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Comparison between logistic
regression and machine learning
algorithms on prediction of
noise-induced hearing loss and
investigation of SNP loci
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To compare the comprehensive performance of conventional logistic regression (LR) and seven
machine learning (ML) algorithms in Noise-Induced Hearing Loss (NIHL) prediction, and to investigate
the single nucleotide polymorphism (SNP) loci significantly associated with the occurrence and
progression of NIHL. A total of 1,338 noise-exposed workers from 52 enterprises in Jiangsu Province
were included in this study. 88 SNP loci involving multiple genes related to noise exposure and hearing
loss were detected. LR and multiple ML algorithms were employed to establish the NIHL prediction
model with accuracy, recall, precision, F-score, R? and AUC as performance indicators. Compared

to conventional LR, the evaluated ML models Generalized Regression Neural Network (GRNN),
Probabilistic Neural Network (PNN), Genetic Algorithm-Random Forests (GA-RF) demonstrate superior
performance and were considered to be the optimal models for processing large-scale SNP loci dataset.
The SNP loci screened by these models are pivotal in the process of NIHL prediction, which further
improves the prediction accuracy of the model. These findings open new possibilities for accurate
prediction of NIHL based on SNP locus screening in the future, and provide a more scientific basis for
decision-making in occupational health management.
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Noise-Induced Hearing Loss (NIHL) is a common sensory-induced hearing impairment caused by long-
term exposure of workers to high intensity noise'?. Approximately 16% of disabling cases of adult hearing
loss worldwide can be attributed to occupational noise exposure’. It is a complex multi-factorial disease
resulting from the combined effects of genetic, environmental and life behavior factors*®. Numerous animal
experiments have confirmed the role of genetic factors in NIHL susceptibility®’. There is growing evidence that
significant differences in susceptibility to NIHL exist between individuals®. Based on epidemiological studies of
noise-exposed populations, susceptibility associations have been found between NIHL and single nucleotide
polymorphisms (SNPs) in several genes, including HDAC2, SOD2, and STAT3°-!!. Therefore, in-depth mining
of the potential information in SNP loci data pertaining to genetic susceptibility to NTHL is the key in accurately
predicting the occurrence and progression of NIHL, which has significant practical value for the early prevention,
accurate diagnosis and timely treatment of NIHL.

With the rise of data science and artificial intelligence, various disease risk prediction models have gained
widespread use!? Logistic regression (LR), a generalized linear model, is usually the primary choice for
predicting binary classification outcomes (e.g. the presence or absence of disease)!®. In recent years, it has
widely been applied to explore the susceptibility associations between SNP loci and diseases'*!>. However,
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when used to predict NTHL, LR shows limitations in genetic information mining, with accuracy, recall, and
precision often unsatisfactory. The effectiveness and reliability of applying the SNP loci selected by LR for
NIHL prediction remains to be validated. In contrast, Machine learning (ML) algorithms, as an essential
branch of artificial intelligence, have demonstrated superior capability in predicting acute kidney injury!®,
breast cancer!’, hypertension'® and other diseases due to their excellent performance and efficiency. They
have become potential substitute to LR and other conventional statistical methods, such as neural networks,
random forests, decision trees, etc!*->!. Nowadays, ML has made remarkable progress in both the theory and
application of neural networks, among which Probabilistic Neural Network (PNN), Generalized Regression
Neural Network (GRNN) standing out as representative models. Compared with other ML algorithms, both of
them show stronger data adaptability due to the use of hyperparameter optimization, especially when dealing
with nonlinear and complex datasets. Hyperparameters are manually set before training, and unlike parameters
that are automatically adjusted during training (like the weight of the neural network), they directly control
the training process, thus affecting the training efficiency and final performance of the model. Minimizing the
prediction error by manually setting appropriate hyperparameters (e.g. learning rate, regularization strength and
kernel function type) before training starts can effectively improve model accuracy. Currently, PNN and GRNN
have been widely used to learn and perform medical image data discrimination, predict disease survival, and
analyze clinical decisions?>?.

Since the fundamental differences in model construction, processing data capability and complexity
among various algorithms, the execution efficiency of using different models on the same datasets may vary
significantly. According to our knowledge, there is no study that systematically compares and analyzes LR with
different ML algorithms to clarify the applicability of each algorithm in NIHL risk assessment and early warning.
Therefore, this study performed a comprehensive analysis and comparison of the model performance of LR and
seven different ML algorithms in NIHL prediction. We hope to identify more accurate prediction models for
NIHL, which can be applied in the early screening of susceptible individuals during pre-employment medical
examinations and the early screening of high-risk individuals already working in noisy environments, to prevent
the occurrence and further progression of NIHL.

Materials and methods

Study population

This study initially screened 1,490 workers exposed to occupational noise from 52 noise-exposed enterprises
covered by the Occupational Disease Hazard Surveillance System of Jiangsu Province, following the inclusion
and exclusion criteria outlined below.

Inclusion criteria: (1) Chinese Han workers; (2) A history of occupational noise exposure > 3 years; (3)
Complete occupational health surveillance materials; (4) The levels of occupational hazards (heavy metals,
organic solvents, CO, high temperature and vibration, etc.) that may affect NTHL except noise in the work
environment are below the requirements of occupational exposure limits (OELs).

Exclusion criteria: (1) A clear family history of hereditary deafness or a current medical history of diseases
that could affect hearing; (2) A history of head trauma or blast deafness; (3) Have taken or currently taking
ototoxic drugs (e.g., quinolones, aspirin, aminoglycosides, etc.).

During the health check-up, the study population completed an occupational health questionnaire under the
guidance of trained and assessed investigators or on their own. The questionnaires mainly included gender, age,
smoking habits, alcohol consumption, medication use, occupational history medical history.

The noise exposure intensity measurement data in the working environments of these 52 enterprises,
employees’ previous noise exposure records, occupational health physical examination data, and SNP genotyping
data were all derived from the database of Jiangsu Provincial Center for Disease Control and Prevention.

The study protocol has been reviewed and approved by the Ethics Committee of Jiangsu Provincial Center
for Disease Control and Prevention. All research was performed in accordance with relevant guidelines and
regulations and in accordance with the Declaration of Helsinki. All the participants are informed about the
study, and they have all signed the informed consent form.

Noise exposure intensity measurement

The noise exposure levels in the work environment are measured according to the “Measurement of Physical
Factors in the Workplace, Part 8: Noise” national standard (GBZ/T 189.8-2007). Noise exposure measurements
were conducted three times a year at selected workplaces using a Quest Noise Pro-DL multifunctional personal
noise dosimeter (Quest, USA). Prior to each measurement, the equipment was calibrated and the results were
converted to an 8-hour equivalent continuous A-weighted sound pressure (LEX, 8 h) to represent the noise
exposure intensity.

Pure-tone audiometry and the definition of NIHL

According to the provisions of Chinese Diagnosis of Occupational Noise Deafness(GBZ 49-2014), all the study
population had to be detached from the noise environment for at least 48 h before undergoing PTA. The formal
test was conducted in an anechoic chamber with good soundproofing effect (background noise value < 25dB
(A)), an experienced occupational doctor used an audiometer to measure the hearing threshold of both ears
of the study population at a total of 6 frequencies: 0.5, 1.0, 2.0, 3.0, 4.0 and 6.0 kHz. All hearing threshold
measurement results were adjusted for age and gender in accordance with the “Acoustics-Statistical Distribution
of Hearing Threshold and Age and Gender”. Participants exhibiting an average hearing threshold > 25 dB(A) at
high frequencies (3.0, 4.0, and 6.0 kHz) in one or both ears were assigned to the case group, and the control was
frequency matched for age, gender, smoking habit, alcohol consumption and other factors.
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Blood sample collection and DNA extraction
A vacuum Ethylene Diamine Tetraacetic Acid (EDTA) anticoagulation blood collection tube was used to collect
5 mL venous blood from each participant for genomic DNA extraction.

