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Personalized medicine aims at identifying best treatments for a patient with
given characteristics. It has been shown in the literature that these methods can
lead to great improvements in medicine compared to traditional methods pre-
scribing the same treatment to all patients. Subgroup identification is a branch
of personalized medicine, which aims at finding subgroups of the patients with
similar characteristics for which some of the investigated treatments have a bet-
ter effect than the other treatments. A number of approaches based on decision
trees have been proposed to identify such subgroups, but most of them focus on
two-arm trials (control/treatment) while a few methods consider quantitative
treatments (defined by the dose). However, no subgroup identification method
exists that can predict the best treatments in a scenario with a categorical set
of treatments. We propose a novel method for subgroup identification in cate-
gorical treatment scenarios. This method outputs a decision tree showing the
probabilities of a given treatment being the best for a given group of patients as
well as labels showing the possible best treatments. The method is implemented
in an R package psica available on CRAN. In addition to a simulation study,
we present an analysis of a community-based nutrition intervention trial that
justifies the validity of our method.
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1 INTRODUCTION

It is very common that randomized trials are performed to investigate the efficiency of a new treatment. In these trials,
a new treatment is compared to a control treatment, and if the new treatment is shown to be more efficient than the
control it is suggested to be used on a population-wide level. Alternatively, in confirmatory subgroup analysis, effect of
the treatment is investigated in the prespecified subgroups.1

Methods from personalized medicine2 have drawn a lot of attention in medical and statistical literature.3 These meth-
ods aim to identify and propose the best treatments to a patient with given characteristics (medical history). This clearly
might lead to more efficient therapies than those proposed by confirmatory randomized trials. A lot of methods from
personalized medicine are related to applications in genetics, ie, these methods detect treatments that persons with
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specific genetic biomarkers benefit of. From a statistical perspective, this typically reduces to a high-dimensional
regression problem with binary input variables indicating the absence or presence of corresponding genetic biomarkers.

Another important category of personalized medicine is subgroup identification, a comprehensive survey of methods
from this category is available in the literature.4 The methods from this category identify subgroups of patients, which
benefit from the same treatments, and this identification can be based on the characteristics of various natures (binary, cat-
egorical, real valued). Subgroup discovery methods can be applied to various experimental designs, including randomized
clinical trials.5

Some personalized medicine methods are devoted to modeling optimal treatment regimes (OTR).6-12 The primary pur-
pose of these methods is to determine the optimal treatment for a given patient rather than detecting subgroups having
similar treatment effects. While some methods for the OTR prediction are black-box models, many approaches were pro-
posed to deliver interpretable optimal treatment decisions.8-12 Compared to the subgroup identification methods, the OTR
methods search for a single optimal treatment for a given patient or groups of patients.

We focus on the subgroup identification methods that are inspired by decision tree structures. Decision trees are easily
interpretable, which makes them very convenient for policy making. A decision-maker is thus not only able to see what
treatments are recommended but also which patient characteristics this recommendation is based on. Some comparative
analysis of such methods is reported.13

It appears that the majority of subgroup identification methods focus on two-arm trials, ie, when the treatment set is
binary (control/treatment). Methods such as QUINT,14 Virtual Twins (VT),5 Interaction Trees (IT),15 and SIDES16 are able
to identify subgroups in the binary scenario. Being very efficient in some settings, all of these methods have peculiarities
that in some situations can be considered as limitations. Most importantly, all these methods except QUINT are focused
on finding the groups when the treatment is better than the control, but they ignore the situations when the inverse
is true (called qualitative interaction). Among other peculiarities/limitations, one may mention inability of processing
continuous outcomes (eg, VT), nonprobabilistic nature of the algorithm (eg, QUINT), overlapping subgroups (SIDES),
providing information about the mean difference in outcome within a subgroup rather than stating the probability that
one treatment is better than the other one (IT). A few methods go behind the binary scenario: recently, a method treating
continuous treatments (ordered by dose) was proposed.17

When trials are performed with a categorical set of treatments, no subgroup identification method exists that aims
at finding subgroups and predicting which set of treatments is the best. In principle, model-based (MOB) trees18 can
be used to explain the dependence of the outcome on the medical history variables (characteristics) and the treatment
variable. However, because this method tries to explain the outcome itself rather than the dominance of some treatments
(prognostic variable problem19), very long trees might be needed to identify necessary subgroups. This makes conventional
MOB trees very hard to use in practical policy making. It is also possible to apply the Gi method19 to a scenario with a
categorical set of treatments, but this method outputs mean outcomes per treatment and subgroup rather than specifying
the best treatments. It means that when two or more treatments have the same expected outcome, this method would not
be able to identify such a situation due to randomness in the observed outcome mean.

We propose a novel method that is able to handle a scenario with categorical treatments (ie, when two or more different
types of treatments are considered). We call this method Probabilistic Subgroup Identification for CAtegorical (PSICA)
treatments. Our method is designed for randomized controlled trials and continuous outcome variables. We believe that it
is of great importance for a subgroup identification method to provide statistical guarantees in the form of the probabilities
of a treatment being the best for a given subgroup and, when data are not sufficient for a reliable decision, to state that there
is no statistical guarantee that one of the treatments is more appropriate than the others. This differentiates our method
from the OTR approaches and from many existing subgroup identification methods. Accordingly, our method first uses
random forests to compute the probabilities that a treatment is the best for a given patient, and then these probabilities
are summarized by a decision tree in which each terminal node shows probabilities for a treatment to be the best and
the label showing most likely treatments. When all probabilities are large enough within a node, its label may contain all
treatments, which is equivalent to saying “I don't know which treatment is the best” (ie, collect more data).

