time points, again resulting in uncertainty. Thus there does not
appear to be a fixed time frame for how long it takes antibodies to reach substitution saturation.

In summary, these analyses demonstrate that although antibody evolution leads to continu-
ous accumulation of substitutions in the variable region, divergence from a reference sequence
reaches a plateau within a few years. However, this may be the result of substitution saturation,
rather than a decrease in the evolutionary rate. Because substitution saturation is affected by
sequence length, nucleotide composition, mutation bias, and selection pressure [22, 23], it is
difficult to accurately simulate the SHM process and calculate a theoretical limit. Genetic dis-
tance, which considers the above factors and infers multiple substitutions in a position via sub-
stitution models, may be more appropriate for characterizing the rate of antibody evolution.

Examination of two methods for characterizing longitudinal changes of
evolutionary rate
To examine longitudinal intra-lineage evolutionary rate heterogeneity, we estimated evolution-
ary rate changes for our samples using the program BEAST2 [24] with relaxed log-normal

Fig 1. Study periods of the VRC26, CH103, and VRC01 lineages. To study the dynamics of evolutionary rate,
selection pressure and mutability over time, we separated the time points of a lineage into two or three stages. (A)
Time points of the CAP256-VRC26 lineage for which curated antibody variable region sequences were available.
The eight time points were divided into three stages, which are listed above the time scale. (B) Time points of the
CH103 lineage, with sequence data available at three time points, which were divided to two stages. (C). Study
period of the VRC01 lineage. Since the exact date of HIV-1 infection is unavailable for this donor, the infection period
before VRC01 lineage study initiation was represented with a dashed line. The approximate lineage initiation times
for the VRC26 and CH103 lineages were labeled with red boxes.

doi:10.1371/journal.pcbi.1004940.g001
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molecular clock model. Through Markov Chain Monte Carlo (MCMC) simulation, BEAST2
first enumerates many trees via topological reshuffle of an initial tree, and searches for a set of
trees with high posterior probabilities to explain the relations of a temporal sequence alignment
sample. Then the program calculates a mean rate of evolution for each tree assuming a

Fig 2. Measured somatic hypermutation levels from UCA or MRCA reach substitution saturation during antibody development. To
demonstrate the dynamic changes of somatic hypermutation level (SHM) over time, the mean and 95% confidence interval of SHM was
calculated for each time point of the three lineages. Stages from the same chain of a lineage were connected to reveal longitudinal trends.
The plots of CDR regions were colored magenta while plots of FWRs were colored blue. (A) Longitudinal somatic hypermutation levels of
VRC26 heavy (left) and light (right) chains. The measured SHM against UCA reached substitution saturation around 159 wpi. (B)
Longitudinal somatic hypermutation levels of CH103 heavy (left) and light (right) chains. The SHM level from light chain UCA reached
substitution saturation around 92 wpi, but the SHM level from heavy chain UCA appears to not reach substitution saturation. (C)
Longitudinal somatic hypermutation levels of VRC01 clade 03+06 heavy (left) and light (right) chains. (D) Longitudinal somatic
hypermutation levels of VRC01 clade 08 heavy (left) and light (right) chains. (E) Longitudinal somatic hypermutation levels of VRC01 clade
H3. (F) Longitudinal somatic hypermutation levels of VRC01 clade L3. The measured SHM from the MRCAs of each clade reached
substitution saturation around 2006.

doi:10.1371/journal.pcbi.1004940.g002
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preassigned molecular clock model and population coalescent model, and finally estimates the
mean evolutionary rate and the 95% highest posterior density (HPD) interval of the mean rate
for the dataset. By using a set of trees with high posterior probabilities, BEAST2 reduces the
effect of phylogenetic uncertainty on evolutionary rate estimation.

In this study, we evaluated the performance of two methods for characterizing evolutionary
rate changes over time. In the time-bin method, we separated the time scaled Bayesian maxi-
mum clade credibility (MCC) trees (from BEAST2 simulation) along the time axis into bins,
and estimated the evolutionary rate for each bin (mean evolutionary rate only, no 95% HPD)
from all tree branches within the bin [25]. (A time scaled Bayesian MCC tree is one in which the
length of a tree branch corresponds to the estimated elapsed time between nodes, rather than to
genetic distance.) Alternatively, for the stage method, the sequences were divided into stages
based on the dates of collection (see Materials andMethods). In this case, the mean evolutionary
rate of each stage was estimated using BEAST2 simulation separately, and the changes of the
mean evolutionary rates between stages were used to reflect the rate changes of the dataset.

To compare the two methods, we simulated the evolution of a gene under a constant evolu-
tionary rate (CR dataset) and selected sequences from eight time points. We also duplicated
this data and changed the time labels of the sequences to generate a dataset with decreasing
evolutionary rate (DR dataset, see Materials and Methods). Because the estimation of evolu-
tionary rate is sensitive to substitution saturation, we examined substitution saturation signal
in the two datasets and showed that the datasets are not substitution saturated (S1 Table). We
then examined how accurately the two methods can estimate the changes in the evolutionary
rate of the DR dataset over time.

To evaluate the performance of the time-bin method, we first estimated the evolutionary
rate for the CR dataset using both the restricted molecular clock and the relaxed log-normal
clock models. The estimated evolutionary rates from the two models are highly consistent (Fig
3A, left and S3 Fig). A similar evaluation of the DR dataset using the relaxed log-normal clock
model matched the simulated rates both for the point estimate from the MCC tree and the 95%
HPD range (Fig 3A, right).

When the DR dataset was evaluated with the time-bin method, the results underestimated the
evolutionary rates for the early bins and overestimated the rates for the late bins (Fig 3B). The
95%HPD intervals were consistent with the point estimates from the MCC tree, and the true sim-
ulated rates were not within the estimated 95%HPD interval for any bin (Fig 3B). For the stage
method, however, the expected rates are within the estimated 95%HPD intervals for all three
stages (Fig 3C). This suggests that the relaxed log-normal clock model can accurately estimate the
mean evolutionary rate of a dataset, but may not be able to estimate the evolutionary rate accu-
rately for each local branch of the tree. This is possibly because the dramatic variations in evolu-
tionary rate between tree branches may violate the mathematical assumptions of the model. In
addition, the random local clock model may be a better choice for evolutionary rate estimation
when rate variations exist between branches [25]. However, the simulations with random local
clock model failed to converge and the estimated log posterior probability increased to positive
values, which should be impossible (S1 Fig). Although we are unsure why BEAST produces mean-
ingless numbers in this case, it is probably because the model is only valid for datasets with certain
underlying tree structures [25]. In summary, the stage method is a better choice for characterizing
evolutionary rate changes, and it is used for the evolutionary rate estimation in this study.

