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ABSTRACT

Artificial intelligence (Al) has already found its way into oph-
thalmology, with the first approved algorithms that can be
used in clinical routine. Retinal diseases in particular are prov-
ing to be an important area of application for Al, as they are
the main cause of blindness and the number of patients suf-
fering from retinal diseases is constantly increasing. At the

same time, regular imaging using high-resolution modalities
in a standardised and reproducible manner generates im-
mense amounts of data that can hardly be processed by hu-
man experts. In addition, ophthalmology is constantly experi-
encing new developments and breakthroughs that require a
re-evaluation of patient management in routine clinical prac-
tice. Al is able to analyse these volumes of data efficiently and
objectively and also provide new insights into disease progres-
sion and therapeutic mechanisms by identifying relevant bio-
markers. Al can make a significant contribution to screening,
classification and prognosis of various retinal diseases and can
ultimately be a clinical decision support system, that signifi-
cantly reduces the burden on both everyday clinical practice
and the healthcare system, by making more efficient use of
costly and time-consuming resources.

ZUSAMMENFASSUNG

Die kiinstliche Intelligenz (K1) hat bereits Einzug in die Augen-
heilkunde gefunden durch erste zugelassene Algorithmen, die
in der Praxis angewendet werden kdnnen. Als ein relevantes
Anwendungsgebiet der Kl erweisen sich insbesondere retinale
Erkrankungen, da sie die Hauptursache einer Erblindung dar-
stellen und die Zahl an Patienten, die an einer Netzhaut-
erkrankung leiden, stetig zunimmt. Gleichzeitig werden durch
die regelmaRige standardisierte und gut reproduzierbare Bild-
gebung mittels hochauflésender Modalitdten immense Da-
tenmengen generiert, die von menschlichen Experten kaum
zu verarbeiten sind. AuBerdem erfdhrt die Augenheilkunde
stetig neue Entwicklungen und Durchbriiche, die einer Re-
evaluierung des Patientenmanagements in der klinischen
Routine bediirfen. Die Kl ist in der Lage, diese Datenmengen
effizient und objektiv zu analysieren und zusatzlich durch die
Identifizierung relevanter Biomarker neue Einblicke in Krank-
heitsprozesse sowie Therapiemechanismen zu liefern. Die KI
kann maRgeblich zum Screening, zur Klassifizierung sowie
zur Prognose von unterschiedlichen Netzhauterkrankungen
beitragen. Anwendungsfreundliche Auswertungstools (Clini-
cal Decision Support Systems) fiir den klinischen Alltag sind
bereits erhdltlich, die Praxis und Gesundheitssystem durch
effizientere Nutzung kosten- und zeitintensiver Ressourcen
erheblich entlasten.
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Introduction

The number of patients exhibiting retinal diseases is steadily
increasing. Retinal diseases are also the most common cause of
visual impairment and loss of vision amongst older people in in-
dustrialised nations [1]. This has led to rapid development in Al
(artificial intelligence) algorithms towards automatically analysing
the immense amounts of data collected every day in clinical rou-
tine. Patients with age-related macular degeneration (AMD) and
diabetic retinopathy (DR) in particular require regular monitoring
to detect complications requiring treatment at an early stage for
conditions that may otherwise lead to potentially irreversible vi-
sion loss such as neovascular AMD (nAMD) and diabetic macular
oedema (DME) [2]. Apart from that, new treatment options and
imaging techniques are constantly leading to new developments
and breakthroughs in ophthalmology. The introduction of intra-
vitreal anti-vascular endothelial growth factor (VEGF) injections
for treating nAMD and DME have contributed to a substantial de-
crease in legal blindness [3,4]. The number of patients receiving
regular intravitreal injections and follow-up visits is set to increase
with the approval of new treatments in the USA for geographic at-
rophy (GA), the dry late form of AMD [5, 6]. High-resolution imag-
ing methods such as optical coherence tomography (OCT) pro-
vide new and detailed insights into disease processes as well as
mechanisms of action in new forms of treatment [7]. Ophthal-
mologists cannot detect most of these subclinical biomarkers in
patients without additional image analysis. Al-based algorithms
are able to evaluate large amounts of data accurately, objectively,
and extremely rapidly, thus significantly reducing workloads and
allowing more efficient and individual disease management for
ophthalmologists treating patients in clinical routine as well as in
the healthcare system in general.

