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ABSTRACT

Objective: The rate of diabetic complication progression varies across individuals and understanding factors

that alter the rate of complication progression may uncover new clinical interventions for personalized diabetes

management.

Materials and Methods: We explore how various machine learning (ML) models and types of electronic health

records (EHRs) can predict fast versus slow onset of neuropathy, nephropathy, ocular disease, or cardiovascular

disease using only patient data collected prior to diabetes diagnosis.

Results: We find that optimized random forest models performed best to accurately predict the diagnosis of a

diabetic complication, with the most effective model distinguishing between fast versus slow nephropathy

(AUROC¼0.75). Using all data sets combined allowed for the highest model predictive performance, and social

history or laboratory alone were most predictive. SHapley Additive exPlanations (SHAP) model interpretation

allowed for exploration of predictors of fast and slow complication diagnosis, including underlying biases pre-

sent in the EHR. Patients in the fast group had more medical visits, incurring a potential informed decision bias.

Discussion: Our study is unique in the realm of ML studies as it leverages SHAP as a starting point to explore

patient markers not routinely used in diabetes monitoring. A mix of both bias and biological processes is likely

present in influencing a model’s ability to distinguish between groups.

Conclusion: Overall, model interpretation is a critical step in evaluating validity of a user-intended endpoint for

a model when using EHR data, and predictors affected by bias and those driven by biologic processes should

be equally recognized.
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LAY SUMMARY

Type 2 diabetes is a major health problem that affects 415 million people worldwide, roughly 1 in 20 people. Diabetes leads

to debilitating complications in multiple organ systems, including the heart, eyes, kidneys, and nerves. There is an urgent

need to discover factors that delay or promote progression to these complications. One rich source of information that is

largely untapped is the electronic health record (EHR), which contains multiple types of information about patients. Demo-

graphics, social history, laboratory, prior diagnoses, and vital signs all capture different aspects of a person’s health. Ma-

chine learning (ML) promises to discover relationships in data and relate them to outcomes without requiring expert knowl-

edge. However, EHR data contain numerous biases, and ML algorithms are known to use biases in data if they are present.

It can be hard to know if a ML model has learned something about the underlying disease or if that model is simply memo-

rizing bias. In this work, we present a thorough exploration of what EHR data are most predictive of diabetic complication

onset, which type of ML model is best to use, and how to use model interpretation to discover if the model has learned bias

or underlying disease biology.

INTRODUCTION

According to the 2020 National Diabetes Statistics Report, an esti-

mated 34 million (or 13%) of the United States (US) adult popula-

tion has diabetes,1 and the prevalence of diagnosed diabetes among

US adults is projected to rise to 61 million (or 18%) by the year

2060.2 Diabetes is the most expensive chronic condition in the

United States; one of every 4 US health care dollars is spent on care

for people with diabetes.3 Globally, the direct health expenditure on

diabetes in 2019 was $760 billion, which is projected to rise to $845

billion in 2045, with the largest expenditure in individuals 60–

69 years old.4 The prevalence of diabetes is highest among adults

over 65 years, and the expected rise in diabetes is partially due to a

decline in mortality in the diabetes population.2

Long-term complications of diabetes are categorized as either

microvascular, including nephropathy, neuropathy, and retinopa-

thy, or macrovascular, including cardiovascular and peripheral vas-

cular disease. Diabetes is the leading cause of new cases of blindness

and kidney failure in the United States, and was the seventh leading

cause of death in 2017.5 Targeted therapies that delay or inhibit pro-

gression of diabetic complications are lacking and there remains a

need for a better understanding of the pathophysiology underlying

diabetic complications.6

Maintaining blood glucose, blood pressure, and cholesterol lev-

els within therapeutic goals is critical to reducing the risk of

diabetic-related complications.7–14 For example, every percentage

point reduction in glycosylated hemoglobin (HgbA1c) can reduce

the risk for microvascular complications by 40%.14 However,

21% of US adults who met laboratory criteria for diabetes were un-

aware of or did not report having diabetes,1 thus, type 2 diabetes

mellitus (T2DM) is often undiagnosed until irreversible complica-

tions have developed.7,14 If detected and treated early, as much as

90% of blindness due to diabetic retinopathy may be prevent-

able.14 More accurate identification of individuals with T2DM at

risk for complications would allow clinicians the chance for early

intervention.

Electronic health records (EHR) are a powerful tool in under-

standing trends in disease development and creating prediction mod-

els that allow early interventions or modification of treatment

options to improve patient outcomes. With the increasing use of

EHR, large-scale patient data have become more accessible. Ma-

chine learning (ML) has been a powerful tool aiding in clinical

decision-making, identification of patients at risk for diseases (eg,

septic shock15) as well as repurposing of drugs for new indica-

tions.16 ML algorithms can be trained using a set of patient attrib-

utes (or features) and health outcomes given a clinical scenario, and

then used to predict outcomes when provided previously unseen pa-

tient profiles. EHR data are highly complex and heterogeneous, and

their use in designing a model intended for the real-world clinical

setting warrants evaluation of whether the model in fact learned

what the user had intended. For example, how do the important fea-

tures learned by the model align with established risk factors17?