As an example, consider three treatments in which the outcomes are linear with respect to characteristics x. Figure 1
demonstrates such an example and some amount of observations corresponding to this setting. If the highest outcome
implies the best treatment, treatment B is supposed to be the best for smaller values of x, treatment A should be the best
for moderate x, and treatment C should be the best for the larger x. However, for smaller x, treatments A and B do not
differ so much, which means that a subgroup discovery method would probably have a hard time to identify one best
treatment. Figure 2 demonstrates the result of application of the PSICA method to these data. It clearly illustrates that
the subgroups are identified in the way that was expected.
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FIGURE 1 The outcomes for three treatments 𝜏1 = A, 𝜏2 = B, and
𝜏3 = C are generated as y(x, 𝜏1) = −0.7x + 𝜖 (red),
y(x, 𝜏2) = −1.5x + 0.2 + 𝜖 (blue), y(x, 𝜏3) = x − 1 + 𝜖 (green). Error
term 𝜖 was generated as N(0, 0.01) [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 2 A PSICA tree showing subgroups, the probabilities of
treatments being the best and labels containing the most likely optimal
treatments
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In our numerical experiments, we compare PSICA with QUINT when there are two treatments. We choose the QUINT
method for comparisons because it is the only existing method not only capable of choosing the best treatment among two
alternatives but also stating when the treatments are equivalent. In addition, we use PSICA to perform subgroup identi-
fication for the MINIMat trial20 that was conducted in Matlab subdistrict, rural Bangladesh and contained 6 categorical
interventions (treatments).

In Section 2, we present the PSICA method. In Section 3, we present our numerical simulations and a real case study.
Section 4 contains conclusions and discussion.

2 PSICA TREES

The problems of subgroup identification and some notation are introduced first. Given a data set D = {(Xi,Yi, ti), i ∈
1, … ,n}, where Xi = (Xi1, … ,Xip) is a set of characteristics (input variables, predictors) for patient i, Yi is the outcome of
the given treatment ti, where ti is one of the treatments that belong to the set  = {𝜏1, … , 𝜏m}. We assume that Xi values
were obtained as a realization of a random variable x with components x1, … , xp. The response Y(x, 𝜏), called a potential
outcome (or simply outcome), is an outcome of a given treatment 𝜏, and we assume that all treatments are possible to
use for any patient. In practice, a patient with some characteristics Xi is assigned to only one of the treatments ti, and the
outcome Yi is observed. The remaining Y(x, 𝜏), x = Xi, 𝜏 ≠ ti are normally not available. However, the observed outcome
(Xi,Yi, ti) is related to the potential outcomes as

Yi =
m∑
𝑗=1

Y (Xi, 𝜏𝑗) · I(𝜏𝑗 = ti),

where I(z) is equal to one when z is true and zero otherwise.

http://wileyonlinelibrary.com
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In randomized controlled trials, the probabilities of assigning a patient with characteristics x to different treatments do
not depend on these characteristics. Assuming in addition that the treatment status of a patient does not affect potential
outcomes of other patients and that there are no hidden versions of the treatments,21 the expected potential outcome
becomes equal to the expected observed outcome per treatment, ie, E(Yi|x = Xi, 𝜏 = ti) = E(Y(Xi, ti)).

We assume that Y(x, 𝜏) = f (x, 𝜏)+𝜖, where f (x, 𝜏) is the expected potential outcome for a given x and 𝜏. In agreement with
the previous assumptions, the error terms 𝜖 are assumed to be independent between the patients and also independent
between different treatment options of the same patient. The input variables may be categorical, ordinal or real valued,
and the outcome is considered to be real valued.

In a binary setting, ie, when  = (𝜏1, 𝜏2), the subgroup identification problem can be defined as finding subgroups G
such that

𝜋(G, 𝜏2, 𝜏1) = p (Y (x, 𝜏2) > Y (x, 𝜏1) | x ∈ G) > 1 − 𝛼,

where 𝛼 is some risk level, eg, 0.05. This means that it is of interest to find subgroups of patients for which the second
treatment is significantly better than the first one (which typically is a control treatment). Another interesting scenario is a
qualitative subgroup identification, which means that the interesting subgroups are either those having𝜋(G, 𝜏2, 𝜏1) > 1−𝛼
or those satisfying 𝜋(G, 𝜏1, 𝜏2) > 1 − 𝛼.

When there are more than two treatments, the subgroup identification problem can be defined as follows: identify
groups G and subsets of treatments T ⊂  such that

p
(

Y (x, 𝜏′) > Y (x, 𝜏′′) | x ∈ G, 𝜏′ ∈ T, 𝜏′′ ∈  ⧵ T
)
> 1 − 𝛼.

It means that we want to either identify which treatments are useful and can be prescribed to a patient (treatments from T)
or which treatments are useless for this subgroup and should not be given to these patients (treatments from  ∖T). Note
that we require T ≠  because otherwise  ⧵ T becomes empty and (X, 𝜏′′) becomes undefined.

The PSICA trees partition the input space into nonoverlapping regions and provide a label for each region and a proba-
bility distribution on the set {𝜏1, … , 𝜏m} specifying how likely it is that a given treatment is the best one for the group of
patients characterized by the input values from this region. The PSICA tree computation consist of two steps: estimation
of distributions and growing the PSICA tree.

The first step of PSICA tree computation implies estimating distributions 𝜋k(x), which is a probability that the treatment
𝜏k is better than all alternative treatments for a given x. To estimate 𝜋k(x), k = 1, … ,m by simulation, we need to be able
to generate samples from the joint distribution p(Y(x, 𝜏1), … ,Y(x, 𝜏m)). This distribution shows how likely it is that if a
patient with characteristics x receives treatment 𝜏1, then the outcome will be Y(x, 𝜏1), and if the same patient receives 𝜏2,
then the outcome will be Y(x, 𝜏2), etc. If we are able to generate some number of samples Y b = (Y b

1 (x), … ,Y b
m(x)), b =

1, … ,B from this distribution, then 𝜋k(x) can be estimated as

𝜋k(x) =
1
B

B∑
b=1

I
(

Y b
k (x) > max

𝑗=1,… ,m,𝑗≠k
Y b
𝑗 (x)

)
. (1)

To generate samples from p(Y(x, 𝜏1), … ,Y(x, 𝜏m)), we divide data D into subsets Dk = {(Xi,Yi, ti) ∶ ti = 𝜏k, (Xi,Yi, ti) ∈
D} for all k = 1, … ,m. Each subset Dk corresponds to one of the treatments. The partitioned data are further used to
generate samples Yb by method 1 or method 2.