Artificial Intelligence and Deep Learning

Al is a branch of computer science aimed at training human-like
cognitive abilities in machines or computer systems [8]. Al-based
models have mainly become based on machine learning, a sub-
field of Al. Machine learning (ML) is a process where algorithms
learn principles and structures independently from given data
rather than from preset definitions by human specialists. How-
ever, the ML principle relies on feature engineering, that is, pre-
defined “features” or biomarkers such as central retinal thickness
in an OCT volume. The computer can then find solutions and self-
improve without being specifically programmed to do so. The
“learned” solution approaches can then be applied to new un-
known contexts for more efficient data analysis [8]. Machine
learning has since developed into artificial neural networks
(ANNs), which mimic neural networks in the human brain and
therefore also human learning behaviour. ANNs consist of inter-
connected artificial neurons arranged in several layers. The infor-
mation fed into the network is processed, sorted, and refined for
final analysis across several layers. ANNs are especially well-suited
in classification or diagnostic systems such as in screening for dia-
betic retinopathy based on biomarkers in colour fundus photogra-
phy. ANNs have developed into deep neural networks (DNNs) fi-
nally forming a new subfield - deep learning (DL) [9]. These DNNs
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consist of several intermediate layers and fewer artificial neurons,
thus increasing their efficiency. A relevant benefit from DNNs is
the continuous increase in performance with the size of the train-
ing dataset. Hardware development in computer processing
power has also led to more rapid data processing by DNNs, which
has since exceeded classical ML. DNN models are able to extract
“features” from the data autonomously without human specialists
giving them predefined definitions (> Fig. 1). DNNs with specific
convolutional neural network (CNN) architectures have emerged
as the most capable of image analysis and mimic the structure of
the human visual cortex. Specifically, CNNs are able to recognise
visual patterns and identify objects in images. DL-based algo-
rithms need large annotated datasets for training; this improves
precision, but interpretability is more challenging in these mod-
els. It is possible to train ML-based models with smaller annotated
datasets, which leads to greater transparency and interpretability
[8].

Ophthalmology is especially suited for developing and apply-
ing novel Al-based models due to the increasing number of non-
invasive high-resolution imaging techniques, especially on the ret-
ina. Al as used in retinal health can be divided into the following
categories: Screening, disease stage classification, segmentation
and quantification of lesions, disease progression prediction, and
clinical decision support systems (CDSSs).

Diabetic Retinopathy

Almost 500 million people across the world suffer from diabetes,
a number expected to rise to 600 million by 2040. One-third of
those affected exhibit diabetic retinopathy, around 10% of which
are at risk of serious loss of vision. Diabetic retinopathy is asymp-
tomatic in its early stages, but still requires regular monitoring to
detect later stages or complications that may lead to vision loss
[10]. Vision loss is often too late to restore once sustained due to
conditions such as tractional changes in the retina. The increasing
number of patients requiring reqular check-ups places a heavy
burden on the healthcare system in time and expense, resulting
in limited therapeutic impact in most cases. Al-supported models
may relieve the burden on ophthalmologists and the entire
healthcare system while also providing efficient support for
screening and monitoring in clinical routine, especially in identify-
ing patients in need of treatment.

Diabetic retinopathy: Screening

Developed in 2016, the IDx-DR system for screening diabetic ret-
inopathy from colour fundus photographs (CFP) was one of the
first medical Al applications (» Fig. 2). The principle is based on
DL and showed a sensitivity and specificity of 87% and 91%, re-
spectively, in the validation study. The US Food and Drug Admin-
istration (FDA) approved the system as the first screening method
for the presence of diabetic retinopathy based on these results
[11]. The system does not differentiate absence of diabetic reti-
nopathy from presence of diabetic retinopathy in its mild form as
this stage does not require immediate treatment. Consultation
with an ophthalmologist will be recommended if the device gen-
erates a positive result, that is, moderate or severe diabetic reti-
nopathy. EyeArt is another FDA-approved system already in clini-
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» Fig. 1 Diagram showing classical machine learning and deep learning using diabetic retinopathy screening as an example. Machine learning al-
gorithms need features - predefined biomarkers - specified by human specialists, whereas deep learning identifies and classifies these features
autonomously. Source: Schmidt-Erfurth U, Sadeghipour A, Gerendas BS et al. Artificial intelligence in retina. Prog Retin Eye Res 2018; 67: 1-29. DOI:

10.1016/j.preteyeres.2018.07.004. [rerif]

cal use for screening diabetic retinopathy [12]; this system has
shown similar sensitivity and specificity as the IDx-DR system. In
contrast, ophthalmologists show a sensitivity and specificity of
73% and 91%, respectively, in diagnosing diabetic retinopathy
[13]. Al-based models for screening diabetic retinopathy have al-
ready come into clinical use with results on par with, or even sur-
passing, clinical specialists.

Diabetic retinopathy: Staging

The International Clinical Diabetic Retinopathy Disease Severity
Scale classifies diabetic retinopathy into non-proliferative diabetic
retinopathy (NPDR) and proliferative diabetic retinopathy (PDR)
with NPDR further classified into mild, moderate, and severe
[14]. Potential complications include diabetic macular oedema
(DME), vitreomacular traction, epiretinal membrane formation,
and retinal detachment. Al-based algorithms can also assist in dis-
tinguishing and classifying different stages in these cases. Two
exemplary studies have investigated algorithms for automatic di-
abetic retinopathy staging using large datasets. One study using
two datasets with 8,788 and 1,745 CFP images reported a sensi-
tivity of 90% and 87 % with a specificity of 98% in detecting mod-
erate diabetic retinopathy or worse, a sensitivity of 84% and 88%
with a specificity of 98% and 99% for severe diabetic retinopathy
or worse, and a sensitivity of 91% and 90% with a specificity of
98% and 99% for DME alone [15]. Another study using almost half
a million CFP images achieved a sensitivity/specificity of 91%/92%
and 100%/91 % in detecting clinically relevant diabetic retinopathy
and vision-threatening diabetic retinopathy [16].
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Diabetic retinopathy: Prediction

We have investigated for OCT criteria affecting treatment out-
comes in DME based on information from 629 eyes from the Pro-
tocol-T study and Al-based analysis and found a prominent cor-
relation between intraretinal cysts and outcomes. In particular,
resorption of intraretinal cysts after the first injection gave the
greatest predictive value. However, it was not possible to give a
reliable prediction for central visual acuity [17].

Age-related Macular Degeneration

AMD is a chronic progressive disease that leads to progressive loss
of retinal tissue and sensory cells, and therefore also to loss of vi-
sion. Around 196 million people are affected across the world with
prevalence expected to increase to 288 million by 2040 due to
increasing population age [18]. The risk of developing AMD in-
creases exponentially with age. AMD is the most common cause
of age-related blindness in the industrialised world. One in four
people over sixty develop AMD [19]. AMD is distinguished into
early, intermediate, and late forms depending on the size of the
extracellular deposits or drusen. Late AMD is distinguished into
two forms, neovascular AMD (nAMD) with macular neovascular-
isation (MNV) and geographic atrophy (GA) [20]. Injections using
anti-VEGF drugs are used to treat NnAMD, but no GA treatment has
yet been approved in Europe. In contrast, the FDA has already is-
sued full approval for the first two drugs as intravitreal comple-
ment inhibitors for GA treatment [5, 6].
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» Fig. 2 Diagram showing diabetic retinopathy screening using the IDx-DR system. Source: Schmidt-Erfurth U, Sadeghipour A, Gerendas BS et al.
Artificial intelligence in retina. Prog Retin Eye Res 2018; 67: 1-29. DOI: 10.1016/j.preteyeres.2018.07.004. [rerif]