Evolutionary rate decrease of broadly neutralizing antibody lineages
Because two or more time points are required to have an accurate estimation of evolutionary
rate, we separated the study periods of VRC26 (eight time points) and CH103 lineages (three
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time points) into 3 and 2 arbitrary stages, respectively (Fig 1), and estimated the evolutionary
rate for heavy and light chains of each stage. The sequence data of 92 wpi of the CH103 lineage,
which is at the boundary of stage 1 and stage 2, were used to estimate evolutionary rates of
both stages. Similarly, the sequence data from 48 wpi of the VRC26 lineage were used to esti-
mate evolutionary rates for both stage 1 and 2. Antibody sequences from 34 wpi, 159 wpi, and
193 wpi [20, 26], which were not available for our previous study [16], were added to the analy-
sis of the VRC26 lineage. We also selected four clades of the VRC01 lineage, two of which (03
+06 and 08) have both heavy chain and light chain data, one of which (H3) has only heavy
chain data, and one of which (L3) has only light chain data. We used these clades to re-calculate
the evolutionary rates for the two stages we reported previously [16]. Consistent with our pre-
vious study on the VRC01 lineage, both heavy chain and light chain of the VRC26 and CH103
lineages show significant evolutionary rate decrease over time (Fig 4).

Because evolutionary rate estimation is sensitive to substitution saturation, we performed
substitution saturation test for datasets used in this study using DAMBE5 [22, 23], which
showed that substitutions are significantly far from saturation in any of our datasets (P<0.01,
S1 Table). Thus, the estimated evolutionary rates are not severely affected. This is mainly due
to three reasons. First, the sequence divergence between groups of sequences from consecutive
time points is far below the level of substitution saturation. Second, the separation of time
points into stages reduced the effect of substitution saturation, because the MRCA of each
stage is more recent than the overall MRCA. Third, the substitution model used for evolution-
ary rate calculation incorporates the possibility of multiple substitutions at a position.

Fig 3. The stagemethod is better than the time-bin method for estimating evolutionary rate dynamics. (A) The evolutionary rate for the constant-
rate (CR) dataset was estimated using both restricted and relaxed log-normal clock models (labeled CR_restricted_clock and CR_lognormal_clock
respectively). The estimated mean evolutionary rates from the two models are in good agreement. The mean evolutionary rates of the decreasing rate
(DR) dataset estimated from the MCC tree and the 1000 time scaled Bayesian trees (labeled DR_MCC_tree and DR_1000_tree respectively) are highly
consistent with the expected rates (red dots) derived from the calculated evolutionary rate of the CR dataset (see Materials and Methods). (B) The mean
evolutionary rates for the eight time bins of the DR dataset were estimated from a single MCC tree (blue) and the mean and the 95% highest probability
density (HPD) intervals estimated from 1000 time scaled Bayesian trees (green). The estimated evolutionary rates for each bin are significantly different
from the expected rate (red). (C) The expected rates (red) of the three stages of the DR dataset are within the estimated 95% HPD of the mean
evolutionary rates (purple), suggesting the stage method is reliable for characterizing evolutionary rate changes over time.

doi:10.1371/journal.pcbi.1004940.g003
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The study period of the VRC26 lineage is from the 34th wpi to the 206th wpi. The available
data showed that the lineage was initiated between 30 wpi and 34 wpi (Fig 1A) [10]. Thus the
three stages correspond approximately to the 4th to 18th weeks, 18th to 89th weeks, and 129th
to 176th weeks of antibody development, respectively. The first stage of the VRC26 lineage
heavy chain showed a mean evolutionary rate as high as 0.224 substitutions per site per year
(Fig 4). This rate is about 15-fold higher than the reported intra-donor evolutionary rate for
the Env gene [16, 19]. This suggests that B cells are capable of dramatic diversification of anti-
body variable regions within the first few weeks post lineage initiation. However, the second
and third stages showed a mean rate of 0.139 and 0.049 substitutions per site per year, which
are 62% and 22% of the rate of the first stage, respectively. The 95% HPD of the evolutionary
rates of the three stages showed no overlap, indicating statistically significant differences. Con-
sistent with heavy chain, the evolutionary rate of light chain decreased 86%, from 0.283 to
0.040 substitutions per site per year. Nonetheless, the evolutionary rates of the third stages of
both heavy and light chains are still significantly faster than the reported rates for the HIV-1
env gene [16, 19].

Similar to the VRC26 lineage, the 95% HPD of the first stage of both heavy and light chains
of the CH103 lineage do not overlap with the 95% HPD of their respective second stage (Fig 4),
suggesting the lineage evolved significantly faster during the first stage than the second. CH103
lineage members were isolated in CHAVI donor 505 as early as 14 wpi [11], although, due to

Fig 4. The evolutionary rates of the three antibody lineages decrease over time. The evolutionary rates for the stages of the three lineages were
calculated using BEAST2. The mean evolutionary rates for the VRC26, CH103, and VRC01 lineages decreased about 80%, 45%, and 35% respectively over
their study periods. However, the observed evolutionary rate decrease is not statistically significant for clade 08 light chain, clade H3, and L3. Each stage is
labeled with the format of lineage name, chain name, and stage. Because clades of the VRC01 lineage showed more than 30% divergence from each other,
we chose four representative clades (03+06, 08, H3, and L3) and calculated their evolutionary rates separately. The mean and 95%HPD are shown for each
stage. Stages from the same chain of a lineage are connected to reveal longitudinal trends. The evolutionary rates of heavy chains and light chains are
colored blue and red respectively.

doi:10.1371/journal.pcbi.1004940.g004
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the limited number of sequences available at 14 wpi, we could not determine the evolutionary
rate for this earliest stage of the lineage development. By assuming the development of the
CH103 lineage was initiated between 1 and 14 wpi, the first stage of our study period (53 to 92
wpi) is roughly from the 39th to 92nd weeks of antibody development. The second stage (92 to
144 wpi) is roughly from the 79th to 144th weeks of antibody development. The two stages of
the CH103 lineage correspond approximately to the second and third stages of the VRC26 line-
age. Interestingly, the evolutionary rates of the two stages of CH103 light chain are comparable
to that of the second and third stages of VRC26 light chain, but heavy chain showed significant
differences between the corresponding stages of the two lineages (Fig 4, middle).

Consistent with the VRC26 and CH103 lineages, both heavy and light chains from the
VRC01 lineage showed significant decreases in evolutionary rate over time except clades L08,
H3, and L3 (Fig 4, right). For all clades, the second stage showed an evolutionary rate about
50% of that of the first stage. However, the evolutionary rates of the first stage of VRC01 clades
are themselves only about 50% of the evolutionary rates of the last stages of the other two line-
ages. This is likely because the VRC01 lineage evolved for an unknown number of years before
the beginning of the study period [16] and the evolutionary rate therefore had a longer time to
decay than for the other two lineages. Interestingly, although the VRC01 lineage clades had
diverged from each other at least ten years before the end of the study, their evolutionary rates
remain comparable, implying similar mechanisms of evolutionary regulation [16].