Method 1 implies that B data sets Db
k, b = 1, … ,B are constructed by bootstrapping observations from Dk, we denote it

as Db
k ∼ Bootstrap(Dk). Afterwards, a machine learning model Mb

k(x) is fit to each Db
k by using y as response variable and

x as the set of predictor variables. We propose to use conditional inference random forest22 models but in principle any
other machine learning (regression) model can be employed. Finally, samples Y b = (Y b

1 (x), … ,Y b
m(x)) for any given x are

generated as Y b
k (x) = Mb

k(x), k = 1, …m, b = 1, … ,B.
Method 2 implies fitting a machine learning model to each Dk, estimating the prediction Mk(x) and then estimating the

variance 𝜎2
k(x) of prediction by using the bias-corrected infinitesimal jackknife,23 see formula (7) in the corresponding

paper. Finally, components Y b
k (x) of the samples are generated from a normal distribution with mean Mk(x) and variance

𝜎2
k(x) for each b = 1, … ,B. Estimation of 𝜋k(x) is summarized in Algorithm 1.
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In order to make a choice between method 1 and method 2 in a practice, the following arguments can be considered.
Method 1 is based on the bootstrap principle, which aims to approximate the sampling process from the true data gen-
erating distribution by sampling from the data set instead. This might lead to biased estimates and high costs in terms
of computational time. However, when the true outcome distribution is not Gaussian, method 1 may still be much less
biased than method 2, which assumes the normality of the outcome distribution.

The second step of PSICA tree computations implies growing a tree summarizing the probabilities 𝜋k(Xi) in such a
way that interesting subgroups are discovered. We suggest two alternative methods for the tree growing process: method
A and method B. Method A requires growing a large tree and then letting a user to prune it until interpretable applied
results are achieved and at the same time, the tree becomes small enough to be used for policy making. Random forests
are known to be very flexible models that are robust to overfitting,24 which means that increasing the number of trees in
the forests usually decreases the bias in estimation of the outcomes without increasing the variance. At the same time,
increasing the number of bootstrap samples B decreases the variance in 𝜋k(x). Accordingly, for sufficiently large number
of trees in the forests and for a sufficiently high number of bootstrap samples B, the probabilities 𝜋k(x) are expected to
have small bias and small variance. However, it can be hard to judge whether the settings used by a user are sufficiently
large, which means that there might be a risk for producing spurious subgroups. To remedy this problem, we suggest
method B, which implies early pruning of the tree (prepruning) that guarantees that fewer spurious results are detected.
However, since this method is based on hypothesis testing, there is a risk that some interesting subgroups are not found.

Method A employs standard decision tree growing principles.25 More specifically, a data set Δ0 = {(Xi,Pi),Pi =
(𝜋1(Xi), … , 𝜋m(Xi))} with inputs Xi and a vector response Pi is constructed first. This data set is partitioned recursively by
using various binary splitting rules Rj (constructed differently for real-valued and categorical split variables) until some
stopping criterion is met. This criterion might include constraints on the minimal amount of the observations in the node,
maximal tree depth, and other criteria. To decide which splitting rules need to be used, the data set Δ that corresponds to
a tree node before split Rj and the data sets after this split Δ1 and Δ2 are considered, and loss function values L1 = L(Δ),
L2 = L(Δ1), and L3 = L(Δ2) are computed. A splitting rule that maximizes information gain

g(Δ,R𝑗) = L1 − (L2 + L3) (2)

is chosen to split the current node.
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When no further split can be done, labels are assigned to the terminal nodes. In our settings, the following summary
might be presented for a tree leaf corresponding to a data set Δ:

• Aggregated probabilities of each treatment being the best

𝜋k(Δ) =
1|Δ|

∑
(Xi,Pi)∈Δ

𝜋k(Xi), (3)

where |Δ| denotes the number of observations in Δ.
• A set of useless treatmentsu. The probabilities 𝜋k(Δ) are sorted in increasing order as (𝜋k1(Δ), … , 𝜋km(Δ)) and m′ is

found such that
∑m′

i=1 𝜋ki(Δ) ≤ 𝛼 and
∑m′+1

i=1 𝜋ki(Δ) > 𝛼, where 𝛼 is a risk level (eg, 𝛼 = 0.05). The set u is computed as
u = {𝜏k1 , … , 𝜏km′ }.

• A set of potential treatments
p =  ⧵ u. (4)

To enable successful subgroup identification, an appropriate loss function needs to be selected. To identify an appro-
priate function, it is important to consider how the resulting tree is going to be used in decision-making. We assume that
after a decision-maker assigns the patient into one of the terminal nodes of the decision tree, the aggregated probabilities
𝜋k(Δ), k = 1, … ,m are compared, and the treatments from u will be excluded by the decision-maker. The remaining
treatments are the potential treatments, and ideally, a further investigation of which one of them should be prescribed
to a given patient will be performed. However, it is also very likely that the aggregated probabilities corresponding to
treatments from p will be used by the decision-maker directly as an indicator of which treatment should be used.