Most ML studies, however, focus on predictive performance and

rarely provide meaningful explanation of their models,18 that is, pa-

tient characteristics that led to the prediction.19 Due to overwhelm-

ing evidence indicting poor reproducibility and reporting of clinical

ML models, a 2020 paper made several recommendations for trans-

parent and comprehensible reporting of results from ML studies, in-

cluding presenting high impact predictors of the model in a

summary/tabular format and a narrative focusing on these varia-

bles.20 Additionally, authors should discuss clinical interpretation of

these variables with respect to the model outputs, including transla-

tion to health care.20

SHapley Additive exPlanations (SHAP) is a popular and effective

approach published in 2017 for understanding each features’ contri-

bution to a model’s predictions.17 SHAP is unique in that it provides

insights into the magnitude of importance for a feature as well as the

direction a feature shifts a predicted outcome. Of six studies pub-

lished after 2017 using ML to predict one or more diabetic compli-

cations, only one study displayed feature importance results using

SHAP.21 Additionally, this study only summarized the mean abso-

lute SHAP value per feature, forgoing the opportunity to understand

whether each feature generally increased or decreased a prediction.

The five other studies did not present any analysis of feature impor-

tance.22–26 Studies that do not present model interpretation may be

misrepresenting the true output of their model.

In this paper, we describe a study using patient EHR data prior

to diagnosis of T2DM to predict a binary outcome of fast versus

slow diagnosis of T2DM complications using ML. In other words,

at the time a patient is diagnosed with T2DM, can we predict

whether that individual will be diagnosed with a diabetic complica-

tion faster or slower than 50% of the study population? Our main

objectives were to (1) compare the utility of different EHR data

types, (2) compare different model architectures, and (3) focus on in-

terpretation of the models. Through SHAP, we identified a models’

top predictors, which led us to investigate whether differences in

patients’ levels of interaction with their healthcare system could be

biasing model output. Exploration of the level of medical care re-

ceived between groups led to the uncovering of an informed pres-
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ence bias, namely that those with more medical encounters may

have more opportunities to be diagnosed with a complication.

Model interpretation is a critical tool that may reveal the effect of

inherent biases in models built using EHR data.

MATERIALS AND METHODS

Study population
This was a retrospective study across an academic hospital network

in the Milwaukee metropolitan area to predict rapid versus delayed

diagnosis of diabetic complications in individuals with T2DM. Ret-

rospective, deidentified patient data were queried using the Medical

College of Wisconsin (MCW) Clinical Research Data Warehouse us-

ing the Froedtert Health System’s Informatics for Integrating Biol-

ogy and the Bedside (i2b2) Cohort Discovery tool and extracted

using the Froedtert Health System Honest Broker. MCW and Froed-

tert Institutional Review Board (IRB) approval was waived due to

the use of deidentified data through the i2b2 Cohort Discovery tool.

Data extracted from i2b2 generated 30 854 unique patients with a

diabetic complication occurring after the initial T2DM diagnosis.

Extracted data spanned over 24 years from May 1997 to August

2021.

Data collection
T2DM diagnosis was defined as the date of the first ICD-9 code

250.00 (T2DM without complications) or ICD-10 code E11.9

(T2DM without complications). Due to the transition from ICD-9

to ICD-10 codes in October of 2015,27 an individual diagnosed

prior to 2015 would be coded with 250.00; if the diagnosis occurred

after 2015, an E11.9 would have been coded. In order to exclude

individuals who had an occurrence of a diabetic complication prior

to their first T2DM diagnosis, a temporal query in i2b2 was used to

only extract individuals who had a T2DM without complications

(250.00 or E11.9) diagnosis that occurred prior to a diabetic compli-

cation diagnosis. ICD-9/10 codes and their descriptors used for iden-

tifying the occurrence of a diabetic complication are listed in

Supplementary Table S1.22,28

Patients who had a time-to-complication less than one month

were excluded from the study to avoid inclusion of patients who had

diabetic complications diagnosed at the same time as their T2DM

diagnosis. Per the American Diabetes Association (ADA) guidelines,

Figure 1. Flowchart depicting study development and analysis. (A) In total, 21 850 patients with T2DM and at least one diabetic complication occurring at least

one month after T2DM diagnosis were selected from the Froedtert & MCW health network i2b2 database and multiple types of EHR were collected for each pa-

tient. Patients were divided into groups based on their diabetic complication, then further divided into two groups based on whether they had a time to complica-

tion below or above the median. (B) Scheme showing the machine learning task concept with training inputs of EHR data and model outputs for an example

patient. (C) Scheme showing the machine learning model training strategy and the model evaluation with the test data.
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a one month follow-up visit is advised for diabetes care for all

patients with hyperglycemia in the inpatient setting; thus, these indi-

viduals would have had a complication code recorded, if present,

within their one month appointment.29 Exclusion of these individu-

als reduced the cohort size to 21 850 patients (Figure 1A).