DNA extraction kit provided by Tiangen Biotechnology Co., Ltd. (Beijing, China) was used to extract
genomic DNA from blood samples according to the instructions and preserved at -80°C for later use.

SNP selection, quality control, and genotyping

Selection

By consulting the Thousand Genomes Database (http://www.1000genomes.org/) and the National Center for
Biotechnology Information (NCBI) dbSNP database (https://www.ncbi.nlm.nih.gov/snp/) to screen suitable
SNP loci, screening criteria as illustrated below:

(1) The SNP loci frequently reported in both Chinese and English literature over the past decade as being asso-
ciated with NIHL.

(2) The minor allele frequency (MAF) corresponding to locus > 0.05.

(3) 'The linkage disequilibrium (LD) value between any two loci is r* > 0.8.

Quality control

The SNP loci screened according to the above criteria were firstly processed by TASSEL 5.0%* software, including
missing data processing, genotype filtering and data format conversion, to ensure data quality and compatibility.
Then the pLINK v1.07?° with the command line option “--indep-pairwise” was used to prune the SNP loci.
Across the entire genome, the LD between all SNPs pairs in the window is calculated by sliding forward with
50 consecutive SNPs as the window size and 10 SNPs as the step size. If the r? value between any two SNP loci
exceeds 0.5, one of them is marked as redundant and removed from the dataset. In addition, we also compared
each SNP site with the known SNP loci in the HapMap3 database? to further verify the effectiveness and
reliability of the SNP screening.

Note: The “--indep-pairwise” command option refers to the process of using a sliding window approach,
calculating the LD value between each pair of SNPs (typically using r* as the measure), and pruning redundant
SNP loci according to the set threshold; The HapMap3 database is known for their rigorous quality control (e.g.,
MATF > 5%, genotype leak detection rate > 95%, Hardy-Weinberg equilibrium p > 1 x 1076, etc.).

Genotyping
The genotyping of SNP loci in this study was entrusted to Shanghai Biowing Applied Biotechnology Company
(http://www.biowing.com.cn/) utilizing multiplex PCR and next-generation sequencing technology?’.

Statistical analysis

All data were processed and analyzed employing SPSS 27.0 software. Among them, the continuous variables
(age, noise exposure levels, etc.) did not satisfy normal distribution with median and interquartile range M
(P25,P75) and the Mann-Whitney U test was performed for comparative analysis; Categorical variables (like
age, gender, smoking habit, and drinking consumption) were compared using Pearson’s X? test. The statistical
significance was defined as P < 0.05. The genotypes of the 88 SNP loci, which were finally coded as 0, 1, and 2
to respectively represent wild type, heterozygous type, and mutant type, respectively, to indicate the number
of alleles at each SNP locus. Additionally, goodness-of-fit chi-square test was used to verify whether the gene
frequency distribution of each SNP locus in the whole population complied with Hardy-Weinberg law of genetic
equilibrium (P values > 0.05).

Models and model building strategies
Models

@ LR (Logistics Regression)

Logistic Regression (LR) is a widely used statistical modeling technique for binary classification problems. The
core idea is to model the probability of the event of interest for a binary response variable as a function of
covariates. The modelling is done using the logit function. The formula can be expressed as follows?:

logit (P) = In (%) = o + brx1 + Paw2 + -+ + Bpp ey

Among them: Prepresents the probability of the dependent variable Ybeing 1, given the independent
variables x1,%2,...,%p. 1,T2,...,Tp represent the genotype values corresponding to the single nucleotide
polymorphisms (SNPs). 3  is the intercept term. 8 o, 3 4, . .. , 3 ,are the regression coefficients corresponding
to the independent variables z1,z2,. .., Tp.

® DT (Decision Tree)

Decision tree (DT) is a common classification and regression model, which is mainly based on the principle of
tree structure in probability theory, information theory (especially concepts such as information gain or Gini
impurity) and graph theory, and constructs a tree structure by splitting the data into several branches through
recursive partitioning, so as to be able to efficiently classify the target variable homogeneous, in which each
internal node represents a test condition of a feature attribute, each branch represents a result of the test, and
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each leaf node corresponds to a category label (classification task). During the construction process, the decision
tree algorithm tries to select the best features to segment the data to maximize criteria such as information gain
(ID3 algorithm), Gini impurity (CART algorithm), or information gain rate (C4.5 algorithm), which enhances
the classification accuracy of the model.

To effectively predict NIHL based on SNP genotype data, this study utilizes information entropy and
information gain to determine the most informative SNP features for classification. Information entropy
quantifies the impurity or uncertainty in a dataset, while information gain measures the reduction in entropy
when the dataset is split based on a given attribute. These metrics help in selecting the most significant SNPs
contributing to NIHL risk prediction®.

The entropy of a dataset is .S given by:

C;, S) Ci, S
info (S Z freq‘s| log, (frqu| )) (2)

where S represents the dataset containing all samples (genotype and NIHL phenotype data for all individuals);
C; denotes the i-th class in the dataset (e.g., NIHL cases and controls); |S| is the total number of samples in S
; freq(Ci, S) is the frequency of class C; in dataset S.

When a SNP locus X is introduced and splitting S based on an attribute, it results in subsets S;. The
entropy of the partitioned dataset is given by:

=S5
infOx Z ? 'I'LfO ) (3)

Here, S is a subset of S after splitting by attribute x. |.S;| is the number of samples in subset S;. m is the
number of subsets created after the split.
Equation (4) can be obtained from Egs. (2) and (3) for information gain measurement:

gain (X) =info(S) —infox (S) 4)

® GBDT (Gradient Boosting Decision Tree)

The Gradient Boosting Decision Tree (GBDT) model, an ensemble tree-based approach, has become widely
used for regression tasks. Unlike traditional single-tree methods such as M5Tree or Random Forest, GBDT
builds a complex tree by training on data weighted differently, which helps to reduce bias. The GBDT algorithm’s
predictive function, denoted as F'( x), is formulated as follows:

M

{F (x; {ﬂm,am}iw) = Z Bmh (x;am) (5)
J
{h(x;{bjaRj}i]) = bl(x€Ry) (6)

J
{Fm (%) = Fm—1(x) + Z%‘ml (x € Rjm) (7)

Jj=1

Each individual tree partitions the input space into j distinct segments, denoted as Rim, Rom, ., Rjm, with
a constant value < ;,,, assigned to each region R;n. Here, an,denotes the average value corresponding to the
terminal nodes and indicates the points at which the variables of each decision tree are split. b; is the predicted
value of the leaf node R;, representing the fitted output of all samples in the region (usually the mean of the
samples in the region). Furthermore, 3 ,, represents the weights attributed to the nodes within each tree. For an

exhaustive explanation of this model, please refer to the work of Friedman®’.

@ KNN (K-Nearest Neighbor)

The algorithm flow of K-Nearest Neighbor (KNN) is outlined as follows>!: Initially, K cluster centers are randomly
assigned, and sample points to be classified are then grouped into respective classes based on the principle of
nearest proximity. Following this using the average method to recalculate the centroid of each class, to establish
the new clustering center. This process continues iteratively until the distance between each sample point and its
assigned cluster center is minimized.