Age-related macular degeneration: Screening

AMD is usually asymptomatic in its early stages, but late forms of
AMD lead to rapid and sometimes irreversible vision loss if left
untreated. Al-based methods based on CFP for automatic AMD
detection have shown a sensitivity/specificity of 93%/89% as
examined on 72,610 images, and an accuracy of 90% from
130,000 images compared to human specialists [21]. However,
the role of CFP in screening for AMD is still confined to its early
stages, unlike diabetic retinopathy. Late stages exhibit subclinical
parameters that cannot be assessed reliably using CFP. In particu-
lar, a reliable assessment of exudation in nAMD or thinning in the
outer retinal layers as early atrophic changes is not possible using
CFP. OCT imaging plays an important role here, as it can faithfully
display subclinical changes at high resolution. A study based on a
large dataset comprising 3,265 OCT volumes used in screening for
AMD achieved a sensitivity and specificity of 93% compared to
ophthalmologists [22]. Early forms of GA are especially suitable
for screening as they initially occur outside the fovea, with many
patients only showing symptoms once the fovea or its immediate
surroundings have been reached. Major multicentre projects are
currently investigating the possibility of Al-based screening at
population level, while also involving other professional groups
such as pharmacists and orthoptists.

Age-related macular degeneration: Staging

Different stages of AMD have different implications in clinical rou-
tine and treatment. In such cases, Al-based algorithms can also
help in the clinical setting and in rapid analysis of large databases
for research. Results from OCT volumes from 367 individuals
showed a sensitivity and specificity of 98% and 91 % for classifica-
tion into no AMD, early AMD, intermediate AMD, GA and nAMD
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compared to examination by ophthalmologists [22]. A DL-based
algorithm has been developed and validated for automatic AMD
classification into four stages — no AMD, intermediate AMD,
nAMD, and GA - using real-world data on 3,765 OCT volumes
from 1,849 eyes in the UK Biobank. The algorithm achieved an
area under the curve (AUC) value of 0.94 [23]. This emphasises
the potential of Al-based models in rapidly and reliably analysing
large databases for both clinical routine and retrospective re-
search on disease progression and conversion.

Age-related macular degeneration: Prediction

Predicting conversion from early or intermediate AMD to late
AMD as nAMD or GA is especially relevant in a clinical setting.
Treatment for NnAMD should begin as early as possible after diag-
nosis to prevent potential complications such as bleeding or fibro-
sis that may lead to irreversible loss of vision. The FDA has already
approved two drugs for GA treatment, which could see approval
in Europe later this year [5, 6]. Treatment for GA should also begin
as soon as possible to preserve central vision for as long as possi-
ble before the onset of subfoveal atrophy. An ML-based predictive
model for automatic prediction of conversion to late AMD was
tested on OCT data from 495 patients, achieving an accuracy of
68% for predicting MNV and 80% for predicting GA [24]. Various
characteristic pathomechanisms were identified using an Al-
based analysis of different biomarkers such as drusen, hyperre-
flective foci, pseudodrusen, and segmentation of the retinal
layers. Drusen volume played the main role in predicting con-
version to MNV, whereas hyperreflective foci and thinning in the
outer neurosensory layers were shown to be especially relevant
as biomarkers for conversion to GA [24]. This demonstrated the
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ability of Al-based algorithms to provide new insights into disease
progression.

Quantifying different biomarkers is one of the main applica-
tions of Al in clinical routine and in clinical studies towards im-
proving disease activity assessment and treatment response.
Quantifying the various fluid compartments plays an especially
important role in nAMD; these fluid compartments include intra-
retinal fluid (IRF), subretinal fluid (SRF), and sub-RPE fluid (RPE:
retinal pigment epithelium) for pigment epithelial detachment
(PED) [25]. Automatically quantifying these biomarkers showed
IRF in particular to predict a more adverse prognosis whereas
SRF could be tolerated to some extent [26]. Ophthalmologists
are not able to quantify fluid volumes at nanolitre amounts. Al-
based models could provide support in objective and personalised
therapy decisions in such cases by providing precise and reprodu-
cible values (» Fig. 3) [27].