The study included data from multiple sources, including demo-

graphic information, laboratory results, social-lifestyle history, vital

signs, and ICD-9/10 diagnosis codes. The data were linked using dei-

dentified unique encoded patient numbers. Only ICD codes before

or on the date of T2DM diagnosis were used as model inputs. ICD-9

and ICD-10 codes were truncated to include codes with only one

digit after the decimal due to improved model performance with

truncated codes. Total number of codes were reduced from 30 408

to 12 229 after truncation. To unify across all patients, codes were

replaced with the corresponding phenotype within the phecode sys-

tem.30,31 This also avoided learning unintended associations linked

to the longer existence of an ICD-9 versus an ICD-10 code rather

than the code itself. Phecodes are distinct diseases or traits that map

to ICD-9 or ICD-10 codes as a means to provide consistency across

these codes over time as well as overlapping disease states.32 For ex-

ample, 401.1 (ICD-9) and I10 (ICD-10) would both map to the phe-

notype “Essential hypertension.” After mapping, 12 229 unique

diagnosis codes were converted to 1721 unique phenotypes.

Demographics information comprised five input features: sex,

marital status, employment status, race, and age at diabetes diagno-

sis (Supplementary Table S2). Demographics information did not

change over time.

Because patients had many entries for vitals, social-lifestyle his-

tory, and laboratory values, and to simulate how our models might

be used in the real world, we used the data collected on the day of

the T2DM diagnosis. If the patient did not have data collected on

this date, we used the last collected data measured prior to the date

of T2DM diagnosis. Vital signs included body mass index (BMI), di-

astolic blood pressure, systolic blood pressure, pulse, temperature,

and respiration rate. Social-lifestyle history consisted of alcohol use,

illicit drug use, tobacco use (cigarettes, pipes, and cigars), and

smokeless tobacco use (snuff and chew). Laboratory values con-

sisted of aspartate aminotransferase, alanine transaminase, biliru-

bin, alkaline phosphatase, calcium, glucose, bicarbonate, chloride,

sodium, potassium, creatinine, estimated glomerular filtration rate

(eGFR), eGFR for African Americans, blood urea nitrogen, anion

gap, platelet count, hematocrit, hemoglobin, red blood cell count,

white blood cell count, mean corpuscular hemoglobin concentration

(MCHC), mean corpuscular volume, mean platelet volume (MPV),

red cell distribution width (RDW), monocyte percentage, neutrophil

percentage, eosinophil percentage, lymphocyte percentage, absolute

neutrophil count, absolute lymphocyte count, absolute monocyte

count, absolute eosinophil count, total protein, and albumin.

Data preprocessing
Features were excluded if 50% or more of the values for that feature

were missing. MissForest imputation was used to impute missing val-

ues.33 Laboratory and social-lifestyle history variables that were ex-

cluded are listed in Supplementary Table S2; no variables from the

other three inputs were excluded. Input data were filtered to only in-

clude values collected on a visit occurring the day of or prior to the ini-

tial T2DM diagnosis in order to mirror a clinical scenario where a

clinician only has access to the patient’s baseline health records at the

time of T2DM diagnosis. Categorical variables were one-hot

encoded,34 continuous variables were normalized using Min-Max nor-

malization, and counts of phenotypes for each column were binarized

(Supplementary Figure S2). Any values 63 standard deviations (SDs)

from the mean for a particular feature were set to N/A and then im-

puted because these values are likely reporting errors. We chose 63

SDs from the mean to define the range for each feature as 99.7% of

data occurs within 3 SDs of the mean within a normal distribution.

We manually reviewed the range for each variable to ensure values

were not too restrictive. For example, the range for BMI that encom-

passed 63 SDs from the mean was 10.73–61.0 kg/m2.

Continuous patient baseline variables were reported as the me-

dian (interquartile range) and cohort differences were tested using a

2-sided Mann-Whitney U test. Categorical variables were reported

as counts (percentages) and compared using chi-square test. Statisti-

cal significance was based on a 2-tailed P value of �.05.

Study outcomes
The primary endpoint of the study was classification of a diabetic

complication (neuropathy, nephropathy, cardiovascular disease

[CVD], or ocular disease) prior to or after the median time to com-

plication (years). Individuals who developed a complication prior to

the median time were classified as having fast diagnosis of a compli-

cation, those with a time to complication longer than the median

were classified as having slow diagnosis. Using the median time as

the cut-off between the 2 groups allowed for balanced classification.