Evolutionary rates of CDR and framework regions
Since CDRs and FWRs play different functional roles and FWRs undergo stronger negative
selection pressure [27, 28], we estimated the evolutionary rates separately for CDRs and FWRs
to examine whether the evolutionary rate dynamics are different between them. The results
showed that the evolution of both CDRs and FWRs slowed over time for the VRC26 and
CH103 lineages (Fig 5). For example, the CDRs of VRC26 heavy chains showed about 6-fold of
rate decrease from the first stage to the third stage. The FWRs also showed about 4-fold of evo-
lutionary rate decrease. For the VRC01 lineage, the heavy chains of clades 03+06 and 08 and
the light chain FWRs of clade 03+06 showed significant evolutionary rate decreases. The con-
sistent decrease of evolutionary rate in both CDRs and FWRs strengthens our hypothesis that
evolution of the entire variable region is systematically regulated [16]. We also observe that
CDRs evolve about 1.5- to 2-fold faster than FWRs at all stages of development for the VRC26
and CH103 lineages. This expected result is due to stronger functional selection pressure and
lower mutability in the FWRs, as demonstrated below. Surprisingly, however, the evolutionary
rates in the CDRs of the VRC01 lineage are similar to those in the FWRs (Fig 5C–5E), which
may be due to strong negative selection pressure in CDRs (see Selection pressure section
below). In addition, the sequence of CDRs is shorter than that of FWRs, making it possible for
CDRs to achieve higher evolutionary rate with a smaller number of substitutions.

Distinguishing alternative mechanisms for evolutionary rate decrease
The consistent decrease in the evolutionary rate across all three antibody lineages suggests
there are mechanisms regulating antibody evolution systematically. Three mechanisms that
may account for the substitution rate change are listed below.

The first hypothesis is what we term the affinity maturation selection (AMS) model [29, 30].
As antigen-binding affinity becomes high, fewer amino acid-changing substitutions are likely
to increase affinity. Instead of positive selection, negative selection becomes dominant and
removes most non-synonymous mutations. Below, we show that this process plays a significant
role in the decrease of the evolutionary rate.

Effects of Selection and Mutability on Antibody Maturation Rate
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A second possible mechanism is that the rate of mutations generated by AID decreases over
time. This hypothesis is based on the observation that AID selectively mutates hotspot nucleo-
tide motifs and avoids mutating coldspot motifs [31, 32]. It is possible that the hotspot motifs
are consumed during the fast evolution of the early phase such that AID is less capable of
mutating antibody genes at later phases. Below, we show that the correlation between mutabil-
ity and evolutionary rate is weak.

A third possible mechanism is that the frequency of B cell proliferation slows over time due
to many possible factors such as viral escape and decrease of viral epitope abundance. For

Fig 5. The evolutionary rates of CDRs and FWRs of the three lineages decrease over time. The mean and 95% highest probability density interval
(HPD) are shown for each stage. Stages from the same chain of a lineage are connected to reveal longitudinal trend. The plots of CDR regions are
colored magenta while plots of FWRs are colored blue. (A) The mean evolutionary rates for the CDRs and FWRs of the VRC26 heavy (left) and light
(right) chains showed about 80% decrease over the study period. (B) The mean evolutionary rate dynamics for the CDRs and FWRs of the CH103 heavy
(left) and light (right) chains showed about 45% decrease over the study period. (C) Evolutionary rate dynamics for the CDRs and FWRs of the VRC01
clade 03+06 heavy (left) and light (right) chains showed about 45% decrease over the study period. But the evolutionary rate decrease for light chain
CDRs is not significant. (D) Evolutionary rate dynamics for the CDRs and FWRs of the clade 08 heavy (left) and light (right) chains. The decreases in
evolutionary rates are only significant for both regions in heavy chain. (E) and (F) show evolutionary rate dynamics for the CDRs and FWRs of the VRC01
clade H3 and L3, respectively. No significant decrease in evolutionary rate was detected for the two clades.

doi:10.1371/journal.pcbi.1004940.g005
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example, as escape mutations fix in the viral population, B cells producing receptors targeting
the old epitope can no longer take up antigen efficiently, which reduces the chance of engage-
ment with Tfh cells. Thus, B cells receive less cytokines and chemokines that are required for
proliferation. The proliferation of B cell slows and therefore fewer substitutions accumulate in
the later phases of antibody evolution. While the third mechanism cannot be examined by
studying antibody sequences, we address it further in the discussion section.

Functional selection pressure on CDRs and Framework regions
To examine the contribution of the AMS model to evolutionary rate decay, we first estimated
selection strength changes for each time point of the three lineages using the program BASE-
LINe [28]. BASELINe takes into account mutation targeting bias and substitution bias when
calculating antibody selection strength. BASELINe further normalizes the measured selection
strength so that the selection strength between time points and between lineages can be com-
pared. Because selection strength is estimated from the log odds ratio of non-synonymous
mutations/synonymous mutations, a proper reference sequence is important for counting each
type of substitutions. In particular, the estimated selection strength of a sequence at a time
point should contain little selection signal of previous time points. To approach this, we first
built a phylogenetic tree using available sequences of all time points for each chain of a lineage.
Then we inferred the sequences for all internal nodes using MEGA6 [21]. Starting from a
selected terminal branch, we searched for the first internal node containing a terminal branch
from an earlier time point. The sequence of the internal node is used as reference to remove
substitutions evolved at/before earlier time points. To quantify the correlation between selec-
tion pressure and evolutionary rate, we also estimated the selection strength for each stage of
each lineage and calculated intra-lineage correlations between evolutionary rate and selection
strength.

The results showed that selection strength dynamics on CDR regions are consistent with
reported co-evolution between antibody and virus. The heavy chain CDRs of the VRC26 line-
age showed significant positive selection at 34 wpi, neutral selection from 38 wpi to 59 wpi, and
significant negative selection from 119 wpi to 206 wpi (Fig 6A). The relaxed selection from 34
wpi to 59 wpi are consistent with previous observations that virus began to escape neutraliza-
tion of the VRC26 lineage during this period [10]. The relaxed selection at this stage indicates
an adaptive response of the VRC26 lineage to virus escape, which is consistent with the fact
that cross-reactive neutralization breadth and potency developed during this period [10].

The measured selection pressure on the light chain CDRs of the VRC26 lineage shows posi-
tive or neutral selection from 34 wpi to 119 wpi and negative selection from 159 wpi to 206
wpi, which is consistent with that of heavy chain CDRs (Fig 6A). The observed positive selec-
tion at 38 wpi and 48 wpi may be the result of accommodating adaptive substitutions in the
heavy chain such that antibody assembly and paraptope conformation can be stabilized. The
FWRs of both heavy chain and light chain showed similar levels of negative selection at all time
points.