GA has been undergoing a major paradigm shift since the FDA
approved the first two drugs for treating GA, which may also see
approval in Europe later this year. Results from pivotal studies
based on fundus autofluorescence (FAF) measuring GA progres-
sion have shown significantly slower growth in treated patients
compared to untreated patients [5,6]. Using FAF to measure GA
is characterised by the absence of fluorophoric metabolites such
as lipofuscin due to missing RPE [28]. Post-hoc analysis using Al-
based models for automatic segmentation of RPE and photo-
receptors measured on the ellipsoid zone (EZ) has shown reliable
visualisation of treatment effects at RPE level using OCT [29,30].
Automatic segmentation of EZ loss also revealed the treatment
effect to be more pronounced at EZ level, and therefore at the
neurosensory layer rather than at RPE level. Identifying a patho-
gnomonic pattern in GA progression was also possible using auto-
matic segmentation and precise evaluation of OCT volumes. EZ
loss was shown to exceed RPE loss and precede the progression
of RPE loss using Al-assisted analysis of OCT volumes from Phase
Il OAKS and DERBY study data. EC loss also affects treatment re-
sponse. Data from the OAKS/DERBY trial, the largest successful
Phase Il study on GA treatment to date, also showed significantly
faster growth and better treatment response in patients with high
EZ-RPE loss ratios compared to patients with low ratios [30].

Several biomarkers have been identified as associated with rap-
id growth in GA progression assessment; these include: Pseudo-
drusen, hyperreflective foci, specific FAF patterns in the junctional
zone, and multifocal extrafoveal lesions. However, these biomark-
ers have only been studied at population level so far; assessing in-
dividual risk of rapid growth towards predicting local lesion spread
has remained a challenge. Pioneering studies have shown Al-
based models to predict GA growth and localisation in en face im-
ages from a single OCT volume [31-33]. Al-supported analysis
provides groundbreaking insights into the relevant mechanisms
of GA progression and treatment response; these cannot be reli-
ably assessed using FAF, nor are human specialists able to detect
and quantify them at clinical examination.

Al-based models have also been investigated for their ability to
predict treatment frequency and outcomes from anti-VEGF injec-
tions for nAMD. Selecting an appropriate treatment regime and
interval remains a challenge in nAMD treatment. Compared to
clinical trials, real-world results have shown undertreatment and
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more adverse outcomes for vision in treatment with anti-VEGF in-
jections; this is likely due to late diagnosis or treatment delays on
recurring exudation requiring treatment [27]. Pioneering studies
have investigated the potential of Al-based algorithms to predict
treatment needs [34,35]. One model has been trained to distin-
quish a priori between low, moderate, and high therapy needs us-
ing on OCT volumes from 317 patients in a PRN regime (PRN: pro
re nata). The algorithm achieved an AUC of 70% to 77%, a 50%
performance increase compared to retina specialists [36]. An Al-
based algorithm was also able to distinguish between interval
extension suitability and unsuitability in patients on a treat-and-
extend (T&E) regime [37].

Functional response to anti-VEGF injection is subject to wide
interindividual variability, making it difficult for experienced oph-
thalmologists to predict. Even so, predicting treatment response
based on central visual acuity may lead to higher patient compli-
ance and motivation for ophthalmologists. Apart from that, fac-
toring in a poor functional response prognosis may save impor-
tant human and cost-intensive resources. A DL-based algorithm
applied to 270 previously untreated patients randomised to re-
ceive ranibizumab in a T&E regime achieved an accuracy level of
0.87 in predicting central visual acuity. IRF and SRF volumes after
the first injection have emerged as the most relevant biomarkers
for predicting central visual acuity [38].

Other Retinal Diseases and
Systemic Comorbidities

Other areas where Al has been applied to retinal diseases include
screening and prognostics for retinopathy of prematurity [39],
glaucoma [40], vascular occlusion [41], and hereditary retinal dis-
eases [42]. Algorithms can also be applied in general screening
between healthy individuals and individuals with retinal disease
[43]. However, the potential areas of Al application go beyond
ophthalmology; morphology of the retina and retinal vascu-
larisation can also provide indications as to systemic risk factors
and comorbidities [44]. Al-based algorithms can recognise pat-
terns from huge amounts of data in determining age and gender
based on CFP or OCT volume [45,46]. One recent study used CFP
to predict cardiovascular risk factors such as nicotine consump-
tion, body mass index, and HbA;. values using DL-based models
[44]. The future will also see comorbidities such as Alzheimer’s
disease or multiple sclerosis being detected by applying Al-based
analysis to CFP or OCT scans.