T = (x1,y1),(x2,92),..., (XN, YN) (8)
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T represents the training dataset containing N data points, each consisting of a pair (x;,y;). X; denotes the
feature vector of each sample, representing the SNP genotype data of an individual. y is the class of instances. ¢
is the constant, sequence numbers 1, 2, 3... N. Based on the measured distance, the k points in T (sample) that
are nearest to the classified object are found, and the region encompassing all k points is denoted as Ny, (x).
The class of x within N}, (x) is determined based on the classification decision (minority follows majority voting
principle):

y:argr}rllea;( Z I(ys=vy), 1=1,2,...,N )
(xi,93) ENg (%)

Y denotes the set of all possible category labels (1 for NIHL cases and 0 for healthy controls). The I is the
indicator function, where I (y; = y)=1if y; = y,and I(y; = y) = 0 otherwise. A special case of the k-nearest
neighbor method occurs when k = 1, which simplifies to the nearest neighbor algorithm. In the nearest
neighbour method, the class of the input instance x is determined by the class of the nearest point in the dataset
to x.

® XGBoost (eXtreme Gradient Boosting)

eXtreme Gradient Boosting (XGBoost) is an ensemble learning model composed of multiple CART (classification
regression) tree combinations, which generally have strong generalization ability, can effectively avoid high
degree of fitting, enabling large-scale parallel computation.

The XGBoost model®? can be represented as:

K
Vi=e() =Y fu(x),fr€F (10)

k=1

where ¥, is the final prediction result, and ¢ (x;) is the prediction score of sample, and K is the total number of
trees, and fi denotes the specific first k£ CART tree. F' represents the functional space of all possible regression
trees (e.g., CART trees).

As shown in the above equation, the XGBoost model is a forward iterative model, which needs to solve for the
t-th tree according to the objective function and the model containing the first t-1 tree variables, i.e., the process
entails identifying an optimal set of parameters to minimize the objective function. The objective function of the
XGBoost model compose of two sections: the first one is the damage function, which quantifies the discrepancy
between the predicted values and the true values of the model; the second part is the regularization term, which
constrains the model complexity and thus helps to prevent overfitting to a certain extent. The objective function
is expressed as:

n

t
05 =31 (4,3 + o0 (1)
j=1

i=1
— Z [l (yi,yft*” + £, (xl)ﬂ + Q (f;) + constant (12)
i=1

For the regularization term, y and A are two regularization coefficients used to balance and adjust the model’s
complexity and generalization capacity.

T
1
Qf) =yT+ ;A ) wf (13)
j=1

Here, T denotes the number of leaf nodes in each decision tree, while w is the number of leaf nodes in the first
j vector of scores on the first leaf node. Since 7" and w are known, so we can consider the regularization terms
involving the first t-1 trees as constants, which will have no effect on the model optimization.

The objective function and gain function after the expansion optimization using second order Taylor series
are:

1o~ G?
J
-2 T
Obj (x) 5 zl: 4 A +v (14)
=
. 1] @ a3 (GL + Gr)?
Gam_2[HL+A Ha+A Ho+Heth] ) =

® GA-RF (Genetic Algorithm-Random Forests)
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Genetic Algorithm (GA) is classified as a heuristic-based search algorithm, and its core is to simulate the survival
of the fittest and the genetic variation of individual genes in nature, so as to explore the optimal solution in the
problem domain. Within this framework, each individual in the population represents a potential solution in
the solution space. Through continuous selection, crossover, and mutation, an adaptive search is carried out to
identify the optimal solution to the problem.

Random Forest (RF) is an integrated learning method built upon categorical regression trees, its core
principle is Bagging (Bootstrap aggregating) technique. Some samples are randomly extracted from the overall
dataset multiple times to form multiple sample subsets, and each subset is used to train an independent decision
tree, which achieves effective modeling and prediction of complex data by constructing multiple decision trees
and integrating their predictions to ultimately determine the final output.

By combining GA and RE, an innovative integrated learning framework Genetic Algorithm-Random Forests
(GA-RF) is constructed®. This framework cleverly integrates the global optimization search capability of GA
with the robust prediction performance of RE, and intelligently encodes and evolutionarily optimizes the
parameters and inter-model weights of RF through GA without being restricted by the continuity or derivability
of the objective function, thus greatly simplifying the complexity of the model parameter tuning*. The GA-RF
model not only inherits the global exploration flexibility and efficiency of GA, but also ensures the accuracy
and generalization ability of RF prediction results, which ultimately forms an efficient and robust combinatorial
prediction model. The operation flow of the GA-RF algorithm is shown in Supplementary Fig. S1.

@ PNN (Probabilistic Neural Networks)

Probabilistic Neural Networks (PNN), a forward neural network based on Bayesian classification rules and the
Parzen window method, comprises four fully-interconnected layers: input, pattern, summation, and output™®.
The pattern layer’s activation is realized through an exponential function.

Operating on probability theory, PNN classifies input vectors by calculating their Probability Density
Functions (PDFs) for different classes. It leverages statistical class center vectors and variance information for
efficient sample classification. Each input vector is assumed to be independently and randomly drawn from a
class, thus having a corresponding PDE. By computing the PDFs of all relevant classes, PNN determines the
category of an input vector. Its performance hinges on two factors: the number of neurons in the pattern layer
and the choice of an appropriate activation function®.

PNN’s classification mechanism relies on specific functional expressions. For each neuron in the pattern
layer, the following activation function measures the relationship crucial for PDF calculation:

¢ (x) = exp (— (i =" wi X)> (16)

202

This formula describes how the input vector x interacts with the weight-related term w ;, scaled by the
smoothing parameter o . It is vital for subsequent probability-based computations, enabling PNN to classify
input vectors by evaluating functional values. Here, w ; represents the information weight from the input layer
(with x as the input vector), and o, which depends on the input data, is the smoothing parameter.

The PDF estimate for class A is given by*”:

_ 1 1 <& (x —xa:)T (x — x4:)
0= g D |-l |

(17)
i=1

where x.4; is the i-th training pattern in class A, n is the dimension of the input vector, ma is the number
oftraining patterns in class A, and o corresponds to the standard deviation in a Gaussian distribution. The
networK’s decision-boundary nonlinearity can be adjusted by modifying o. A large o makes the decision
boundary close to a hyperplane, while a small ¢ approaching zero results in a highly nonlinear decision
surfacesimilar to that of a nearest-neighbor classifier. The PNN structure is shown in Supplementary Fig. S2.

GRNN (Generalized Regression Neural Networks).

Generalized Regression Neural Networks (GRNN)), first introduced by D.E Specht in 1991, is a powerful and
widely-applicable neural network model. It consists of an input layer, a pattern layer, a summation layer, and
an output layer®®. GRNN offers several advantages, including fast learning, good consistency, and the ability to
achieve optimal regression for large-scale samples. GRNN is based on probabilistic regression analysis theory,
typically using Parzen window estimation to construct the Probability Density Function (PDF) from observed
data samples.

Assume that x is a random vector variable and ¥ is a random scalar variable. Let X and y be the
measurements, and f(X, y) be their known continuous joint PDFs. The conditional expectation of y given
X is®:

2 uf (X,y)dy

PO ="y dy

(18)
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Here, y is the output of GRNN prediction. X is the input vector composed of n predictor variables
(x1,%2,... ,%n). E(y|X) represents the expected value of the output y given the input vector X, and
f(X, y) is the joint probability density function of X and y.

The regression estimate Y (x) is computed as:

n i D2

N Zi:l Y'exp <_ 707 )

Y (%)= n D?
i1 ©XP (7 207 )

(19)

The squared distance D7 is defined as:
D} = (x—xi)T* (X—Xi) (20)

The variable o is the smoothing parameter. A larger ¢ can smooth out noisy data, while a smaller o allows the
estimated regression surface to exhibit the desired nonlinearity, enabling Y to approach the actual observations.