Similar to the VRC26 lineage, the selection pressure on CDRs of the CH103 lineage heavy
chain changed from positive selection to negative selection over time (Fig 6B). Consistent with
the heavy chain CDRs, the selection pressure on the light chain CDRs changed from positive
selection at 53 wpi to negative selection at 92 wpi. However, the selection pressure on the light
chain CDRs changed to neutral at 144 wpi. The positive selection on the heavy and light chain
CDRs at 53 wpi likely reflects viral escape around this period [11]. Since the neutralization of
CH103 became broad around 78 wpi [11], the negative selection on the CDRs of both heavy
and light chains at 92 wpi may reflect protection of the developed potency and breadth.
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However, since virus escaped CH103 neutralization around 144 wpi, it is reasonable to observe
relaxed selection at this time point for the light chain CDRs. The FWRs of both heavy and light
chains show negative selection across the study period. The strength of negative selection on
the heavy chain FWRs did not change significantly over time. The longitudinal variations in
selection pressure on the light chain FWRs are correlated with those of the CDRs, implying co-
evolution of the CDRs and the FWRs.

Fig 6. Selection pressure dynamics for all time points of the three lineages. (A) Selection pressure changes of the VRC26 lineage heavy (left) and
light (right) chains. (B) Selection pressure changes of the CH103 lineage heavy (left) and light (right) chains. (C) Selection pressure changes of the
VRC01 clade 03+06 heavy (left) and light (right) chains. (D) Selection pressure changes of the VRC01 clade 08 heavy (left) and light (right) chains. (E)
Selection pressure changes of the VRC01 clade H3. (F) Selection pressure changes of the VRC01 clade L3. The selection strength for each time point of
a lineage chain was measured using BASELINe. The same datasets used for evolutionary rate calculation were used to calculate selection strength. The
mean and 95%HPD interval of selection strength for the CDRs (magenta) and FWRs (blue) were calculated separately. The statistical significance of the
measured selection strength is shown on the bottom of the plot with ‘-’, ‘+’ and ‘n’ denoting negative selection, positive selection, and neutral selection,
respectively.

doi:10.1371/journal.pcbi.1004940.g006
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For all clades of the VRC01 lineage, we observed significant negative selection on the CDRs
of both heavy chain and light chain for most time points, with the exception of clade L3 (Fig
6C–6F). The negative selection strength on the CDRs is comparable to that on the FWRs, sug-
gesting strong functional selection. This is potentially because VRC01 targets the conserved
CD4 binding site in the Env protein, which evolves slowly. The serum IgG neutralization data
showed that autologous viruses isolated from time points of 2001, 2006, and 2009 were resis-
tant to neutralization by concurrent serum IgG antibodies [33], suggesting viral escape is fre-
quent in the donor and may be the cause of the observed relaxation of negative selection of
VRC01 clades. However, those neutralization results only reflected the evolution of a portion
of the lineage members due to limited availability of antibody sequences at the time, and the
evolutionary scenario may appear different when more lineage members are added to the
analyses.

The estimated selection pressure for stages of the three lineages show trends consistent with
the above analyses (Fig 7A). The CDRs of the VRC26 and CH103 lineages show stronger nega-
tive selection at later stages. For the VRC01 lineage, only clade 03+06 and 08 heavy chain and
clade L3 showed stronger negative selection at the second stage than the first stage. The nega-
tive selection on the FWRs of both heavy and light chains of the three lineages became stronger
at later stage but the change is not significant (the 95% HPD overlap) except clade L3 of the
VRC01 lineage.

To quantify the correlations between selection pressure and evolutionary rate, we used lin-
ear regression to estimate the intra-lineage correlations between mean selection strength and
mean evolutionary rate (Fig 7B and 7C). The correlation for the CDRs and FWRs were esti-
mated separately since they undergo different selection pressures. We observed trends of corre-
lation between selection strength and evolutionary rates for both CDRs and FWRs, but only
the selection pressure on the CDRs of the VRC01 lineage is significantly correlated with evolu-
tionary rate change (P<0.05, Fig 7B). In addition to use randomly chosen sequences to esti-
mate the selection pressure on each stage, we also estimated the selection strength at each time
point and stage of the three lineages using all available NGS sequences (S5 and S6 Figs). The
results are in good agreement with those from randomly chosen sequences, with the major dif-
ference being that correlation between the selection pressure on the CH103 CDRs and evolu-
tionary rate change becomes statistically significant (P = 0.035, S6B Fig). However, the
statistical tests are based on a small number of data points, and did not consider the uncertainty
in the mean evolutionary rate and the mean selection strength.

The selection pressure change cannot fully explain the evolutionary rate decrease. This is
supported by the fact that while the FWRs of some stages of the three lineages undergo similar
levels of negative selection (selection strength about -0.8, Fig 7C), their evolutionary rates can
be more than 5-fold different. Moreover, we estimated the evolutionary rates for the 1st+2nd

and 3rd codon positions separately for the three lineages (S7 Fig). Since the substitutions at the
3rd codon position are mostly synonymous, the selection pressure on the 3rd codon position is
weak. However, we observe significant decrease of evolutionary rate at the 3rd codon position,
supporting the idea that evolutionary rate decrease is not regulated by selection pressure alone.

In summary, the FWRs undergo stronger negative selection than do the CDRs in the
VRC26 and CH103 lineages, just as the evolutionary rate in the FWRs is slower than that in the
CDRs. When the selection pressure becomes comparable, the AMS model predicts the evolu-
tionary rates of the CDRs and the FWRs should also become comparable. The observation that
the evolutionary rates in the CDRs of the VRC01 clades are comparable to that in the FWRs is
consistent with this prediction. We do observe a trend of correlation between dynamics of
selection pressure and evolutionary rate especially for CDRs, but the selection pressure alone
cannot fully explain the evolutionary rate decrease.
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Longitudinal mutability dynamics of immunoglobulin genes
To examine the contribution of changes in mutability to evolutionary rate decrease, we pre-
dicted longitudinal mutability dynamics for CDRs and FWRs of the three antibody lineages
based on the presence of AID hotspot and coldspot motifs. Briefly, we first estimated the mean
mutational potency for each position of an immunoglobulin sequence, which is the normalized
frequency of mutation for a nucleotide using the S5F model [34]. The mutability of a sequence
is estimated by averaging over the mutational potency of all positions in both the forward and
reverse strands and the mean mutability of a time point was calculated by averaging over the
mean mutabilities of each sequence in a dataset. To compare mutability changes from ancestor
sequences, we calculated the mutability for the inferred UCA/MRCAs of each of the three

Fig 7. Selection pressure changes of the three lineages correlate with evolutionary rate decrease. (A) Estimated selection strength for the stages
of the three lineages. For all three lineages, the negative selection strength of later stages is comparable or stronger than earlier stages. The statistical
significance of the measured selection strength is shown on the bottom of the plot with ‘-’, ‘+’ and ‘n’ denoting negative selection, positive selection, and
neutral selection, respectively. (B) The selection strength on CDRs showed trends of correlation with the slowing of the evolutionary rate. Only the linear
correlation for the CDRs of the VRC01 lineage is statistically significant. (C) The correlations between selection strength and evolutionary rate of FWRs.
There are trends of correlation but none is statistically significant.

doi:10.1371/journal.pcbi.1004940.g007
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lineages. To quantify the correlation between predicted mutability and evolutionary rate
change, we further predicted the mutability for each stage of the three lineages, and used linear
regression to estimate the correlation coefficients between mutability and evolutionary rate.