Machine learning
To understand the relative utility of different types of EHR, the six

different input data sets collected prior to the date of T2DM (pheno-

types, demographics, vital signs, social-lifestyle history, laboratory

data, and all inputs combined) were used to train one of six ML clas-

sification models (Gradient Boosting Decision Trees [GB], Support

Vector Classification [SVC], Random Forest [RF], Extra Trees [ET],

Logistic Regression [LR], and Adaptive Boosting [AdaBoost]) to pre-

dict one of four diabetic complications. Each model was optimized

separately to predict the four complications with one of six input

data sets: phenotypes, demographics, vital signs, social-lifestyle his-

tory, laboratory data, and all inputs combined. A total of six models

were optimized with the six potential inputs for each of the four

complications, resulting in a total of 144 model/input/output combi-

nations that were optimized.

Data were split into 20% final test and 80% training data. Using

the 80% training split, each model’s hyperparameters were tuned

using a random search (RandomizedSearchCV) with 5-fold cross-

validation, up to 1000 iterations, and AUROC metric used for scor-

ing. That is, the 80% training data were split into 5-folds and a

model was trained with each of those folds as a held-out validation

set, meaning up to 5000 models were trained for each ML method.

The hyperparameters that maximized the average AUROC values

obtained from the random search were used to refit a model on the

80% training data set, and the 20% test set was used to evaluate

generalization performance of the best model (Figure 1C). Hyper-

parameters corresponding to the best model for each input are

shown in Supplementary Table S3. AUROC scores reported in this

study represent performance of the test set. The input and corre-

sponding model with the best performance for each complication

were calibrated via parametric “sigmoid” method and 5-fold cross-

validation of the CalibratedClassifierCV class. Model calibration

was assessed by plotting calibration curves of the observed versus

predicted probabilities for the positive class across 10 evenly parti-

tioned bins. The brier scores for each calibration plot were calcu-
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lated using the true class values and the predicted probabilities of

the test set.

Model interpretation
SHAP17,35 values were used to identify features that contribute most

to model prediction. For consistency, the random forest classifier

models with all EHR types combined as input were used for SHAP

analysis of each complication.

To better understand the relationship between number of medi-

cal visits and time of complication diagnosis, we used the patient

encounters database to derive individuals’ inpatient and outpatient

visits between their T2DM and complication diagnoses. The number

of each type of medical visit between the T2DM and complication

diagnoses divided by patient years was further visualized to assess

level of care obtained. Patient years, defined as the sum of the indi-

vidual patient complication times in each group, was used to ac-

count for differences in the total years of follow-up between fast and

slow complication diagnosis groups. Between-group differences in

diabetic complication illness severity on the day of complication di-

agnosis were explored by comparing proportion of patients belong-

ing to each stage of chronic kidney disease (CKD) and diabetic

retinopathy (DR). CKD included stages 1–5 and DR included mild

nonproliferative (NP) DR, moderate NPDR, severe NPDR, and pro-

liferative DR (PDR). Both ICD-9 and 10 codes were used to identify

CKD and DR diagnoses.

Statistical analysis
All data cleaning, analysis, and model training were performed in

Python version 3.7.11 (Scikit-Learn,36 SciPy,37 SHAP17) and R (Mis-

sForest33)

RESULTS

Patient characteristics
Data extracted from i2b2 generated 30 854 unique patients with a

diabetic complication occurring after their initial T2DM diagnosis.

We then selected 15 987 patients who had complete prediabetes

data from all five EHR sources. This data set was further reduced to

10 486 patients who had complete data and at least one diabetic

complication. Of these patients, 5608 had nephropathy, 4646 CVD,

4257 neuropathy, and 3074 ocular disease (Figure 1A, Supplemen-

tary Figure S1). A patient may have had multiple complications pre-

sent within the study period.

Key patient characteristics are recorded in Supplementary Tables

S4–S7. Known risk factors for diabetic complication progression

were distributed unevenly between fast and slow diagnosis groups.

Across complications, patients in the slow complication group were

diagnosed with T2DM at a significantly younger age and were ma-

jority female. The most prevalent race in both groups was Cauca-

sian, followed by African American; the percentage of African

Americans was consistently higher in the slow diagnosis group.