Based on non-parametric kernel regression, GRNN uses sample data as the posterior probability verification
condition for non-parametric estimation. Its key advantage is the convenient setting of network parameters.
By adjusting the smoothing factor in the kernel function, one can easily optimize the networkK’s performance.
This simplifies network training and learning. GRNN operates by estimating input-output relationships
through PDFs, demonstrating strong nonlinear mapping capabilities, fast learning speed, and good prediction
performance even with limited sample data, Additionally, it can effectively handle unstable data. The structure
of GRNN is shown in Supplementary Fig. S3.

Model Building strategies

To better compare the model performance of conventional LR with different ML algorithms in NTHL prediction
and to identify SNP loci that significantly impact the occurrence and progression of NIHL, we selected LR
along with five classical ML algorithms and two hyperparameter-optimized ML algorithms, as outlined in
Supplementary Table S1, to construct NIHL prediction models, and adopted the following model construction
strategies.

Firstly, the conventional LR was used to conduct univariate analysis for all SNP loci eventually included in
the study, and some non-significant SNP loci were eliminated in advance, and the significance level a = 0.10
was set. If the P value was below 0.10, this SNP locus was included in the multifactorial LR model to evaluate
the combined impact of multiple loci on the occurrence and progression of NIHL. Confounding factors such as
gender, age, smoking habit and drinking consumption were adjusted by multifactorial LR, and the significance
level a = 0.05 was set. If the P value was below 0.05, this SNP locus was an independent factor associated with the
occurrence and development of NTHL, otherwise, it was considered to be non-significantly associated. Finally,
SNP loci statistically associated with the occurrence and development of NIHL were selected as candidate
pathogenic SNP loci to be verified.

Subsequently, five classical ML algorithms (DT, GBDT, KNN, XGBoost, GA-RF) and two hyperparameter-
optimized ML algorithms (PNN and GRNN) were applied to the SNP loci screened by LR to evaluate the
accuracy and effectiveness of applying these loci for NTHL prediction. Meanwhile, PNN and GRNN were used
for feature extraction of all SNP loci, and the SNP loci with the top 10 ranked feature importance were selected
for modeling and analysis using each of the above algorithms.

Finally, LR and seven ML algorithms were used for pattern recognition and modeling of all SNP loci, aiming
at more accurate prediction of NIHL and further evaluating the performance of each algorithmic model when
dealing with large-scale SNP locus datasets. In this process, DT, GBDT, KNN, XGBoost, and GA-RF employed
10-fold cross-validation model perform parameter tuning. The obtained dataset was randomly divided into 10
equal-sized subsets, where 7 subsamples were served as the training set and the remaining 3 subsamples were
used as the test set. The cross-validation process was repeated 10 times. For PNN and GRNN, not only normal
hearing and abnormal hearing signals are considered, but also the running speed of the algorithm and the
dynamic updating of the features are considered. Additionally, in order not to lose generality, a random method
was employed to generate training sets and test sets. Among the 1338 samples in each category, 1170 samples
(585 per category) were randomly selected as the training set and the remaining 234 samples (117 per category)
were used as the test set. During each cross-validation, the number of normal and pathological cases is ensured
to be equal. What is more critical is that reasonable hyperparameters should be manually set before training
begins to obtain the best predictive performance.

In this study, SPSS 27.0 software was used to establish the LR model, which was accepted as statistically
significant at the 0.05 level, with all tests being two-tailed. All ML models were developed and implemented
using MATLAB 9.0 (R2016a).

Models performance evaluation

In an effort to evaluate the prediction performance of the model, the accuracy, recall, precision, F-score, R? and
AUC were selected as the performance indicators to comprehensively discriminate and compare the model
performance of LR and seven ML algorithm models.

For LR, we can calculate true positive (TP), false positive (FP), true negative (TN) or false negative (FN)
according to the number of cases and controls defined by the monaural or binaural high-frequency average
hearing threshold. These values are then used to construct the classification matrix, as detailed in Supplementary
Tables S2 and S3.
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Based on the above classification matrix, we calculated the accuracy, which is expressed as the ratio of
correctly predicted cases (for both NIHL and non-NIHL) to the total number of subjects*’. Besides the correct
classification of noise-exposed workers, we evaluated the precision and recall.

Precision refers to the proportion of predicted NTHL cases that are truly NIHL, while recall is the proportion
of actual NTHL cases that were correctly identified. precision and recall are respectively given by

TP+ TN
TP+ FP+FN+TN
TP
P= TP+ FP
TP
R= TP+ FN

Accuracy =

We also employed the F-score as a comprehensive performance indicator to assess the effectiveness of each
algorithm. A higher F-score, closer to 1, indicates better performance. The F-score is defined as
F_ 2xXxPxR 2xTP

~ P+ R Total number of samples + TP — TN

R? refers to the predictive or explanatory power of the independent variable (genotype coding at the SNP loci)
to the dependent variable (whether NIHL is present or not). In logistic regression, Nagelkerke R? is usually
computed as an approximate estimate since the traditional coefficient of determination R? is not applicable to

binary classification problems*!*2.
2
L n
2 0
RNagelkerke =1- (L*)

B

Among them: Lo is the log-likelihood value (null model) of the baseline model that contains only intercept
terms. L~ is the log-likelihood value of a regression model with independent variables. n is the sample size.

The area under the curve (AUC) is defined as the integral of the receiver operating characteristic (ROC)
curve, which quantifies the model’s ability to distinguish between positive and negative classes across all possible
classification thresholds. It is calculated as the area under the plot of the true positive rate (TPR) versus the false
positive rate (FPR), where:

TP
TPR= ———
R=TprrN
FP
FPR= o8 Fp

For ML, all performance indexes selected in this study were calculated using MATLAB 9.0 (R2016a), with the
classification threshold for the models set at 0.5.

Results

General characteristics of study population

Table 1 presents the general characteristics of the study population. According to the inclusion and exclusion
criteria of the study population and combined with the results of pure tone audiometry (PTA), a total of 1138
noise-exposed workers were finally included in this study as the study population, comprising 753 individuals in
the case group and 585 in the control group. The case group and the control group were comparable with regard
to age, gender, smoking and drinking consumption etc., with no statistically significant differences (P > 0.05).
However, the differences in years of noise exposure, noise exposure levels and High-frequency hearing threshold
were statistically significant (P < 0.05). In particular, the high frequency hearing threshold of 33(28,42) in the
case group was significantly higher than that of 15(12,19) in the control group, which was approximately 2.2
times higher.

Basic information and the results of univariate and multivariate logistic regression analysis
of the selected SNP loci

Based on the strict screening criteria and quality control process, a total of 88 SNP loci in 40 genes, including
VEGFA, FOXM1 and AKT]I, were included in this study, of which 72 (81.82%) SNP loci were confirmed to
overlap with HapMap3 SNPs, and the remaining 16 SNP loci (18.18%) were not recorded in HapMap3. The basic
information and the results of the univariate and multivariate LR analysis of 88 SNP loci are listed in Table 2.
Univariate analysis revealed that the genotype distributions of 12 SNP loci (rs7895833, rs177918, rs8102445,
rs195432, rs195434, rs2447867, rs2494732, rs2498786, rs1134648, rs2304277, rs10507486, rs2594972) were
statistically different between the case and control groups (P < 0.05). After adjusting for age, gender, smoking
and drinking consumption by multivariate logistics, only 8 SNP loci (rs7895833, rs177918, rs195432, rs195434,
rs2447867, rs11334648, rs2304277, rs2594972) had statistically significant differences in genotype distribution
between the case and control groups (P < 0.05). After the diagnosis of multicollinearity, the tolerance of each
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Cases (n= | Controls (n
753) =585)
Variable n | % n | % P
Age (years) 0.127%
M(P25,P75) 41(34,45) 40(34,45) 0.052°
<35 218 |28.95 | 191 | 32.60
35-45 347 | 46.08 | 273 | 46.70
> 45 188 | 24.97 | 121 20.70
Gender 0.376*
Male 708 | 94.00 | 543 | 92.80
Female 45 16.00 |42 7.20
Smoking 0.056*
Now 421 | 55.91 | 289 | 49.40
Ever 36 478 |35 6.00
Never 296 | 39.31 | 261 | 44.60
Drinking 0.395%
Now 251 | 33.30 | 185 | 31.60
Ever 92 |12.30 | 86 14.70
Never 410 | 54.40 | 314 | 53.70
Noise exposure time (years) 0.004°
M(P25,P75) 17 (10,25) | 16(10,24)
Noise Exposure levels[dB(A)] ‘ ‘ 0.001°
M(P25,P75) 87(82,94) | 92(84,95)
Threshold [dB(A)] \ \ <0.001°
M(P25,P75) 33(28,42) 15(12,19) <0.001°
<26 82 |10.89 | 585 | 100.00
>26 671 | 89.11 | 0 0.00