Approved MDR-certified Algorithms

Using Al-based algorithms in clinical routine will require a strin-
gent regulatory approval process beforehand. The Vienna Fluid
Monitor and GA Monitor (RetInSight, Vienna, Austria) developed
at the Medical University of Vienna (> Fig. 4) are two MDR-certi-
fied algorithms for use in retinal diseases; MDR refers to the Euro-
pean Medical Device Regulation [47].

Vienna Fluid Monitor was developed for automatic segmenta-
tion and quantification of IRF, SRF, and PED; the algorithm has
been validated on both study data and data from clinical routine.
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» Fig. 3 Segmentation of different biomarkers on CFP and OCT images. Automatic segmentation is compared to manual segmentation by human
specialists and lies within the range of interreader variability. Source: Schmidt-Erfurth U, Sadeghipour A, Gerendas BS et al. Artificial intelligence in
retina. Prog Retin Eye Res 2018; 67: 1-29. DOI: 10.1016/j.preteyeres.2018.07.004. [rerif]

Different fluid compartments are shown in colour on the OCT
scans with volumes given in nanolitres. Fluid dynamics can be ob-
served over time, and the algorithm can distinguish between ac-
tive and inactive fluid, such as in degenerative cysts.

GA Monitor is designed for automatic segmentation and quan-
tification of RPE loss as well as EZ loss representing photoreceptor
status. This allows rapid and accurate quantification of GA growth
and classification of disease activity using the EZ-RPE loss ratio.
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Both algorithms use Heyex 2.6 software in its current version
for the Heidelberg Spectralis device; the algorithms are to be ap-
proved for each of the other OCT device manufacturers. The sys-
tem takes a matter of minutes to generate a report for the oph-
thalmologist showing the quantified fluid volumes in nanolitres
or atrophy segmentations in mm? including corresponding im-
ages. Tools such as Fluid Monitor (FM) and GA Monitor (GM) gen-
erate complete reports from the cloud at the click of a mouse with
en face lesion localisation and new quantifications, that is, any in-
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ceptor segmentation in mm2, and corresponding colour images on OCT scans showing precise future progression. (Source: https://retinsight.com/

[rerif]; Stand: 26.08.2024)

crease or decrease of activity, from a standard OCT device (Spec-
tralis) for the ophthalmologist to make a precise diagnosis and de-
cide on suitable treatment there and then at patient consultation.
The FDA currently considers EC loss to be the primary relevant
biomarker for assessing photoreceptor status in GA. This biomark-
er provides a reliable measure of activity and therapeutic response
for GA management in clinical routine similar to the “fluid” bio-
marker in NnAMD and is set to play a crucial role in recommending
GA treatment for ophthalmological patients.

Other MDR-based CE-certified systems for retinal disease man-
agement using OCT comprise RetinAl Discovery (image and data
management platform, RetinAl Medical AG) [48], iPredict (screen-
ing for AMD, DR, glaucoma using OCT and CFP, lhealthservices
Inc.) [49], and Retinalyze (screening for DR, AMD, and glaucoma,
Retinalyze System A[S) [50]. RetInSight GA Monitor is the only
MDR-certified algorithm to display photoreceptor loss as mea-
sured by EZ in addition to RPE loss.

Continuous development and integration of Al-based models
in clinical routine will enable efficient, accurate, and objective pro-
cessing for the huge amount of retinal imaging information avail-
able. These models provide new insights into pathomechanisms
and treatment response in clinical studies while also enabling
thorough and methodical evaluation of large databases. Al sys-
tems used as clinical decision support tools allow objective, repro-
ducible, and most importantly, individual treatment decisions, ini-
tiating a paradigm shift in precision healthcare in ophthalmology.
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Mini-Abstract

Al-based algorithms can significantly reduce workloads in clinical
routine and the healthcare system through more efficient use of
costly and time-consuming resources. These algorithms also pro-
vide new insights in disease development and treatment mecha-
nisms by identifying relevant biomarkers in various retinal dis-
eases.
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