The results show that the 95% confidence interval for the mutability of the CDRs is wider
than that of the FWRs, suggesting more variations in the mutability of the CDRs than in the
FWRs (Fig 8). The mutability of the CDRs of both chains of the VRC26 lineage decreased start-
ing at 119 wpi (Fig 8A). The mean mutability of the CDRs of the CH103 heavy chain decreased,
but the mutability of the light chain CDRs was mostly unchanged (Fig 8B). The VRC01 lineage

Fig 8. Dynamics of the predictedmutability for all time points of the three lineages. (A) Changes of predicted mutability of the VRC26 heavy (left)
and light (right) chains. (B) Changes of predicted mutability of the CH103 heavy (left) and light (right) chains. (C) Changes of predicted mutability of the
VRC01 clade 03+06 heavy (left) and light (right) chains. (D) Changes of predicted mutability of the VRC01 clade 08 heavy (left) and light (right) chains. (E)
Changes of predicted mutability of the VRC01 clade H3. (F) Changes of predicted mutability of the VRC01 clade L3. Dashed line represents the mutability
of UCA (VRC26 and CH103) or MRCA (VRC01 clades) of the lineages.

doi:10.1371/journal.pcbi.1004940.g008
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showed consistent mutability over the course of the study period, except for clade H3, the
mutability of which decreased over time (Fig 8C–8F). Overall, the mutability of the FWRs
showed variations but no consistent trend of decrease over time for both heavy and light chains
of the three lineages with two exceptions (CH103 heavy chain and VRC26 light chain).

The changes in mutability of the three lineages varied with respect to the mutability found
in the UCA or MRCA (Fig 8). The mean mutability of the CDRs of the VRC26-lineage heavy
chain is similar to that of the UCA at early time points, but slightly lower than the UCA by the
end of the study period, while the mutability of the FWRs remains comparable to that of the
UCA (Fig 8A, left). The mean mutability of both the CDRs and the FWRs of the VRC26-line-
age light chains are lower than that of the UCAs (Fig 8A, right). For the CH103 lineage, the
mutability of both CDRs and FWRs of heavy chain is lower than the UCA (Fig 8B, left). How-
ever, the mutability of the light chain CDRs increased to a similar level as the UCA at 92 wpi
and 144 wpi (Fig 8B, right). For the VRC01 lineage clades (Fig 8C–8F), the mutability of the
FWRs of both heavy and light chains are comparable to those of the inferred MRCAs, while
the mutability of the CDRs are comparable to the MRCAs except for clade 08 heavy chain,
which showed lower mutability.

Consistent with the above analyses for time points, we found similar trends of mutability
changes for the stages of the three lineages (Fig 9). To quantify the correlations between the
predicted mutability and evolutionary rate, we used linear regression to measure the correla-
tions between the mean mutability and the mean evolutionary rate for the CDRs and FWRs
separately for each lineage (Fig 9B and 9C). Only the CDRs and FWRs of the VRC26 lineage
show a trend of meaningful correlation, but even these do not reach the level of significance.

In summary, a longitudinal decrease in mutability is not consistently observed, indicating
that while changes in mutability may contribute to evolutionary rate change, it is not the domi-
nant regulator. However, the mutability is predicted using S5F model, which is trained using a
limited set of heavy chain repertoire sequences and may not fully incorporate the context
dependency of the AID hot-spots [34]. It is likely that there is uncertainty in the predicted
mutability changes, which is not incorporated in our analyses. Thus, the correlation between
antibody sequence mutability change and evolutionary rate requires further investigations.

Combined effects of selection pressure and mutability on evolutionary
rate decrease
We used multiple regression to evaluate the combined effects of selection pressure and muta-
bility on the evolutionary rate decrease for the CDRs and FWRs of each lineage. The fitted R2

showed that the two factors can explain about 70% of the variations of the evolutionary rate
changes except the CDRs of the VRC26 lineage and the FWRs of the VRC01 lineage (S2
Table), suggesting dominant contributions to evolutionary rate changes. However, except for
the CDRs of the VRC01 lineage, the examined correlations are not statistically significant,
consistent with the linear regression analysis. This may be because we tested the correlations
on a small sample size. Moreover, we cannot rule out the possibility that the correlations
between evolutionary rate and the two factors are non-linear. For example, if the data points
of the three lineages are combined, the apparent correlation between evolutionary rate and
selection pressure may be non-linear. However, we did not do this because we think the evolu-
tion of each lineage may be differently driven by virus evolution and other factors described
below in the Discussion section. This is consistent with the fact that even the clades of the
VRC01 lineage showed some variations of mutability change. Thus, further investigations
with more antibody lineages and a more sophisticated model will be required to verify the
conclusions here.
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Discussion
Epitope change is an important mechanism used by pathogens to escape antibody neutraliza-
tion, raising the question of how quickly antibodies can gain affinity via somatic hypermuta-
tion. The available longitudinal data of broadly HIV-1 neutralizing antibody lineages provides
the opportunity to shed light on this question. In this study, we measured the longitudinal
dynamics of evolutionary rates of antibody lineages whose developments were followed for
more than 2 years. Our results show that the evolution of antibody variable regions, and espe-
cially the CDRs, can be 20-fold faster than that of the HIV-1 in the first few weeks post lineage

Fig 9. The longitudinal changes of the predicted mutability correlate weakly with evolutionary rate decrease. (A) Predicted mutability for the
stages of the three lineages. (B) The correlations between predicted mutability and evolutionary rate of CDRs were estimated using linear regression. No
statistically significant correlation between the selection strength and evolutionary rate was observed. (C) The linear correlations between predicted
mutability and evolutionary rate of FWRs. No significant correlation was observed for the three lineages.

doi:10.1371/journal.pcbi.1004940.g009
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initiation, providing a repertoire of paratope variants for epitope-directed selection. We also
showed that CDRs evolve about 1.5–2 fold faster than FWRs during the early stages of antibody
evolution, due to both stronger selection pressure and lower mutability in FWRs. The observed
antibody evolutionary rate dynamics provide useful information for antibody elicitation during
vaccination. One interesting question not answered here is whether antibody maturation fol-
lowing vaccination can reach an evolutionary rate as high as that achieved during viral
infection.