Table 1. Basic information for noise-exposed workers. *Two-sided y test. "Two-sided Wilcoxon signed rank
sum test.

SNP locus > 0.1, and the Variance Inflation Factor (VIF) < 2, indicating that there was no multicollinearity
among the SNP loci. After the feature extraction of 88 loci by PNN and GRNN, we selected the top 10 SNP
loci (rs12582464, rs2295080, rs195420, rs309184, rs7536272, rs13534, rs41275750, rs7204003, rs12049646,
rs706713) with the highest feature importance. However, these SNP loci did not exhibit statistical significance in
both univariate and multivariate analyses. Therefore, subsequent model establishment and validation centered
on these 8, 10 and 88 loci.

Model performance comparison

Performance comparison between conventional LR and 5 classical ML algorithms

The accuracy, recall(R), precision(P), F-score, R2 and AUC of conventional LR and five classical ML algorithms
during training under different SNP loci datasets are displayed in Table 3, Supplementary Table S4, Supplementary
Table S5 and visualized in Fig. 1, Supplementary Figs. S4, S5. Using LR for a pointwise screening of all 88 loci, the
model’s accuracy, recall, precision, F-score, R2 and AUC were 62.67%, 80.83%, 64.44%, 0.716, 0.698, and 0.704,
respectively, with the overall performance did not reach the expected effect. Furthermore, using these five ML
algorithms to model and validate the 8 SNP loci screened by LR, the performance indicators of these models
also showed poor or even lower than LR (Supplementary Table S4 and Supplementary Fig. S4), suggesting that
the effectiveness and reliability of applying SNP loci screened by LR regression to NIHL prediction remains to
be discussed. In light of this, we performed additional feature extraction using PNN and GRNN, and applied
LR with five machine learning algorithms to the extracted 10 SNP loci for modelling analysis. The results show
that the performance of models constructed using each machine learning algorithms is generally improved
compared to models constructed based on 8 SNP loci, and several algorithms outperform LR. Especially, the
AUC of GA-RF improves from 0.524 to 0.628, an improvement of about 10% (Supplementary Table S5 and
Supplementary Fig. S5). Moreover, the performance indicators of LR were similar to those of the model built
using the 8 SNP loci.