Therefore, we define the loss function L(Δ) as the cost of assignment of the individuals represented by Δ to the
treatments that they do not benefit from. More specifically, we define truncated probabilities as

𝜋̂k(Δ) =
𝜋k(Δ)∑

i∈p
𝜋i(Δ)

, k ∈ p

𝜋̂k(Δ) = 0, k ∉ p,

(5)

and therefore the cost of classifying a patient to a wrong treatment is

m∑
k=1

∑
𝑗∈p,𝑗≠k

ck𝑗p(Assigned to 𝜏𝑗 given 𝜏k is best) · p(𝜏k is best), (6)

where {ckj, k, j = 1, … ,m} are costs of giving the patient treatment 𝜏 j given that his/her best treatment is 𝜏k. A simple set
of cost values is a zero-one cost: ckj = 1 when k ≠ j and zero otherwise.

Equation (6) can be rewritten as
m∑

k=1

∑
𝑗∈p,𝑗≠k

ck𝑗 𝜋̂𝑗(Δ) · 𝜋k(x)

and, by summing up the loss values for the observations within Δ, we obtain the following loss function:

L(Δ) =
∑

(Xi,Pi)∈Δ

m∑
k=1

∑
𝑗∈p,𝑗≠k

ck𝑗 𝜋̂𝑗(Δ) · 𝜋k(Xi). (7)

If the zero-one loss is used, it is easy to show that (7) can be simplified as

L(Δ) = |Δ| m∑
k=1

𝜋k(Δ) · (1 − 𝜋̂k(Δ)). (8)

Method B involves early stopping to avoid discovery of spurious subgroups. The tree growing procedure is identical
to the first approach described above with the only exception that the information gain function g is modified in order
to avoid splits that may generate spurious subgroups. More specifically, the modified information gain g′ is defined as
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g′(Δ,Δ1,Δ2) = g(Δ,Δ1,Δ2) · G(Δ1,Δ2), where G(Δ1,Δ2) is equal to one if the distributions Π1 = {𝜋k(Δ1), k = 1, … ,m}
and Π2 = {𝜋k(Δ2), k = 1, … ,m} differ significantly and zero otherwise.

To compute function G, we perform a chi-square test where we compare Π1 and Π2. For each Πj, we compute counts

{
nk𝑗 =

⌈
𝜋k(Δ𝑗) · |Δ𝑗| · 𝜔𝑗

⌉
, k = 1, … ,m

}
, (9)

where 𝜔j is an inflation factor defined as the standard deviation of the uniform distribution U[0, 1] (which is equal to
1∕

√
12) divided by the standard deviation of {𝜋k(Xi) ∶ (Xi,Pi) ∈ Δj}. The purpose of the inflation factor is to give higher

weights to the distributions of 𝜋k(Xi) that have low variance (and, thus, more confident). After the counts for Π1 and Π2
are computed, these counts are combined into a two-way table, and the standard chi-square test is performed. If its p-value
p𝜒 is lower than a risk level 𝛼, we set G = 1 otherwise G = 0.

The summary of the PSICA tree growing strategy is given in Algorithm 2.

3 NUMERICAL EXPERIMENTS

Our PSICA method was implemented in an R package psica, which is available on CRAN.26 To evaluate the efficiency of
the method, we tested it with the following models:

M1 ∶ 𝑦(x, 𝜏) = (2th(2x) + 3)I(𝜏 = 𝜏1) + +(2th(x) + 2.3)I(𝜏 = 𝜏2) + 𝜖, (10)
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where 𝜖 ∼ N(0, 0.82) and th(x) is the hyperbolic tangent function. The variance in this and the following models was
adjusted in such a way that the highest signal-to-noise ratio is approximately 10. Some properties of this function con-
sidered on the interval [−1, 1] are that the function is relatively complex (ie, includes nonlinearities) and that 𝜏1 is best
in the entire interval while the effect of 𝜏1 and 𝜏2 becomes very similar around x = −0.5. Therefore, one can expect that
subgroup identification methods should be able to either identify 𝜏1 as the best treatment or they should be uncertain,
for example, around x = −0.5 and especially for smaller data sets. The QUINT method is aimed at finding qualitative
interactions, ie, it assumes that there exist regions where 𝜏1 is better than 𝜏2 and other regions where 𝜏2 is better than 𝜏1.
It means that this method is expected to fail in finding such interactions when the data are generated from M1.

M2/M3 ∶ 𝑦(x, 𝜏) = 0.5I(x1 ≥ 0 and x2 ≥ 0)I(𝜏 = 𝜏1) + 0.5I(x1 < 0 and x2 < 0)I(𝜏 = 𝜏2) + 𝜖, (11)

where 𝜖 ∼ N(0, 0.22) (M2) and 𝜖 ∼ Laplace(0, 0.22) (M3). These models contain qualitative interactions that are expected
to be discovered by QUINT and also can be used to compare the effect of the error distribution (normal vs Laplace) on
the performance of subgroup identification methods.

M4 ∶ 𝑦(x, 𝜏) =
40∑

i=1
xi + 5x1I(x1 > 0.5)I(𝜏 = 𝜏1) + 5I(x1 < 0.5 and x2 > 0.5)I(𝜏 = 𝜏2) + 𝜖, (12)

where 𝜖 ∼ N(0, 22). This model is interesting to consider because it involves many variables in creating the main effect
and a few variables that interact with the treatments.

M5 ∶ 𝑦(x, 𝜏) = (−0.7x − 0.7)I(𝜏 = 𝜏1) + (−1.5x − 1.1)I(𝜏 = 𝜏2) + (x − 1)I(𝜏 = 𝜏3) + 𝜖, (13)

where 𝜖 ∼ N(0, 0.22). Model M5 is similar to the model explained in Figure 1. It contains three treatments and it can thus
not be processed by binary subgroup identification methods like QUINT. However, this model is good enough to study
the behavior of PSICA model in a simple setting.