Across complications, BMI was significantly higher in those with

slow diagnosis of nephropathy, neuropathy, and CVD. However,

several other patient risk factors for progression of diabetic compli-

cations were higher in the fast diagnosis group across all complica-

tions, including percentage of patients with essential hypertension,

hyperlipidemia, and cigarette use, though not always statistically

significant. Random glucose levels were significantly lower in

patients with fast diagnosis of nephropathy and ocular disease, and

significantly higher in those with fast diagnosis of neuropathy. Ma-

jority of patients did not have smokeless tobacco status recorded in

their charts, and the slow group had higher rates of unknown

smokeless tobacco status (86.4–87% across complications) com-

pared to the fast group (54.3–64.6% across complications).

Supplementary Figure S3 shows the distribution of time to com-

plication between the two groups. All four complications exhibit

skewed distributions with a median of approximately three years.

CVD had the shortest time to complication (2.95 years) and neurop-

athy had the longest time (3.26 years).

Model performance
Six different input data sets collected prior to the date of T2DM

were used to train one of six ML classification models to predict one

of four diabetic complications (Figure 1B). Data were split into 80%

training and 20% test sets and models were optimized using a ran-

dom search (Figure 1C). AUROCs across each model and data set

combination are shown in Table 1. Using all inputs combine as the

model input, RF performed best in predicting nephropathy and neu-

ropathy diagnosis. ET and AdaBoost performed best in predicting

CVD and ocular disease diagnosis, respectively. Model calibration

was assessed by plotting calibration curves of the observed versus

predicted probabilities for the positive class across 10 evenly parti-

tioned bins (Supplementary Figure S4). The brier scores for calibra-

tion plots were low, ranging from 0.204 to 0.223, indicating

accurate probabilistic predictions.

Figure 2 displays overlayed AUROC plots for each complication

with individual lines representing a different data set input. Across

all complications, using all data sets combined as an input allowed

for the highest model predictive performance compared to using in-

dividual data sets alone. Models were most effective in distinguish-

ing between fast versus slow nephropathy diagnosis

(AUROC¼0.75) and least effective in distinguishing between fast

versus slow CVD diagnosis (AUROC¼0.70). Of the individual data

sets, use of social history or laboratory values alone as inputs led to

the highest model performance. Using vitals, demographics, or phe-

notypes alone led to poorer performance. Phenotypes outperformed

vitals and demographics in prediction of nephropathy or neuropathy

diagnosis, however, the demographics input was the strongest of

these three inputs in predicting ocular disease or CVD diagnosis.

Visualization of feature importance
SHAP was used to investigate how inputs to the model differentially

affected the rate of diabetic complication diagnosis (Figure 3). The

models predominately leveraged social history and laboratory values

in making predictions. The only demographic information that was

a top 10 predictor was age at diabetes diagnosis. Phenotype was pre-

sent only once within the top 10 predictors (ie, hyperlipidemia in

predicting ocular disease diagnosis). Vitals, if present, tended to be

of lower feature importance.

Known smokeless tobacco use status, higher anion gap, and

older age at diabetes diagnosis were associated with a faster diagno-

sis across all four complications. A lower eGFR and higher MPV

were important in predicting fast diagnosis of nephropathy, neurop-

athy, and CVD, but did not play a role in prediction of ocular dis-

ease. Features unique to predicting fast ocular disease diagnosis

were a higher monocyte percentage, higher serum calcium, presence

of hyperlipidemia, and lower bilirubin. Lower MCHC and higher

RDW were associated with faster nephropathy diagnosis. Extended

SHAP plots displaying the top 25 predictors are presented in Supple-

mentary Figures S5–S8.
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Medical care and diabetic complication severity
We further investigated patient engagement in medical care and

types of visits sought between the time of T2DM and diabetic com-

plication diagnoses between groups. Across all four complications,

the fast diagnosis group had significantly more medical visits per

year (Figure 4). Average median visits per year between time of

T2DM and complication diagnoses across four complications was

27.3 in the fast diagnosis group and 14.0 in the slow diagnosis

group. The most frequent types of visits recorded (Figure 5) were

outpatient in nature (eg, telephone, office visit, and therapy) com-

pared to visits necessitating a higher level of care (eg, emergency or

inpatient hospital encounter). With respect to illness severity on the

day of complication diagnosis, the majority of patients were diag-

nosed during mild to moderate stages of disease for both CKD and

DR, not late in disease. The majority of patients were in CKD stage

3 and the proportion of patients between groups was only different

for stage 5/ESRD (slow 0.5%, fast 0.1%, P¼ .013; Figure 6A).

However, very few patients were in this stage. Proportions of

patients in each stage of DR were only different for mild NPDR

(slow 19.3%, fast 11.5%, P< .001; Figure 6B).

DISCUSSION

Our study developed well-calibrated models that can predict the fast

versus slow diagnosis of a progressive diabetic complication (neu-

ropathy, nephropathy, CVD, or ocular disease). The models per-

formed best in distinguishing between fast and slow diagnosis of

nephropathy (AUROC 0.75) and worst in distinguishing fast and

slow diagnosis of CVD (0.70). One strength of the study was the

ability of our model to perform with acceptable predictive perfor-

mance using a smaller cohort relative to similar studies and tradi-

tional ML algorithms, which may be more easily implemented in

clinical practice requiring less data than deep learning methods.