Longitudinally, the highest evolutionary rates are not sustained throughout antibody matu-
ration. The evolutionary rates of the three bnAb antibody lineages examined here consistently
decreased, suggesting common mechanisms regulating antibody evolution. Because the three
lineages are from different donors and V(D)J recombinations, the changes in evolutionary rate
change appear to be independent of these factors. Our analyses of the dynamics of functional
selection and mutability showed that neither could fully explain the dramatic evolutionary rate
decrease. Although the observed trends of changes of selection pressure and evolutionary rate
are consistent, the limited amount of data and lack of statistical significance makes it impossi-
ble to draw firm conclusions. Moreover, these factors cannot explain why the evolutionary rate
of the 3rd codon position also consistently decreased in these three lineages. One possibility is
that the measured selection strength is affected by evolutionary rate changes. For example, it is
possible that when the evolutionary rate is high, more passenger mutations (neutral or slightly
detrimental) could become fixed in the B cell lineage than when evolutionary rate is low. Fur-
ther investigations are required to more accurately estimate selection pressure, evolutionary
rates, and mutability.

An additional possible mechanism for the observed evolutionary rate change is a decrease
in the rate of mutations generated by AID modulated by mechanisms other than antibody
sequence mutability. Although memory B cells can undergo additional SHM upon returning to
a germinal center [35], it is unclear whether the rate of mutation remains constant. Lowering
the mutation rate can be beneficial evolutionarily, because most mutations are likely to
decrease the antigen-paratope interaction once affinity maturation has occurred. Thus, a
decrease in mutation rate (and hence evolutionary rate) may be a mechanism to protect
immune memory. Previous studies of memory B cells have revealed very low frequencies of
SHM during secondary GC reactions [29, 36]. This change could be regulated via functional
regulation of the SHMmachinery, or other unknown mechanisms. Evidence supporting the
first possibility is that FWRs are less mutated than CDRs due to having fewer AID hotspots
[37, 38]. However, we did not observe a consistent decrease in AID hotspots during antibody
evolution, as reflected in the mean mutability of the sequences. Nonetheless, the biochemical
mechanism of hot-spot motif recognition by hypermutation machinery in B cells is still
obscure. If mutation rate is severely decreased during evolution of a B cell lineage via functional
regulation of the hypermutation machinery, the regulation is probably achieved via genetic or
epigenetic means, which can easily transmit the information to progeny B cells. Further com-
parisons of the mutation rates in primary and secondary GC reactions would be required to
confirm this hypothesis.

Another hypothesis is that antibody evolution is modulated via either direct or indirect reg-
ulation of the frequency of B cell proliferation. Due to strong selection pressure from the host
immune system, HIV-1 viral escape occurs with high frequency [10, 11, 33]. It is likely that the
memory B cells of a lineage would have less and less chance to be activated as escape mutations
spread through the viral population. Weak binding affinity of germinal center B cells to evolved
epitope variants could also slow B cell proliferation. Furthermore, multiple antibody lineages
are elicited in a patient during HIV-1 infection. The competition between lineages [4, 39], tar-
geting either the same or heterologous antigens within a germinal center, may slow the
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proliferation and evolution of B cell lineages with low binding affinity. In addition, secreted
antibodies circulating in the blood can visit germinal center and compete with GC B cells for
antigen binding [40]. Thus, the mean number of substitutions observed at later time points
would be fewer if a B cell lineage fails to acquire antigen under competitive pressure.

The observed evolutionary rate decrease could also be a HIV-1- or chronic-infection-spe-
cific phenomenon. This is because HIV-1 infection can destroy GCs via depletion of infected
Tfh cells and B cells, and disruption of the FDC network [17, 41, 42]. Thus, fewer B cells sur-
vive and proliferate at later stages of infection when anti-HIV-1-specific Tfh cells and GC
become fewer. In addition, many other viruses evolve in their hosts an order of magnitude
slower than HIV-1 [43], meaning the frequency of viral escape is low and the AMS model may
be more effective at describing the regulation of antibody evolution. Another possibility is that
detrimental mutations introduced by AID accumulate in the genome outside the Ig locus dur-
ing cycles of proliferation [44], so that the chance of B cells survival becomes low.

To further explore the mechanisms underlying antibody evolution, more characterization of
the developmental history of single B cell lineages is required. For example, fluorescent labeling
techniques allow the estimation of a B cell’s proliferation history [1]. Combined with high-
throughput single cell sequencing, in principle the correlation of rate changes with genetic and
epigenetic changes of the B cell could be explored. As technology advances, especially in vivo B
cell imaging [4], it may also be possible to understand the dynamics of memory B cell reentry
into GCs, and proliferation under chronic epitope variation.

Materials and Methods

Sequence datasets
The curated sequence datasets of the CH103 lineage were retrieved from NCBI GenBank data-
base (Accession Number: KC575845-KC576303 for heavy chain and KC576304-KC576477 for
light chain) [11]. The curated antibody sequences of the VRC26 lineage were from [10, 20, 26]
(GenBank Accession Number: KJ134860-KJ134387, KT-371118-KT371169 for VRC26 heavy
chain, KJ134388-KJ134859, KT371170-KT371320 for VRC26 light chain, and
KT371076-KT371117 for heavy and light chain sequences of 159 and 193 wpi). The VRC01
lineage sequences were from [16] (GenBank Accession Number: KP840719-KP841751 for
VRC01 heavy chain, and KP841752-KP842237 for VRC01 light chain).

Sequence divergence from UCA or MRCA and substitution saturation
test
Sequences of each dataset were aligned using ClustalO (version: 1.2.0) [45]. The substitution
saturation tests for all datasets were performed using the substitution index method in
DAMBE5 (version: 6.1.7) [22, 23]. The UCAs of the VRC26 and CH103 lineages were from
previous studies [10, 11]. The MRCAs of the clades of the VRC01 lineage were inferred using
the Maximum Likelihood method in MEGA6 (build number: 6140220) [21], with the GTR+ Γ
substitution model and gamma distribution used to measure genetic distance and estimate sub-
stitution rate variations among sites respectively.

Evolutionary rate calculation
To increase the ‘clock-like-ness’ of the dataset [19, 46], at most 20 sequences were randomly
selected from each time point for rate calculation. If a time point has less than 5 sequences, the
time point was removed. Evolutionary rate was estimated using BEAST2 (version v2.2.1) [24].
The GTR+Γ substitution model was used to estimate genetic distance between sequences and
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modulate substitution rate heterogeneity among sites respectively. The relaxed log-normal
clock model was used to estimate the rate variations among branches. The coalescent Bayesian
Skyline population model was used as tree prior [47]. For each dataset, the Monte Carlo Mar-
kov Chain (MCMC) simulations were ran until convergence and parameters were sampled
with effective sample size larger than 200 [24].