M6 ∶ 𝑦(x, 𝜏) =
40∑

i=1
xi + 5x1I(x1 > 0.5)I(𝜏 = 𝜏1 or 𝜏 = 𝜏2) + 10(x1 < 0 and x0 =′ K1′)I(𝜏 = 𝜏3) + 𝜖, (14)

where 𝜖 ∼ N(0, 22), and  = {𝜏1, … , 𝜏4}. In this model, there is a main effect and also complex treatment effects: one
subgroup benefits from treatments 𝜏1 and 𝜏2 while another subgroup benefits from treatment 𝜏3. None of the patients
benefits from 𝜏4. This model also includes a categorical variable x0 with four unique values, and this variable is important
in defining one of the subgroups. This model can thus be regarded as good test of PSICA trees in real complex scenarios.

We perform the following numerical experiments 200 times. First, we generate data from models M1 to M6 with n
observations, where n = 300, 900, or 1800 and a randomized treatment assignment, where each x component is generated
as U[−1, 1]. To make the correct subgroup identification even more difficult for the estimation algorithms, we add a
number of irrelevant input variables generated as U[−1, 1] to each data set: two variables for models M1, M2, M3, and
M5, 160 variables for M4 and M6. In the next step, we perform subgroup identification by using PSICA (for M1 to M6)
and QUINT (for M1 to M4). When computing PSICA trees, we use three alternatives: method m1 denotes PSICA trees
with probabilities computed by the bias-corrected infinitesimal jackknife (method 2 in Algorithm 1) and the number of
variables per split in the random forest equals the total amount of input variables p, method m2 denotes PSICA trees with
probabilities computed by the bias-corrected infinitesimal jackknife and the number of variables per split in the random
forest equal to

√
p, method m3 PSICA trees computed by the bootstrap approach (method 1 in Algorithm 1) and the

number of variables per split in the random forest equal to
√

p. Method m3 is computed only for n = 300 due to high
computational burden. Other settings were specified as B = 500, all PSICA trees used method B (see Algorithm 2) with
𝛼 = 0.05, number of trees in a forest equal to 100, minimal amount of observations for splitting the node in a tree equal
to n∕10 in the trees belonging to forests and n∕5 in the PSICA trees. When computing QUINT trees (denoted as method
m4), we use the bootstrap pruning and default settings specified in the corresponding R package.27
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The performance of the methods is evaluated by computing the following metrics: accuracy (a), uncertainty (u), and
suspect (s). Given that for each feasible x, a tree delivers the predicted best treatments p while the true best treatments
are Tp, metrics a and u are defined as follows:

a(D) = 1
n

∑
(X ,Y ,T)∈D

I(Tp(X) ⊆ p(X)) (15)

u(D) = 1
n

∑
(X ,Y ,T)∈D

I
(|p(X)| > |Tp(X)|) , (16)

where |S| denotes the number of elements in a set S. Accuracy values represent proportions of the correct predictions
while the uncertainty values specify how uncertain the tree is. Note that a tree can in principle achieve 100% accuracy by
predicting all treatments as a full set  , but it will also imply 100% uncertainty.

The suspect s(Δ) is defined as a the sum of the amounts of observations corresponding to the nodes that are immediately
above the irrelevant splits divided by the sum of the amounts of observations corresponding to all nodes in the tree.
Therefore, if an irrelevant variable is located in the top levels of the tree, the suspect value is expected to be high.

For PSICA trees, we also compute a measure, which we call decision accuracy. As it was discussed in Section 2, we
assume that when a terminal node in the PSICA tree returns a set of potential treatments p, and this set contains more
than one treatment, a decision-maker is ideally supposed to make further investigations regarding which of these treat-
ments should be given to a patient. However, it is also likely that the decision-maker will use the aggregated probabilities
shown in the corresponding tree node to make a decision. However, this might not be a good strategy in some situations.
Suppose  = {𝜏1, 𝜏2} and in the given tree node 𝜋1 = 0.45 and 𝜋2 = 0.55. Although treatment 𝜏2 has a somewhat higher
probability, it is clear that the model is quite unsure about which treatment is the best one for the group of patients associ-
ated with the given tree node. This means that, in this case, a further investigation is probably the most reasonable option.
Assume though that the PSICA tree returns a set of truncated probabilities {𝜋̂k(x), k = 1, … ,m} for a given x and the
decision-maker makes a decision as 𝜏(x) ∼ Multinomial (𝜋̂1(x), … , 𝜋̂m(x)). Decision accuracy measures the proportion of
the correct decisions in this scenario as

𝛿(D) = 1
n

∑
(X ,Y ,T)∈D

I
(
𝜏(X) ∈ Tp(X)

)
. (17)

Figures 3, 4, 5, and 6 illustrate the results of our simulation experiments, and the underlying data tables are provided
in the Appendix, see Tables A1, A2, A3, and A4.

It can be concluded that m1, m2, and m3 provide a similar accuracy, which is close to 100% in the majority of scenarios,
both when binary treatments are used and when categorical scenarios are considered. Method m4 (QUINT) has lower
accuracy values, especially for smaller data and when there are many irrelevant variables (model M4). Accuracies of
models m1,m2,m3 also decrease when the data model is complex and there are many irrelevant predictors (model M6). By
comparing the accuracies of methods m1-m3 across M2 and M3, no noticeable difference can be detected, which indicates
that PSICA trees are not so sensitive to the error distribution.