Based on the above findings, we applied five ML algorithms to directly pattern identify and model all 88
SNP loci. The results, as shown in Table 3; Fig. 1, demonstrate significant improvements in the performance
indicators of several algorithms, with a clear distinction in model performance when compared to LR. Although
the accuracy of DT and GBDT has been improved, it is still lower than that of LR at only 60%. However, the
accuracy of GA-RE, XGBoost and KNN is higher than that of LR, especially GA-RE, which has been greatly
improved, with an accuracy has reached 84.40%, followed by XGBoost and KNN, which are 71.10% and 68.90%
respectively, indicating the applicability of ML in NIHL prediction.
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Allele
Gene SNP A1/A2 | Chromosome Functional consequence MAF? | P for HWEP | Pvalue® | Pvalue?
rs10434* A/G Chromosome 6:43,785,473 3 prime UTR variant 0.48 1 0.716 -
rs3024994* T/C Chromosome 6:43,775,770 Non coding transcript exon variant | 0.18 0.86 0.818 -
rs3024997% | A/G Chromosome 6:43,777,370 Non coding transcript exon variant | 0.48 1 0.427 -
VEGFA rs3025021 T/C Chromosome 6:43,781,426 Non coding transcript exon variant | 0.4 0.08 0.853 -
rs3025039 T/C Chromosome 6:43,784,799 3 prime UTR variant 0.34 0.88 0.947 -
r$699947* A/C Chromosome 6:43,768,652 Intergenic variant 0.5 0.75 0.705 -
rs833068* AlIG Chromosome 6:43,774,790 Non coding transcript exon variant | 0.49 0.99 0.426 -
rs17037396* | T/C Chromosome 1:11,801,990 Intron variant 0.2 1 0.246 -
rs1801131* | T/G Chromosome 1:11,794,419 Missense variant 0.47 0.98 0.419 -
rs1801133* | A/G Chromosome 1:11,796,321 Missense variant 0.5 0.77 0.305 -
MTHER 1s3737966 T/C Chromosome 1:11,787,702 3 prime UTR variant 0.49 0.83 0.501 -
rs4846048* A/G Chromosome 1:11,786,195 3 prime UTR variant 0.49 0.38 0.622 -
rs4846049* | T/G Chromosome 1:11,790,308 3 prime UTR variant 0.5 0.89 0.448 -
rs10997868* | A/C Chromosome 10:67,905,202 | Intron variant 0.5 0.9 0.424 -
rs12049646* | T/C Chromosome 10:67,864,226 Intergenic variant 0.36 0.77 0.973 0.861
SIRTI rs12778366* | T/C Chromosome 10:67,883,321 | Intergenic variant 0.19 0.87 0.286 -
rs1885472* C/G Chromosome 10:67,895,054 | Intron variant 0.47 0.3 0.543 -
rs3758391* T/C Chromosome 10:67,883,584 Intergenic variant 0.47 0.81 0.531 -
rs7895833* | A/G Chromosome 10:67,863,299 | Intergenic variant 0.49 0.77 0.076 0.025
rs12925270* | A/C Chromosome 16:1,325,936 3 prime UTR variant 0.29 0.32 0.623 -
rs2281226% | A/C Chromosome 16:1,314,766 Missense variant 0.49 0.7 0.655 -
UBE! rs7204003 A/G Chromosome 16:1,327,362 Synonymous variant 0.5 0.87 0.467 0.211
rs761059* A/G Chromosome 16:1,324,523 Intron variant 0.47 0.92 0.241 -
rs1181865% | T/C Chromosome 1:3,736,862 Non coding transcript exon variant | 0.47 0.78 0.893 -
TP73ASI rs3737589* | A/G Chromosome 1:3,746,281 Splice donor region variant 0.49 0.97 0.372 -
rs7515164* | A/C Chromosome 1:3,738,183 Non coding transcript exon variant | 0.42 0.96 0.537 -
rs9800 C/G Chromosome 1:3,736,258 Non coding transcript exon variant | 0.49 0.99 0.409 -
rs10424953* | A/G Chromosome 19:47,202,026 Intron variant 0.49 0.98 0.128 -
SAEI rs177918* T/G Chromosome 19:47,131,056 | Synonymous variant 0.22 0.06 0.008 0.004
rs309184* T/G Chromosome 19:47,133,570 | Intron variant 0.49 0.24 0.704 0.711
1s8102445 T/G Chromosome 19:47,134,351 Intron variant 0.49 0.24 0.05 0.534
rs195420* C/G Chromosome 6:37,354,031 5 prime UTR variant 0.48 1 0.191 0.115
rs195432* A/C Chromosome 6:37,390,246 Intron variant 0.5 0.9 0.074 0.013
RNE8 rs195434* T/C Chromosome 6:37,392,781 3 prime UTR variant 0.48 0.7 0.095 0.029
rs2284922% | A/G Chromosome 6:37,381,257 Synonymous variant 0.49 1 0.853 -
rs1531545% | T/C Chromosome 5:52,897,456 Splice region variant 0.5 0.16 0.595 -
rs1979398* A/G Chromosome 5:52,898,497 Intron variant 0.5 0.13 0.565 -
ITGAL rs2432143* | T/C Chromosome 5:52,835,481 Intron variant 0.22 0.36 0.265 -
rs2447867* | T/C Chromosome 5:52,861,540 Missense variant 0.46 1 0.016 0.033
1$652921* A/G Chromosome 6:149,409,710 | Synonymous variant 0.5 0.06 0.161 -
TAB2 rs7896* C/G Chromosome 6:149,410,340 | 3 prime UTR variant 0.34 0.94 0.597 -
rs9485372% | A/G Chromosome 6:149,287,738 | Intron variant 0.48 0.96 0.532 -
rs1550805% | T/C Chromosome 5:68,287,979 Intron variant 0.2 0.74 0.774 -
PIK3R1 rs3730089* | A/G Chromosome 5:68,292,320 Missense variant 0.47 0.93 0.846 -
rs706713* T/C Chromosome 5:68,226,894 Synonymous variant 0.5 0.99 0.359 0.624
152494732 T/C Chromosome 14:104,772,855 | Intron variant 0.5 0.99 0.044 0.221
AKT1 1s2494752* A/G Chromosome 14:104,797,271 Regulatory region variant 0.44 0.75 0.401 -
rs2498786 C/G Chromosome 14:104,796,031 | Regulatory region variant 0.49 0.91 0.014 0.094
rs12582464 | T/C Chromosome 12:2,877,437 Intron variant 0.5 0.37 0.479 0.371
FOXM1 rs2072360* T/C Chromosome 12:2,864,449 Synonymous variant 0.42 0.36 0.214 -
rs2302257% | C/G Chromosome 12:2,859,822 Intron variant 0.28 0.92 0.468 -
- 13829964 T/C Chromosome 6:36,676,721 intron variant 0.5 0.98 0.453 -
15762624 A/C Chromosome 6:36,677,811 Non coding transcript exon variant | 0.5 0.4 0.843 -
ATGS rs510432% T/C Chromosome 6:106,326,155 | TF binding site 049 074 0.895 -
rs803360* C/G Chromosome 6:106,318,254 | Intron variant 0.49 0.79 0.809 -
Continued
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Allele
Gene SNP A1/A2 | Chromosome Functional consequence MAF® | P for HWEP | PvalueC | P value?
rs2304186* | T/G Chromosome 19:40,233,814 | 3 prime UTR variant 0.5 0.39 0.359 -
AKT2 rs41275750 | C/G Chromosome 19:40,232,188 3 prime UTR variant 0.37 0.97 0.613 0.997
rs1134648* | C/G Chromosome 4:106,328,087 | Missense variant 0.37 0.06 0.092 0.023
AIMPL rs13534 A/G Chromosome 4:106,348,870 | 3 prime UTR variant 0.31 0.85 0.687 0.705
rs159193* A/G Chromosome 20:39,691,100 | Intergenic variant 0.49 0.09 0.673 -
osat rs2304277% | A/G Chromosome 3:9,759,396 Non coding transcript exon variant | 0.49 | 0.57 0.099 0.047
rs1034528* | C/G Chromosome 1:11,189,075 Intron variant 0.49 0.65 0.691 -
MTOR rs2295080* | T/G Chromosome 1:11,262,571 Regulatory region variant 0.42 |0.08 0.768 0.976
rs3757016* | T/C Chromosome 6:113,939,556 | 3 prime UTR variant 0.5 0.63 0.734 -
HDAC2 rs6568819* | T/C Chromosome 6:113,949,764 | Intron variant 0.49 0.97 0.7 -
rs1285243 T/C Chromosome 17:79,840,307 | Regulatory region variant 0.49 | 0.65 0.838 -
CBX4 1s4889898* A/C Chromosome 17:79,824,605 Intron variant 0.5 0.76 0.454 -
FOXO1 rs10507486* | A/G Chromosome 13:40,612,364 | Intron variant 0.32 0.72 0.069 0.056
rs2701891* | T/C Chromosome 13:40,550,515 | Intron variant 0.5 0.99 0.873 -
RIPK1 rs17548629* | T/C Chromosome 6:3,114,223 3 prime UTR variant 0.38 0.72 0.921 -
RAPIA rs6573* A/C Chromosome 1:111,712,767 | 3 prime UTR variant 0.28 0.92 0.922 -
RANBP2 | rs1478517 A/G Chromosome 2:108,894,481 3 prime UTR variant 0.5 0.66 0.2 -
PON1 1s854552* T/C Chromosome 7:95,298,612 3 prime UTR variant 0.45 0.07 0.647 -
PIK3R3 1s7536272* | A/G Chromosome 1:46,177,421 Intron variant 0.48 0.77 0.662 0.838
PIK3CA rs7651265% | A/G Chromosome 3:179,175,241 Intron variant 0.24 0.59 0.807 -
NOB1 156259873 | T/C Chromosome 16:69,755,293 | TF binding site 0.2 0.96 0.314 -
MTPN rs17168525% | A/G Chromosome 7:135,928,514 | 3 prime UTR variant 0.23 0.14 0.572 -
MAPKS8 rs9284* T/G Chromosome 10:48,435,527 | 3 prime UTR variant 0.5 0.18 0.939 -
MAPKI1 rs13515* T/C Chromosome 22:21,761,597 | 3 prime UTR variant 0.35 0.61 0.445 -
HPGD rs8752* T/C Chromosome 4:174,491,326 | 3 prime UTR variant 0.49 | 0.14 0.711 -
GAPDH | rs1136666* | C/G Chromosome 12:6,534,825 5 prime UTR variant 039 [0.23 0.151 -
FAS rs2862833% | A/G Chromosome 10:89,015,872 | 3 prime UTR variant 0.5 0.89 0.3 -
CDKNIA | rs1801270* | A/C Chromosome 6:36,684,194 Missense variant 0.49 0.33 0.185 -
BCL-2 rs1564483* | T/C Chromosome 18:63,127,421 | 3 prime UTR variant 0.49 1 0.283 -
ATG7 rs2594972% | A/G Chromosome 3:11,355,943 Intron variant 0.49 0.59 0.042 0.019
UBAC2 152296860* A/G Chromosome 13:99,200,499 Non coding transcript exon variant | 0.5 0.09 0.486 -
UBA2 rs7258977* | A/G Chromosome 19:34,468,907 | Intron variant 0.43 0.9 0.953 -
STAT3 rs1053004* | A/G Chromosome 17:42,314,074 | 3 prime UTR variant 0.49 0.28 0.682 -

Table 2. Basic information and the results of univariate and multivariate logistic regression analysis of SNP
loci. *Data from the NCBI dbSNP database. °P value for Hardy-Weinberg test. “Two-sided x? test. 4Adjusted

for age, gender, smoking and drinking status. *SNP loci are common with HapMap3 SNPs.