For all simulations of the CH103 lineage, the most recent common ancestors (MRCAs) or
the roots of the time scaled Bayesian trees were assumed to appear one week post virus infection
(wpi) or later [11] and sampled from a uniform distribution of [1 wpi, +1). Previous studies
showed that the VRC26 lineage was probably initiated around 30 wpi [10]. Thus, for all
BEAST2 MCMC simulations of the 2nd and 3rd stages of the VRC26 lineage, the roots of the
time scaled Bayesian trees were sampled from a uniform distribution of [30 wpi, +1). However,
the roots of the time scaled Bayesian trees for the 1st stage were sampled from a uniform distri-
bution of [23 wpi, +1), rather than [30 wpi, +1), due to the fact that 30 wpi is too strong a con-
straint on the height of the time scaled Bayesian trees and prevents the simulation from
initiating. Thus, the mean evolutionary rate of the 1st stage is underestimated. To calculate the
evolutionary rates for the complement determining regions (CDRs) and framework regions
(FWRs), the BEAST2 simulation for a dataset was ran with three partitions: the V(D)J region
sequences, the CDR region sequences, and the framework region sequences. For each simulation
step, the V(D)J region sequences were used to construct a phylogenetic tree and estimate substi-
tution model parameters. Then the evolutionary rates for the CDRs and FWRs were calculated
using the estimated parameters. The same method was used to estimate the evolutionary rates
for the 1st+2nd and 3rd codon positions of a dataset. The boundaries of CDRs and FWRs were
predicted using IMGT server (http://www.imgt.org/IMGT_vquest/share/textes/) [48].

To examine the effects of sample size on the estimated evolutionary rates, we calculated the
evolutionary rates for the 2nd stage of the VRC26 and CH103 heavy chains with three sample
sizes (30, 20, and 10 randomly selected sequences per time point). The results showed that the
estimated evolutionary rates are robust with respect to sample size changes (S2A Fig). We also
used the random local clock model to estimate evolutionary rates for the VRC26 heavy chain
and simulated dataset with decreasing evolutionary rate (See below). However, the simulation
failed to converge to reasonable posterior probability values (reported log likelihood values
greater than 0) (S1 Fig), possibly because the simulation algorithm was unable to find optimal
tree structures for our datasets. Our simulations further showed that the estimated evolution-
ary rates for the 2nd stages of the VRC26 and CH103 heavy chains were consistent when differ-
ent tree priors (constant population size or Bayesian Skyline) were used (S2B Fig).

Validation of the time-bin method and stage method for characterizing
evolutionary rate change
We first simulated the evolution of a gene with a constant evolutionary rate using TreesimJ
[49]. The simulation was initiated from a randomly generated ancestor sequence with 450
nucleotides. The mutation rate was set to 0.0001 substitutions per site per generation and
Jukes-Cantor substitution model was used for modeling nucleotide substitution bias. The ratio
of non-synonymous/synonymous substitution was set to 0.007. A constant population size
(1000) was used during the simulation. The simulation was run for 12,000 generations, and 40
DNA sequences were sampled every 10 generations.

We then selected sequences from 8 generations (480th, 960th, 1320th, 1680th, 1920th, 2160th,
2280th, and 2400th) to estimate the evolutionary rate of the dataset (CR dataset) using BEAST2
with both restricted molecular clock model and relaxed log-normal clock model, giving a base
evolutionary rate of α. We then built phylogenetic tree for the simulated dataset using MEGA6
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[21] and measured the tree shape imbalance using the colless method in apTreeshape (S3 Fig).
The analysis showed the tree shape of the CR dataset (the colless index with PDA and Yule nor-
malizations are 1.35 and 19.50 respectively) is similar to that of antibody phylogenetic tree (the
colless index with PDA and Yule normalizations are 1.26 and 15.68 respectively for VRC26
heavy chain) [50]. We then estimated evolutionary rate changes over time for the CR dataset
(S4 Fig). As expected, both methods showed no changes of evolutionary rate, suggesting the
two methods are comparable for estimating evolutionary rate when no rate changes over time.

To generate a data set with decreasing evolutionary rate (DR dataset), we changed the gen-
eration labels of the sequences of the above time points to 120, 240, 360, 480, 600, 720, 840, and
960 respectively. The time intervals between sequential time points were 25%, 33%, 33%, 50%,
50%, 100%, and 100% of the original time intervals respectively. Correspondingly, the evolu-
tionary rates between sequential time points were expected to be 4α, 3α, 3α, 2α, 2α, α, and α.
In addition, the time interval from the root or MRCA to the 120th generation is 25% of the orig-
inal time interval (480 generations). Therefore, the evolutionary rate from the MRCA to the
120th generation became 4α. We then estimated the evolutionary rate for the dataset using
BEAST2 with coalescent constant population tree prior, Jukes-Cantor substitution model, and
relaxed log-normal clock model. The MRCA of the CR dataset estimated by both time-bin and
stage method is 110th generation, we therefore set the MRCA of the DR dataset to 27.5 genera-
tion (four times shorter than the CR dataset) for simulation. A maximum clade credibility
(MCC) tree was constructed using TreeAnnotator v2.2.1 in the BEAST2 package [24]. The
time scale of the MCC tree was then discretized into 8 bins (MRCA to 120th, 120th to 240th,
240th to 360th, 360th to 480th, 480th to 600th, 600th to 720th, 720th to 840th, and 840th to 960th

generations), and the mean evolutionary rate for each bin was calculated by averaging over the
evolutionary rates of all branches within the time bin using the following formula [24]:

m ¼ Sðri�tiÞ=Sti ð1Þ
where μ is the mean rate of the time bin; ri is the rate of branch i; and ti is the length of time
branch i which is within the time bin.

Because the 95% highest posterior density interval (HPD) of μ cannot be estimated from a
single tree, we used another method to estimate the evolutionary rates of the 8 time bins.
Briefly, 1000 time scaled Bayesian trees with high posterior probabilities were retrieved from
the MCMC simulation. For each time scaled Bayesian tree, we estimated μ for the 8 time bins
as described above. Then, the mean and 95% HPD of μ were calculated for each time bin from
the 1000 estimates, using methods similar to BEAST2 [24].

To verify the stage method, the 8 time points were separated into three stages: 120th to
480th, 360th to 720th, and 600th to 960th generations. The mean evolutionary rate for each stage
was estimated using BEAST2 with coalescent constant population tree prior, Jukes-Cantor sub-
stitution model, and relaxed log-normal clock model [24]. By using formula (1), we estimated
the expected mean evolutionary rate of the three stages. For example, for stage 1, the evolution-
ary rates of the MRCA to 240th generation and the 240th to 480th generation are 4α and 3α
respectively (see above). The expected evolutionary rate of stage 1 is (4α�120 + 3α�120)/
240 = 3.5α. Similarly, the expected evolutionary rates of the later two stages are 2.5α and 1.5α
respectively.