When comparing uncertainties, an interesting fact can be observed: allowing the conditional inference random forest
to use all input variables at any split (method m1) leads to lower uncertainty rates than the setting

√
p variables at any

split (method m2), which is recommended in the literature for the random forests. This happens because the trees in
the forests are grown by means of early stopping involving hypothesis testing: if there are no relevant variables in the
randomly selected subset of input variables, the corresponding tree node will not be split further. It may lead to deficient
trees in some cases. It can also be observed that uncertainty rates decrease with increasing sample size for model m1, while
for models m2 and m4, these rates usually do not change much or sometimes increase. Noticeably, uncertainty rates of
m1 are generally lower than those of m2 and m4, and the uncertainty rates of m2 are generally comparable to the rates of
m4 with the two exceptions. The first exception is a simple model (M1) where m4 has high uncertainty rates. The second
exception is a complex model (M4) where the m2 rates are lower than the m4 rates for larger n. The uncertainty rates of m3
are often lower than those of m1 indicating that applying bootstrap instead of the variance approximation might lead to
better decisions. The price of this is a much higher computational time. Figure 5 illustrates that PSICA is good in finding
relevant predictors: the suspect rates change approximately between 0 and 0.1. QUINT gives relatively low suspect rates
for models M2 and M3. However, when a complex data model with many irrelevant predictors is processed (model M4),
m4 appears to have problems in finding the relevant predictors. When the data model implies that one treatment is the
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best one for all observations (model M1), QUINT produces sometimes trees with a root node only (which are excluded
from computations of the suspect) and sometimes produces trees with irrelevant splits. When n = 1800, all computed
QUINT trees contained only the root node, and therefore no suspect value is reported.

Figure 6 demonstrates that the decision accuracies for method m1 are often very high (0.8-1.0), and they grow with
increasing sample size. Method m2 has somewhat lower decision accuracies, which confirms our previous finding: using
all input variables at any split leads to a better performance of PSICA trees. Decision accuracies generated by method m3
are comparable to the results obtained by m1.

To study the effect of the risk level 𝛼 in the tree pruning algorithm (method B), we perform additional 400 simula-
tion experiments. In each experiment, we randomly choose n from the set {300, 900, 1800} and the data model from
{M1, … ,M6}. A data set of size n is then generated according to the selected data model, and the generated data set is
processed by the method m1, and accuracy, uncertainty, suspect, and decision accuracy values are computed. Method
m1 was chosen because it had an overall high accuracy, relatively low uncertainty and low suspect rates in the previous
experiments. The results are illustrated by Figure 7, and more detailed information is provided in Table A5.

The accuracy and decision accuracy rates were roughly the same for different 𝛼 values, but the uncertainty and the
suspect rates were more affected by the choice of 𝛼. Figure 7 illustrates that the suspect rates tend to increase when 𝛼

increases. At the same time, uncertainty rates tend to decrease when 𝛼 increases, which means that too low values of 𝛼,
eg, 𝛼 = 10−5, are not optimal either. The value 𝛼 = 0.05 has relatively low uncertainty rates and relatively low suspect
rates and thus can be recommended in practice.

In addition to the simulation experiments, we analyze the so called MINIMat data20 with the PSICA method. The MIN-
IMat trial was conducted in the Matlab subdistrict, rural Bangladesh. In this area, 4436 pregnant women were enrolled
between November 2001 and October 2003 to take part in the trial. The design and interventions of the MINIMat trial
have previously been described in detail.28 Very briefly, pregnant women were individually and randomly allocated in a 2
by 3 factorial design into two prenatal food and three micronutrient supplementation groups. Food supplementation was
promoted to start either in early pregnancy (E for early) or at the women's own liking (U for usual). The three micronu-
trient groups were: 30 mg of iron supplementation (X), 60 mg iron (Y), 30 mg of iron, 400 mg of folic acid, and 13 other
micronutrients (Z). At enrollment and during pregnancy, characteristics of the women and their households were col-
lected. In this example, 124 variables, such as maternal anthropometry, parity, education, morbidity, exposure to domestic
violence, as well as household food insecurity and assets, during the time of pregnancy were included as inputs.

The outcome variable is the children's height-for-age z-score at 54 months (HAZ), and the aim of PSICA tree analysis
is to find out which interventions increase HAZ of the children. We computed a PSICA tree with pruning, B = 1000,
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FIGURE 3 Mean accuracy rates (over 200 experiments) for different data models (M1 to M6) processed by four methods (m1 to m4).
Standard error of the mean is specified by the whiskers. Each panel of the graph corresponds to some data model (defined by the column
title) and some data size (defined by the row title) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Mean uncertainty rates (over 200 experiments) for different data models (M1 to M6) processed by four methods (m1 to m4).
Standard error of the mean is represented by the whiskers. Each panel of the graph corresponds to some data model (defined by the column
title) and some data size (defined by the row title) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Mean suspect rates (over 200 experiments) for different data models (M1 to M6) processed by four methods (m1 to m4).
Standard error of the mean is represented by the whiskers. Each panel of the graph corresponds to some data model (defined by the column
title) and some data size (defined by the row title) [Colour figure can be viewed at wileyonlinelibrary.com]

𝛼 = 0.05, number of trees in a forest equal to 100, minimal amount of observations for splitting the node in a tree equal
to 40 in the trees belonging to forests and equal to 60 in the PSICA tree.

Figure 8 shows that in four out of six nodes (Nodes 1, 2, 3, 5), supplementation options including early food supplemen-
tation had a larger probability of increasing HAZ at 54 m than the usual food supplementation, and this is in agreement
with previous results of the trial,29 Table A3. Similarly, our finding that in three out of six nodes (Nodes 4, 5, and 6), a sup-
plementation including 30 mg of iron, and in two out of six nodes (Nodes 1 and 2) supplementation containing 60 mg of
iron had higher HAZ compared to multiple micronutrient supplementation is also in agreement with previous results,29

Table A3.

http://wileyonlinelibrary.com
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FIGURE 6 Mean decision rates (over 200 experiments) for different data models (M1 to M6) processed by four methods (m1 to m4).
Standard error of the mean is represented by the whiskers. Each panel of the graph corresponds to some data model (defined by the column
title) and some data size (defined by the row title) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Mean uncertainty rates and
mean suspect rates (over 400 experiments)
for the data sets processed by m1). Standard
error of the mean is represented by the
whiskers [Colour figure can be viewed at
wileyonlinelibrary.com]