The combination of all five data sources (vitals, demographics,

phenotypes, laboratory, and social history) led to the highest model

performance. Of the individual input data sets, social history and

laboratory values alone achieved the highest AUROC scores. Labo-

ratory values were most useful in predicting diagnosis of ocular dis-

ease and CVD, social history was most useful for predicting

diagnosis of neuropathy, and laboratory and social history contrib-

uted equally to prediction of diagnosis of nephropathy.

Now we will explore which important variables from SHAP ap-

pear to be influenced by bias in the EHR versus disease biology.

A social history variable, smokeless tobacco use, was unexpect-

edly the most important feature across complications. The propor-

tion of patients with unknown smokeless tobacco use recorded in

their charts differed between groups, with the slow group having sig-

nificantly higher rates of unknown status compared to the fast group

(Supplementary Tables S4–S7). Feature sparsity is a known problem

that affects the performance of random forest models, and we be-

lieve the difference in sparsity of this feature between groups caused

the models to preferentially label those with unknown smokeless to-

bacco as having a slow diagnosis. Many factors determine whether a

patient has a measurement recorded in their EHR, and a variable be-

ing marked as unknown by a healthcare worker may be due to non-

random reasons compared to a variable that is simply missing by

chance. For example, is smokeless tobacco use a required question

Table 1. Test set AUROCs corresponding to each model input using six different ML models for each complication

Complication Model Phenotypes Demographics Vitals Social Labs All

Nephropathy SVC 0.618 0.577 0.579 0.674 0.682 0.730

GB 0.615 0.581 0.585 0.677 0.661 0.736

ET 0.633 0.559 0.575 0.684 0.674 0.739

RF 0.625 0.577 0.593 0.670 0.684 0.747

AdaBoost 0.589 0.593 0.564 0.673 0.665 0.737

LR 0.612 0.580 0.567 0.671 0.672 0.728

Neuropathy SVC 0.633 0.579 0.565 0.632 0.648 0.726

GB 0.629 0.582 0.559 0.666 0.666 0.713

ET 0.634 0.583 0.574 0.680 0.661 0.732

RF 0.638 0.582 0.578 0.674 0.671 0.737

AdaBoost 0.614 0.590 0.583 0.679 0.664 0.727

LR 0.624 0.583 0.524 0.677 0.645 0.724

Ocular disease SVC 0.567 0.608 0.507 0.633 0.662 0.649

GB 0.539 0.609 0.505 0.610 0.645 0.691

ET 0.530 0.601 0.520 0.632 0.656 0.682

RF 0.550 0.598 0.527 0.631 0.624 0.696

AdaBoost 0.502 0.612 0.508 0.599 0.586 0.707

LR 0.566 0.619 0.473 0.620 0.669 0.671

CVD SVC 0.609 0.634 0.538 0.633 0.648 0.672

GB 0.603 0.637 0.516 0.606 0.634 0.694

ET 0.609 0.616 0.559 0.642 0.623 0.699

RF 0.613 0.623 0.542 0.599 0.626 0.693

AdaBoost 0.597 0.633 0.531 0.626 0.618 0.688

LR 0.603 0.632 0.539 0.619 0.647 0.679

Note: Best AUROCs for each input (phenotypes, demographics, vitals, social-lifestyle history, laboratory, and all inputs combined) are bolded.

SVC: Support Vector Classification; GB: Gradient Boosting Decision Trees; ET: Extra Trees; RF: Random Forest; AdaBoost: Adaptive Boosting; LR: Logistic

Regression; CVD: Cardiovascular Disease.
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during all primary care visits? Alternately, are people who interact

more with the healthcare system more likely to have a known

smokeless tobacco use status?38 Never users of smokeless tobacco,

which was the most dense feature of the three known categories

(current, former, and never user), were more likely to have fast diag-

nosis across complications. Potentially, this variable being marked

as a known status could indicate interaction with the healthcare sys-

tem that generated additional data for that patient. Clinically, lower

rates of unknown smokeless tobacco status and higher rates of never

users recorded in the charts of individuals with fast complication di-

agnosis may be an indicator of higher levels of interaction of the fast

group with the healthcare system.

Older age at the time of T2DM diagnosis, which was associated

with faster diagnosis of all complications, may also be an indicator

of higher levels of healthcare utilization. On average, older adults

have twice as many physicians’ office visits compared to those under

65, averaging seven office visits each year.39 Furthermore, previous

studies have established early-onset T2DM to lead to more rapid

beta-cell failure and insulin resistance compared to late-onset,40,41

and large meta-analysis have indicated an inverse relationship be-

tween age at diabetes diagnosis and risk of diabetic complications.42

Since it is established that younger age at diabetes diagnosis is asso-

ciated with faster onset of complications, the influence of older age

at diabetes onset on the models’ predictions may be more represen-

tative of older patients’ higher interaction with the medical care sys-

tem rather than an underlying biologic process.