Number of SNP\Algorithm Accuracy | R P F score | R? AUC
88,8\Logistic Regression (LR) 62.67% 80.83% | 64.44% | 0.716 0.698 | 0.704
88\Decision Tree (DT) 60.00% 60.00% | 70.40% | 0.637 0.621 | 0.619
88\Gradient Boosting Decision Tree (GBDT) 60.00% 60.00% | 58.10% | 0.589 0.570 | 0.581
88\K-Nearest Neighbor (KNN) 68.90% 68.90% | 66.00% | 0.674 0.648 | 0.652
88\eXtreme Gradient Boost (XGBoost) 71.10% 71.10% | 72.30% | 0.717 0.694 | 0.706
88\Genetic Algorithm-Random Forests (GA-RF) 84.40% 84.40% | 71.30% | 0.773 0.757 | 0.752
88\Probabilistic Neural Network (PNN) 78.64% 79.45% | 78.44% | 0.805 0.797 | 0.808
88\Generalized Regression Neural Network (GRNN) | 85.36% 85.09% | 84.60% | 0.897 0.862 | 0.857

Table 3. Accuracy, recall, precision, F-scores, R?and AUC of LR and seven ML algorithms on 88 SNP loci
datasets.

Precision and recall are variables that affect each other, and while a high level of both is a desired ideal
situation, in practice it is the high precision that often leads to low recall*®. Except for GA-RE, the recall rate of
the other 4 ML algorithms were all lower than LR, which were 71.10%, 60.00%, 68.90% and 60.00% respectively.
In turn, the precision rate of LR was only slightly better than that of GBDT ‘s 58.10%. Notably, GA-RF has
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Fig. 1. (a-f) Represents the comparison of accuracy, recall, precision, F-score, R? and AUC between LR and
five classical ML algorithms on 88 SNP loci dataset.

higher precision and recall than LR with 84.40% and 71.30%, respectively, indicating that it has better prediction
performance.

The F-score is the harmonic mean of precision and recall. The F-scores of GA-RF and XGBoost are higher
than that of LR, at 0.773 and 0.717, respectively, while the remaining three ML algorithms fail to reach the level
of LR with F-scores of 0.589, 0.674, and 0.637 respectively. This relationship can be confirmed by comparing the
recall and precision scores.

The coefficient of determination R?, denoted in this study as Nagelkerke R?, is a measure of the goodness of fit
of the regression model. Among the five ML algorithms, only GA-RF demonstrated an R? value of 0.757, which is
higher than the 0.698 achieved by LR, suggesting a better overall fit and explanatory power. The R? values of the
other four algorithms were all lower than that of LR, indicating their limitations in data fitting.

AUC provides a comprehensive evaluation of the model performance. The AUC of LR and different ML
models are as follows: 0.704 for LR, 0.619 for DT, 0.581 for GBDT, 0.652 for KNN, 0.706 for XGBoost, and 0.752
for GA-RE Among them, the AUC of GA-RF and XGBoost are higher than those of LR, indicating that both
of them are discriminative ability is better than logistic regression and can provide higher prediction accuracy,
especially in the prediction task of large-scale SNP loci dataset.

Based on the above analysis, under the 88 SNP loci dataset, GA-RF outperforms LR in all the performance
indexes. Therefore, GA-RF is selected for feature filtering of 8, 10 and 88 SNP loci for further analysis. For the
8 SNP loci, rs2304277 was the most important SNP locus with a feature importance of 15.30%, as shown in
Supplementary Fig. $6. For the 10 SNP loci, rs309184 was identified as the most significant, exhibiting a feature
importance of 13.51%, as illustrated in Supplementary Fig. S7. For the 88 SNP loci, the top 20 SNP loci based on
feature importance are outlined in Fig. 2, which are particularly effective for binary classification of NIHL data,
among which the most important SNP locus is rs2447867 with a feature importance of 2.70%.

Performance comparison between conventional LR and two hyperparameter-optimized ML algorithms

The training process and corresponding accuracy using PNN and GRNN for the 8 SNP loci screened by LR are
shown in Supplementary Fig. S8, the highest accuracy of the model at this time was 63.24%, when the three SNP
loci rs1134648, rs195434 and rs2304277 were trained together. The lowest accuracy of the model was 51.28%,
when rs2594972 was trained alone. At this time, the limited number of model training iterations results in
similar outcomes.

Training and testing of 10 SNP loci were conducted applying these two ML models, with the training process
and corresponding accuracy presented in Supplementary Fig. S9. The results show that when nine SNP loci,
namely rs309184, rs12582464, rs12049646, rs2295080, rs195420, rs7204003, rs7536272, rs13534, rs41275750,
are selected for joint training, the model achieves the highest accuracy of 70.98%; When only the rs12049646
locus was used for training, the accuracy of the model was reduced to the lowest at 54.13%.

The process and corresponding accuracy of training and testing all 88 SNP loci using these two ML algorithms
are shown in Fig. 3. It is evident from Fig. 3, GRNN has a significant advantage over PNN under the condition of
large sample size. This is because one of the advantages of GRNN over PNN is that it is able to give continuous
output values in the range of [0, 1], allowing it to describe experimental conditions in a more accurate way. The
highest accuracy of the model was 97.50%, occurring when rs10424953, rs1181865, and rs12582464 were trained
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Fig. 2. The top 20 SNP loci ranked by feature importance among all 88 SNP in the GA-RF model.
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Fig. 3. Comparison of GRNN and PNN on the training process of all 88 SNP loci.

together. As for the individual SNP locus, PNN and GRNN reached the consistent conclusion that rs12582464
was the most significant one among the 88 SNP loci, which is significantly associated with the occurrence and
development of NIHL. At this point, Table 4 presents the top 20 SNP combinations with the highest accuracy
during the PNN and GRNN training processes.
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SN | GRNN PNN
1 | rs10424953, rs1181865, rs12582464 151181865, rs12582464
2| rs1181865, rs12582464 1512582464
3| rs1181865, 512582464, 512925270 1512582464, 1512925270
4 | rs12582464 151181865, 1s12582464, 1512925270
5 | rs12582464, 1512925270 1512582464, 1512925270, 15159193
6 | rs12582464, 1512925270, 1s159193 1510424953, 151181865, rs12582464
7 | rs854552, 1s10424953, rs1181865, rs12582464 1510424953, rs1181865, rs12582464, 1s12925270, rs159193
8 | rs1181865, rs12582464, rs12925270, rs159193 151181865, rs12582464, 1512925270, 5159193
9 | rs1181865, rs12582464, rs12925270, rs159193, rs195420, rs195434, rs2281226 | rs1181865, rs12582464, rs12925270, rs159193, rs195420
10 | rs12582464, rs12925270, 15159193, rs195420, rs195434 1510424953, rs1181865, rs12582464, 1512925270
11 | rs10424953, rs1181865, rs12582464, rs12925270, rs159193 1512582464, 1512925270, 15159193, 15195420
12 | rs1181865, rs12582464, 1s12925270, rs159193, 1s195420, rs195434 1512582464, 1512925270, 15159193, 15195420, rs195434, 1s2281226
13 | rs12582464, rs12925270, rs159193, rs195420, 15195434, rs2281226 151181865, 1s12582464, 1512925270, rs159193, 15195420, rs195434
14 | 1s12582464, 1512925270, rs159193, rs195420 1512582464, 1512925270, 15159193, 15195420, 15195434
15 | rs1181865, rs12582464, rs12925270, rs159193, rs195420 156573, 15854552, 1510424953, 151181865, 1512582464
16 | rs854552, rs10424953, rs1181865, rs12582464, 1512925270 15854552, 1510424953, rs1181865, 1512582464
17 | 1s6573, 1s854552, 110424953, rs1181865, rs12582464 152295080, 152432143, 52447867, 152494732, 152494752
18 | 1s1885472, rs1979398, 1s2295080 rs1801131, rs1801133, rs1885472, rs1979398, 12295080
19 | 1s2295080, rs2432143, 152447867, 152494732 151885472, 151979398, 152295080
20 | rs1979398, rs2295080, 152432143 151979398, 152295080, 52432143
Table 4. The top 20 models with the highest accuracy during the training process of PNN and GRNN.
NN 85.36% b [l GRNN 84.60%
PNN  78.64% PNN  79.45% |
d e il GRNN 0.857
Fig. 4. (a-f) Represents the comparison of accuracy, recall, precision, F-score, R? and AUC between LR and
two hyperparameter-optimized ML algorithms on 88 SNP loci dataset.
The accuracy, recall, precision, F-score, R> and AUC of conventional LR and two hyperparameter-optimized
ML algorithms during training under different SNP loci datasets are shown in Table 3, Supplementary Tables
S4, Supplementary S5 and Fig. 4, Supplementary Figs. S10, S11. Under the 8 SNP loci dataset, the performance
indicators of PNN and GRNN still demonstrate poor results and are lower than those of LR itself (Fig. 4).
When constructing the model using these two ML models for the 10 SNP loci dataset, the model performance
was improved to a certain extent, surpassing that of the model built based on 8 SNP loci selected by LR
(Supplementary Fig. S10). However, when these two models are directly applied to the 88 SNP loci dataset, all
performance indicators showed significant improvements. Except for the recall rate of PNN being slightly lower
than that of LR, the other performance indicators are higher than those of LR (Supplementary Fig. S11).
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Discussion