A result that has not been shown previously is that the optimal micronutrient supplementation varied with maternal
height. Among the shortest women (Nodes 1 and 2), supplements containing 60 mg had the highest probability of a
better HAZ in their offsprings. Among taller women (Nodes 3 to 6), supplements with a lower amount of iron (30 mg and
MMS) had higher probabilities, and in three out of these four nodes, the optimal supplementation was 30 mg. While these
differences in effects on young child height development have not previously been shown, they are biologically plausible
in that shorter women are likely to have experienced more of nutrients deficiencies and thus larger nutrient requirements
such as a larger dose of iron may be needed for optimal growth of their children. Maternal height has been shown to
modify effect of micronutrient supplementation on other early life outcomes30 and it is reasonable to believe that it will
also modify other later outcomes. Similarly, indicators of socioeconomic situation such as maternal education have been
shown to modify effect of micronutrient supplementation on early life outcome30 and thus may also be of importance for
young child height. The importance of iron for fetal, infant, and child growth has been shown in studies in low-income
settings31,32 and iron supplementation has been highlighted as a key intervention to improve maternal and children's
health.33

http://wileyonlinelibrary.com
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FIGURE 8 A PSICA tree showing subgroups and probabilities of various treatments for the MINIMat trial. Amounts of observations in the
terminal nodes are represented by |Δ| [Colour figure can be viewed at wileyonlinelibrary.com]

4 CONCLUSIONS AND DISCUSSION

In this work, we introduce PSICA trees. This is a novel method for subgroup identification in scenarios with categorical
sets of treatments. Our numerical results illustrate that, with appropriate settings, PSICA trees provide high accuracies of
prediction of the best treatments, and the method's uncertainty decreases with an increasing amount of data. At the same
time, PSICA trees are easily interpretable and can therefore be used for policy making. The PSICA trees seem to be able
to identify meaningful subgroups even when there are moderate mean effects from a lot of inputs, while in these cases,
the QUINT method often fails to identify meaningful subgroups or it gives low accuracies. The PSICA trees are also able
to handle cases when none of the treatments leads to a significantly better outcome than the other treatment: in this case,
a noninformative tree (ie, in which all the treatments are declared to be best) can be returned.

It appears that PSICA trees providing the best accuracies are obtained when the amount of splitting variables in the
corresponding random forest is equal to the total amount of inputs. There is also an indication of that bootstrapping
random forests instead of using a bias-corrected infinitesimal jackknife might lead to lower uncertainties of the PSICA
method. However, the price for this is greatly increased computational time. Some of the results also indicate that PSICA
trees might not be very sensitive to the error's distribution.

The PSICA trees are computed by estimating probabilities and loss functions in a statistically motivated manner, which
leads to high accuracies and low suspect rates in our simulation experiments. A real case study justifies the validity of our
method because the information provided by the PSICA tree is also confirmed by previous medical studies.

The PSICA trees presented in this paper have some limitations. Firstly, the PSICA method was described for real-valued
outcome variables only. We also assumed that Y(x, 𝜏) = f(x, 𝜏) + 𝜖, where 𝜖 is independent between different treatment
options of the same patient, but this independence assumption might not hold in practice. However, since for a patient
with some characteristics Xi, we only observe Y(Xi, ti) and never observe any other Y(Xi, 𝜏) such that 𝜏 ≠ ti, the observed
data distribution will not depend on possible correlations cor(Y(Xi, ti),Y(Xi, 𝜏)). Since the observed data do not contain
information on the magnitude of these correlations, we model 𝜖 as a term, which is independent between different
treatment options of the same patient.

It was also assumed that randomized clinical trials data are used. Accordingly, a further research direction is to
generalize the PSICA algorithm to categorical outcome scenarios and to investigate how it needs to be modified for non-
randomized trials. Additionally, investigating the possibility of postpruning instead of prepruning might lead to a decrease
in the suspect rates of the PSICA method.

http://wileyonlinelibrary.com
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APPENDIX

TABLE A1 Mean accuracy rates (over 200
experiments) for different data models (M1 to M6)
processed by four methods (m1 to m4). Standard
error of the mean is specified in parentheses

n model m1 m2 m3 m4

300 1 1.00 (< 0.001) 1.00 (< 0.001) 1.00 (< 0.001) 0.96 (0.006)
900 1 1.00 (< 0.001) 1.00 (< 0.001) – 1.00 (0.001)

1800 1 1.00 (< 0.001) 1.00 (< 0.001) – 1.00 (< 0.001)
300 2 0.99 (0.001) 1.00 (< 0.001) 0.97 (0.002) 0.78 (0.013)
900 2 1.00 (< 0.001) 1.00 (< 0.001) – 0.94 (0.005)

1800 2 1.00 (< 0.001) 1.00 (< 0.001) – 0.95 (0.003)
300 3 0.99 (0.001) 1.00 (< 0.001) 0.97 (0.003) 0.73 (0.016)
900 3 1.00 (< 0.001) 1.00 (< 0.001) – 0.93 (0.006)

1800 3 1.00 (< 0.001) 1.00 (< 0.001) – 0.95 (0.004)
300 4 1.00 (< 0.001) 1.00 (< 0.001) 1.00 (0.001) 0.60 (0.009)
900 4 1.00 (0.001) 1.00 (< 0.001) – 0.82 (0.014)

1800 4 0.99 (< 0.001) 1.00 (< 0.001) – 0.98 (0.005)
300 5 0.98 (0.002) 0.99 (0.001) 0.97 (0.002) –
900 5 0.98 (0.002) 1.00 (< 0.001) – –

1800 5 0.97 (0.002) 1.00 (< 0.001) – –
300 6 0.93 (0.007) 0.88 (0.016) 0.62 (0.019) –
900 6 0.90 (0.003) 0.90 (0.013) – –

1800 6 0.88 (0.003) 0.91 (0.013) – –

https://CRAN.R-project.org/package=psica
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n Model m1 m2 m3 m4