Selection pressure estimation
To estimate selection pressure for a time point of a dataset and to remove selection signals
from earlier time points, we first built a phylogenetic tree using all available sequences of all
time points for each chain of a lineage. Then we inferred the sequences for all internal nodes
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using MEGA6 (maximum likelihood method and GTR+Γ substitution model) [21]. Starting
from a selected terminal branch, we searched for the first internal node which also gave rise to
a terminal branch from an earlier time point. The sequence of the internal node was then used
as reference to remove substitutions evolved at earlier time points. BASELINe v1.3 was used to
estimate the selection strength for each selected sequence of a time point and for a time point
from selected sequences [27, 28, 51]. To be consistent with the evolutionary rate analyses, we
first estimated the selection strength for each time point of each lineage and chain using the
same sequences used for evolutionary rate calculation. We then used all available sequences of
a time point to estimate the selection strength, and the measured selection strength for most
time points of the three lineages were in good agreement with those estimated using randomly
selected sequences (Figs 6 and S5). We then estimated the selection strength for each stage of a
lineage chain using both the randomly selected dataset and all available sequences, the results
of which were consistent (Figs 7A and S6). To quantify the correlation between selection
strength and evolutionary rate, we used linear regression in R to estimate the intra-lineage cor-
relation coefficients between evolutionary rate and selection strength for CDRs and FWRs
respectively.

Mutability estimation
A sliding window of five nucleotides was used to calculate the mutability of the central nucleo-
tide. The mutability values of the motifs were from the S5F antibody-specific substitution
model [34]. The mean mutability of a sequence was calculated by averaging over the mutability
of all positions in both the forward and reverse strands [52]. The mutability for a stage of a
chain was calculated using the mean mutability of the selected sequences of the stage. The lin-
ear regression fitting of the correlation between evolutionary rate and mutability was per-
formed in R.

Supporting Information
S1 Table. No significant substitution saturation observed for the datasets used in this
study. The substitution saturation test for each dataset was performed using DAMBE5.
DAMBE5 examines whether the measured substitution saturation index (Iss) of a dataset is sig-
nificantly different from the theoretical Iss. The theoretical Iss is estimated assuming the under-
lying tree structure of a dataset is either symmetric (Iss.cSym) or asymmetric (Iss.cAsym). The
analysis showed our datasets were far away from significant substitution saturation under both
assumptions (P<0.05).
(TIF)

S2 Table. Combined effects of selection pressure and mutability on evolutionary rate
changes using multiple linear regression. The measured effects of selection pressure and
mutability on evolutionary rate changes are consistent with the linear regression analyses (Figs
7 and 9). Briefly, the R-square showed a large portion of the evolutionary rate changes could be
explained by selection pressure change and mutability change except VRC26 CDRs and
VRC01 FWRs. But only the correlation between the selection pressure and the evolutionary
rate of VRC01 CDRs is statistically significant. The results should be interpreted with caution
since the test was performed on a limited dataset and the uncertainty of the measured selection
strength and evolutionary rate were excluded.
(TIF)

S1 Fig. Posterior probability distribution of BEAST2 simulations with local randommolec-
ular clock model and relaxed log-normal clock. (A) The posterior distribution of a BEAST2
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simulation using the simulated dataset with decreasing evolutionary rate (eight time points, see
Methods). (B) The posterior distribution of a BEAST2 simulation using the VRC26 lineage
heavy chain sequences of all time points. For both simulations, the posterior probability failed
to converge to reasonable values, suggesting the local random clock model cannot be applied to
our datasets. The distribution for simulations with local random clock and relaxed log-normal
clock were colored black and green respectively.
(TIF)

S2 Fig. Sample size and coalescent tree priors have no effect on the estimation of evolution-
ary rates of datasets in this study. (A) The effect of sample size on evolutionary rate estima-
tion. We randomly sampled 30, 20, and 10 sequences from each time point to estimate the
evolutionary rates for the second stages of the VRC26 and the CH103 heavy chains with coales-
cent Bayesian Skyline population tree prior. The sample sizes showed little effect on the esti-
mated evolutionary rate. (B) The effect of tree priors on evolutionary rate estimation. The
evolutionary rates of the same two datasets (20 sequences per time point) in (A) were estimated
using the constant coalescent population tree prior (labels end with ‘C’) and coalescent Bayes-
ian skyline population tree prior (labels end with ‘B’) respectively. The estimated evolutionary
rates for the same dataset are consistent, suggesting the two types of tree priors have little effect
on the estimation of evolutionary rate of our datasets.
(TIF)

S3 Fig. Phylogenetic trees of the VRC26 heavy chain and simulated dataset. The simulated
dataset (B) showed (the colless index with PDA and Yule normalizations are 1.35 and 19.50
respectively) is similar to that of the VRC26 heavy chain phylogenetic tree (A, the colless index
with PDA and Yule normalizations are 1.26 and 15.68 respectively).
(TIF)

S4 Fig. Evolutionary rate changes for the CR dataset estimated using time-bin and stage
methods are comparable. Compared to expected evolutionary rate (red), both time-bin (A,
gray) and stage (B, blue) methods showed no evolutionary rate changes for the CR dataset.
This suggests the two methods are comparable when no rate changes over time.
(TIF)

S5 Fig. Selection pressure of time points of the three lineages measured using all available
sequences. The results are consistent with that of Fig 6. (A) Selection pressure changes of the
VRC26 lineage heavy (left) and light (right) chains. (B) Selection pressure changes of the
CH103 lineage heavy (left) and light (right) chains. (C) Selection pressure changes of the
VRC01 clade 03+06 heavy (left) and light (right) chains. (D) Selection pressure changes of the
VRC01 clade 08 heavy (left) and light (right) chains. (E) Selection pressure changes of the
VRC01 clade H3. (F) Selection pressure changes of the VRC01 clade L3.
(TIF)

S6 Fig. Selection pressure of stages of the three lineages measured using all available
sequences and the correlations between selection pressure and evolutionary rate changes.
(A) Selection pressure changes over time. (B) Linear correlations between selection pressure
and evolutionary rate of CDRs. (C) Linear correlations between selection pressure and evolu-
tionary rate of FWRs.
(TIF)

S7 Fig. The estimated evolutionary rates for the 1st+2nd and the 3rd codon positions of the
three lineages decrease over time. (A) The evolutionary rate changes for the 1st+2nd and the
3rd codon positions of the VRC26 lineage heavy (left) and light (right) chains. (B) The
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evolutionary rate changes for the 1st+2nd and the 3rd codon positions of the CH103 lineage
heavy (left) and light (right) chains. (C) The evolutionary rate changes for the 1st+2nd and the
3rd codon positions of the VRC01 clade 03+06 heavy (left) and light (right) chains. (D) The
evolutionary rate changes for the 1st+2nd and the 3rd codon positions of the VRC01 clade 08
heavy (left) and light (right) chains. (E) The evolutionary rate changes for the 1st+2nd and the
3rd codon positions of the VRC01 clade H3. (F) The evolutionary rate changes for the 1st+2nd

and the 3rd codon positions of the VRC01 clade L3. The evolutionary rates of both the 1st+2nd

and the 3rd codon positions decreased over time, except clade H3, L3, and the 3rd codon posi-
tions of two clades (03+06 light chain and both heavy and light chains of clade 08) in the
VRC01 lineage. This suggests evolutionary rate is systematically regulated and selection pres-
sure change cannot fully explain the slowing of evolutionary rate.
(TIF)
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