Upon an investigation of the level of engagement in medical

care, we found the fast diagnosis group had more medical visits (ap-

Figure 2. Overlayed area under receiver operating characteristic (AUROC) curves representing performance of each data source input for prediction of slow ver-

sus fast complication diagnosis. AUROC’s corresponding to the best model are plotted for each input. AUROC of 0.5 (diagonal line) corresponds to a model that

predicts the output with random chance and 1.0 corresponds to perfect classification.
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Figure 3. Top 10 features visualized using SHAP. Corresponding data source from which feature is derived is indicated by colored square. Individual patient con-

tributions to the outcome are signified with red dots (high feature values), purple (intermediate), and blue (low). Y axis represents importance of each feature.

Dots with x values greater than and less than zero represent patients with a fast and slow complication diagnoses, respectively. MPV: mean platelet volume,

eGFR: estimated glomerular filtration rate, RDW: red cell distribution width, MCHC: mean corpuscular hemoglobin concentration, BMI: body mass index.
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proximately biweekly compared to monthly in the slow diagnosis

group) and the majority of visits were within the ambulatory setting.

Despite high specificity for accurate diagnosis of a disease, ICD

codes are known to have low sensitivity; in other words the presence

of a code is a likely indicator of a disease, however, the absence of a

code does not reliably indicate absence of that disease.43 The ICD-9

codes for diabetes with complications (250.1–250.9), for example,

have a sensitivity of 63.6% and specificity of 99%.44 Therefore,

since a diagnosis is not captured with high probability, those with

more medical encounters are more likely to have the presence of dia-

betes with complication detected.45 It is possible the fast group is be-

ing diagnosed sooner with a complication due to higher engagement

in their healthcare system, not necessarily due to their faster progres-

sion of disease. Additionally, a deeper dive into complication sever-

ity at the time of complication diagnosis did not show a clear

difference between groups, and the majority of patients in both

groups were captured within the EHR during mild to moderate

stages of their disease. So, the fast group may not be sicker in terms

of diabetic complication severity. Due to an ICD code likely repre-

senting patient catchment rather than true disease onset, we use the

term “diagnosis” rather than “progression” to represent our model’s

output; previous ML studies have claimed to measure progression

without model interpretation may have mischaracterized the pat-

terns learned by their models.

Well-established predictors with biologically validated links to

diabetic complication progression included: (1) lower eGFR (or re-

duced kidney function) was linked to faster diagnosis of nephropa-

thy, (2) higher anion gap (or increase in ketoacids in uncontrolled

diabetes46) was linked to faster diagnosis of all four complications,

and (3) hyperlipidemia (an established risk factor for diabetic reti-

nopathy14) was linked to faster diagnosis of ocular disease.

Other predictors that did not appear intuitive at first, but have

biologic association with diabetic complication progression were

also explored. First, higher MPV was associated with faster diagno-

sis of nephropathy, neuropathy, and CVD in our study. A higher

MPV is indicative of larger, more aggregable platelets that produce

more procoagulants, leading to thrombogenesis, atherosclerosis,

and production of oxidative substances that cause local vascular

lesions.47,48 Small studies have shown that MPV was higher in

patients with uncontrolled T2DM (HbA1c >7%) compared to those

with controlled T2DM (HbA1c�7%) and was associated with

higher risk of developing diabetic complications.49,50 Furthermore,

improved glycemic control led to recovery in platelet activity.51

Overall, high MPV is associated with vascular damage in diabetics,

and we may be able to prevent this damage through optimizing

blood glucose control.

Second, individuals with lower bilirubin, lower MCHC, and

higher serum calcium had faster diagnosis of ocular disease in our

study. High levels of bilirubin, a breakdown product of hemoglo-

bin,52 may have the potential to protect against diabetic complica-

tion development by suppressing oxidation of lipids and

lipoproteins.53 Several studies, including a meta-analysis of 27 stud-

ies, have shown low levels of bilirubin were inversely related to the

development of diabetic complications, including retinopathy.53–55

Next, several observational studies have shown that low hemoglo-

bin levels may accelerate microvascular damage in diabetes. Low he-

Figure 4. Boxplots comparing number of patient medical visits per year between T2DM and complication diagnoses between fast and slow complication diagno-

sis group. Horizontal line within each box represents median and the box spans the interquartile range (IQR), extending from the first (Q1) to the third (Q3) quar-

tile for each group’s distribution. Box whiskers denote maximum (Q3þ1.5�IQR) and minimum(Q1�1.5�IQR); dots outside of whiskers are outliers. Horizontal

bar denotes P value using 2-sided Mann-Whitney U test.
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Figure 5. Barchart exhibiting types of medical visit obtained by fast and slow complication diagnosis groups between T2DM and complication diagnoses. Num-

ber of different medical visits per patient year was visualized to assess differences in level of care obtained between groups. Patient year was defined as the sum

of the individual times to complication within each group.