300 1 0.36 (0.008) 0.48 (0.014) 0.14 (0.012) 0.87 (0.020)
900 1 0.29 (0.009) 0.58 (0.014) – 0.99 (0.003)

1800 1 0.26 (0.008) 0.71 (0.014) – 1.00(< 0.001)
300 2 0.23 (0.009) 0.49 (0.003) 0.17 (0.010) 0.42 (0.014)
900 2 0.20 (0.007) 0.50 (0.001) – 0.51 (0.008)

1800 2 0.25 (0.006) 0.50 (0.001) – 0.50 (0.007)
300 3 0.29 (0.010) 0.50 (0.003) 0.20 (0.011) 0.44 (0.019)
900 3 0.24 (0.008) 0.50 (0.001) – 0.51 (0.008)

1800 3 0.27 (0.007) 0.50 (0.001) – 0.50 (0.007)
300 4 0.41 (0.004) 0.43 (0.002) 0.43 (0.002) 0.34 (0.011)
900 4 0.26 (0.009) 0.44 (0.001) – 0.50 (0.017)

1800 4 0.14 (0.007) 0.44 (0.001) – 0.66 (0.007)
300 5 0.45 (0.009) 0.67 (0.008) 0.52 (0.009) –
900 5 0.39 (0.009) 0.77 (0.010) – –

1800 5 0.35 (0.008) 0.88 (0.010) – –
300 6 0.40 (0.004) 0.42 (0.002) 0.38 (0.007) –
900 6 0.22 (0.008) 0.42 (0.001) – –

1800 6 0.09 (0.004) 0.42 (0.001) – –

TABLE A2 Mean uncertainty rates (over 200
experiments) for different data models (M1 to M6)
processed by four methods (m1to m4). Standard error of
the mean is specified in parentheses

n Model m1 m2 m3 m4

300 1 0.06 (0.007) 0.04 (0.007) 0.13 (0.015) 0.32 (0.018)
900 1 0.06 (0.008) 0.04 (0.008) – 0.17 (0.005)

1800 1 0.03 (0.008) 0.03 (0.005) – –
300 2 0.00 (<0.001) 0.00 (<0.001) 0.00 (0.001) 0.12 (0.014)
900 2 0.00 (<0.001) 0.00 (0.001) – 0.02 (0.003)

1800 2 0.00 (<0.001) 0.00 (0.001) – 0.01 (0.002)
300 3 0.00 (<0.001) 0.00 (0.001) 0.01 (0.002) 0.11 (0.013)
900 3 0.00 (<0.001) 0.00 (0.001) – 0.02 (0.003)

1800 3 0.00 (<0.001) 0.00 (0.001) – 0.02 (0.003)
300 4 0.01 (0.004) 0.00 (<0.001) 0.06 (0.010) 0.49 (0.012)
900 4 0.00 (0.001) 0.00 (<0.001) – 0.23 (0.011)

1800 4 0.00 (<0.001) 0.00 (<0.001) – 0.10 (0.006)
300 5 0.00 (<0.001) 0.01 (0.003) 0.04 (0.005) –
900 5 0.00 (<0.001) 0.01 (0.003) – –

1800 5 0.00 (0.001) 0.01 (0.003) – –
300 6 0.08 (0.013) 0.05 (0.015) 0.11 (0.018) –
900 6 0.01 (0.003) 0.00 (0.001) – –

1800 6 0.00 (<0.001) 0.00 (<0.001) – –

TABLE A3 Mean suspect rates (over 200 experiments)
for different data models (M1 to M6) processed by four
methods (m1 to m4). Standard error of the mean is
specified in parentheses
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TABLE 4 Mean decision accuracy rates (over 200 experiments) for
different data models (M1 to M6) processed by PSICA methods (m1 to m3).
Standard error of the mean is specified in parentheses

n Model m1 m2 m3

300 1 0.89 (0.003) 0.89 (0.003) 0.97 (0.003)
900 1 0.92 (0.003) 0.87 (0.003) –

1800 1 0.94 (0.002) 0.84 (0.003) –
300 2 0.96 (0.001) 0.89 (0.002) 0.97 (0.002)
900 2 0.97 (0.001) 0.88 (0.002) –

1800 2 0.97 (0.001) 0.88 (0.002) –
300 3 0.95 (0.002) 0.89 (0.003) 0.96 (0.002)
900 3 0.96 (0.001) 0.88 (0.002) –

1800 3 0.96 (0.001) 0.87 (0.002) –
300 4 0.89 (0.003) 0.80 (0.002) 0.85 (0.002)
900 4 0.95 (0.001) 0.83 (0.001) –

1800 4 0.97 (0.001) 0.84 (0.001) –
300 5 0.87 (0.003) 0.75 (0.003) 0.80 (0.004)
900 5 0.90 (0.002) 0.74 (0.002) –

1800 5 0.90 (0.002) 0.72 (0.002) –
300 6 0.85 (0.003) 0.78 (0.002) 0.80 (0.002)
900 6 0.95 (0.001) 0.82 (0.001) –

1800 6 0.95 (0.001) 0.83 (0.001) –

TABLE 5 Mean efficiency metrics (over 400
experiments) for different data models and data sizes
processed by m1 with different 𝛼 values. Standard error
of the mean is specified in parentheses

𝜶 Accuracy Decision accuracy Suspect Uncertainty
10−5 0.982 (0.002) 0.932 (0.002) 0.000 (<0.001) 0.316 (0.008)
0.01 0.980 (0.002) 0.936 (0.002) 0.004 (0.001) 0.291 (0.007)
0.05 0.979 (0.002) 0.937 (0.002) 0.010 (0.003) 0.272 (0.007)
0.5 0.977 (0.002) 0.938 (0.002) 0.024 (0.004) 0.266 (0.007)
1 0.977 (0.003) 0.937 (0.002) 0.020 (0.003) 0.264 (0.007)
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