Figure 6. Barchart exhibiting percent patients belonging to each stage of (A) chronic kidney disease (CKD) and (B) diabetic retinopathy (DR) on the day of nephrol-

ogy and ocular disease diagnosis, respectively. CKD included stages 1–5 and DR included mild nonproliferative (NP) DR, moderate NPDR, severe NPDR, and pro-

liferative DR (PDR). Both ICD-9 and 10 codes were used to identify CKD and DR diagnoses.
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moglobin concentrations are more common in diabetic patients than

nondiabetics and hyperglycemia has been shown to decrease red cell

survival by 13%.56 There may be an increased risk of severe diabetic

retinopathy in individuals with hemoglobin levels below 12 g/

dL,57,58 although this association diminished after adjusting for dia-

betes duration in another study.56 Lastly, a cross-sectional study of

over 3000 patients found elevated serum calcium to be a risk factor

for vision-threatening diabetic retinopathy,59 and in vivo histology

of the retina revealed elevated serum calcium was associated with

retinal photoreceptor apoptosis in diabetic retinopathy.60 Low bili-

rubin and MCHC and high serum calcium in T2DM may be indica-

tors of accelerated retinal damage in diabetics, providing clinicians

with more personalized information for monitoring and modulating

diabetes complication progression.

Third, our findings that higher RDW and lower MCHC are asso-

ciated with faster diagnosis of nephropathy are also supported by

existing studies. RDW, which measures the volume and size of red

blood cells, is commonly used to help diagnose different types of

anemia.61 A retrospective study of individuals with biopsy-proven

diabetic nephropathy showed that individuals with higher RDW

had an increased risk of progression to end-stage renal disease.61 Di-

abetic patients with low hemoglobin concentration had more rapid

decline in glomerular filtration,62 and anemia was a risk factor for

progression to end stage renal failure.63 High RDW and low MCHC

may be important markers for progression of kidney injury in dia-

betics.

This study has important limitations. Controlling for the number

of inpatient encounters may have been a potential solution to re-

move the informed decision bias (ie, �n visits to be eligible into the

cohort), however, this may incur a selection bias as individuals with

fewer visits would be excluded.43,45 Diagnosis data have acceptable

quality due to mandates requiring accurate collection of this data,

and certain demographic data (ie, age, gender, and ethnicity/race)

are mandated by the Meaningful Use objectives.64 However, there is

no mandated coding system for the remaining nonessential demo-

graphic (eg, income, marital status, education), laboratory, vital

sign, or social data for EHRs.64 Social data obtained from EHRs are

often of low quality due to incomplete patient responses and the

subjective nature of most questions.64 For example, across complica-

tions, the majority of patients had “unknown” smokeless tobacco

use. In addition, there may be several laboratory codes in the EHR

representing one lab of interest, and challenges arise when different

facilities use different lab tests to measure the same analyte.64 Sev-

eral labs were excluded due to high missingness in the data set

(�50%), including glucose measurements that appeared duplicative

(ie, glucose point-of-care and point-of-care whole blood glucose).

Random glucose was the only diabetes monitoring lab available

with acceptable missingness, however, as this was not specified as

collected in a fasted state, this may not have been a reliable measure

of true T2DM control. Next, vital signs documented in the EHR

may be flawed by human error in recording units of measurement.

Another important limitation is the use of diagnosis codes to define

the onset of diabetic complications, however, this is our only avail-

able proxy for diagnosis information with large scale data and is in

line with previous studies.21,22 Lastly, data were collected from facil-

ities across a single health network, so it is possible the models fo-

cused on features that are not as common or important in other

institutions. The models should be implemented on a larger scale

across different institutions to verify reproducibility.

In this study, ML models were able to accurately predict the di-

agnosis of 1 of 4 diabetic complications: neuropathy, nephropathy,

ocular disease, and CVD. SHAP provides an interpretation of key

features’ contribution to each model, which was affected by a mix

of both bias present in the data and biologic pathways that affect

true disease progression. Our study is unique in the realm of ML

studies as it aimed to explore the predictions learned by a model

when given complex EHR data. Predictors affected by bias should

not go unrecognized and may be just as important as those driven

by biologic processes. In conclusion, SHAP may serve as a critical

starting point for evaluating validity of disease prediction models us-

ing EHR data.
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