With the deepening of the global industrialization process, NIHL has gradually revealed its extensive impact
and has become one of the major public health problems worldwide. According to the world health organization
(WTO) estimates that there are billions of people worldwide due to exposure to hazardous levels of noise
inevitably faces a risk of NIHL**>, Due to the lack of specific and sensitive early screening indicators for NIHL,
most individuals have already progressed to moderate or severe stages when the disease is confirmed by physical
examination, and there is currently no effective treatment, which are mainly based on early prevention?®:4’.
Therefore, accurate prediction of noise-exposed workers who are most at risk of developing NIHL is crucial
to improving their quality of life and reducing the associated medical and socioeconomic burden. Several
studies have shown that ML outperforms LR in analyzing high-dimensional genomic data, SNP loci data, or
other biomarker data for disease prediction*®*. Given the advanced capabilities and flexibility of various ML
algorithms, as well as their potential in complex data analysis, we believe that incorporating ML into NIHL
prediction and classification aligns well with the development trend in real-time conditions.

In this study, we used TASSEL and pLINK software to perform quality control on the relevant SNP loci dataset
and verified the overlap between these SNP loci and those in the HapMap3 database to ensure the effectiveness
and reliability of the SNP loci, enhanced the confidence and biological significance of the findings. On this
basis, we systematically analyze and compare the performance of conventional LR and seven ML algorithms in
predicting NIHL across different SNP loci datasets for the first time, and cross-validated the SNP loci screening
results of multiple models.

Applying LR to all of the 88 SNP loci for pointwise screening, the various performance indicators of the
models performed poorly and did not meet the expected standards. In addition, when we used multiple ML
algorithms to model and analyse the 8 SNP loci screened by LR, the performance of the models did not improve
significantly, and and the various performance indicators of each model were generally low, even lower than
those of the LR models on the same dataset. This finding prompted us to re-examine the general applicability
of conventional LR in NIHL prediction and the effectiveness and reliability of its screened SNP loci in NIHL
prediction. We suggest that the SNP loci screened by LR that are statistically associated with the occurrence
and progression of NIHL may not be the SNP loci that were significantly associated with the occurrence and
progression of NTHL.

Under the 10 SNP loci dataset extracted based on PNN and GRNN, the model performance of each model
was improved to different degrees compared with the models built based on the 8 loci, and several ML models
outperformed the LR. Nevertheless, the comprehensive performance of each model is still fell short of the
expected results, showing a certain gap compared to the ideal level.

Under the all 88 SNP loci dataset, most of the ML algorithms had higher accuracy than LR’s 62.67% (except
for DT and GBDT). However, it is not comprehensive to evaluate the model solely on the basis of accuracy,
considering the imbalance of dataset categories due to the relatively low incidence of NIHL, a model that
accurately predicts that all people will not develop NIHL also can achieve a fairly high accuracy, even if it performs
poorly in predicting that NTHL will actually occur. In addition, we also expected the model to have a high recall
rate because we want to minimize missed diagnoses and ensure that all potential NTHL cases are identified in
a timely manner for early intervention, thereby reducing the long-term health risks associated with missed
diagnoses. Although this would sacrifice accuracy, it could lead to some non-NIHL cases being incorrectly
identified as positive, resulting in a waste of medical resources, such as unnecessary further examinations and
treatment for individuals who do not actually have NIHL. In all models, GRNN and GA-RF had higher recall
and precision rates than LR’s 80.83% and 64.44%. In fact, in NIHL prediction, we would like to find a balance
that maintains a high recall to minimize missed diagnoses while also maintaining a relatively high precision to
reduce misdiagnoses as much as possible, and the trade-off between the two can be comprehensively evaluated
by the F-score. The F-score of LR is 0.716, while those of GRNN, PNN, GA-RF and XGBoost are better than
that of LR. Comparing the results of R?, it is clear that the goodness-of-fit of the three ML models, GRNN,
PNN & GA-RE is significantly outperforms that of LR. Notably, GRNN and PNN demonstrate a greater ability
to capture the complex patterns associated with the occurrence and progression of NIHL. As for AUC, GRNN
and PNN also performed excellently, with XGBoost slightly outperforming LR (0.706 vs. 0.704), suggesting that
these models models show enhanced comprehensive performance in predicting the occurrence and progression
of NIHL.

From the above analyses, it can be argued that multiple ML algorithms outperform or at least equal to
conventional LR in NIHL prediction, and its results have good consistency and reproducibility. It is noteworthy
that GRNN, PNN and GA-RF exhibit better comprehensive performance across various indicators than
conventional LR, which makes them the primary choice for NIHL prediction, and these can also be used as a
valuable complementary method to the conventional LR. This result strongly validates our initial idea that when
analyzing the association between the NIHL and SNP loci, considering the combined effects of multiple SNP loci
and employing ML algorithms can more accurately reveal the underlying associations.

Compared with LR, the SNP loci screened by the ML algorithms with better performance indicators
(GRNN, PNN, GA-RF) are more reliable and representative, which is consistent with the results of studies in
other fields, they found that ML algorithms have achieved superior predictive effect than LR in identifying SNP
associated with disease occurrence and progression®->2. By comparing the SNP loci screening results of multiple
models, for all 88 SNP loci, rs12582464 located on the FOXMI gene, rs309184 located on the SAE1 gene and
rs2447867 located on the ITGA1 gene, which may be novel pathogenic loci in the NIHL population, significantly
improved the accuracy of NIHL prediction, which was also reflected in the screening results of the respective
models. Whereas, rs2304277 located on the gene OGG1 is more likely to be associated with the occurrence and
progression of NIHL, and it contributes to the prediction accuracy of NIHL across various models.
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The performance of various modeling algorithms differs across different studies®>~>°. The performance of LR
in NTHL prediction is not as good as desired, which may be closely related to factors such as sample size, model
peculiarity and dataset characteristics. For NIHL prediction based on SNP loci data, the model often contains
many variables (SNP loci), while LR may be limited by computational power when processing high-dimensional
data (such as thousands or tens of thousands of SNP loci), resulting in poor performance and significantly
reduced model robustness-a phenomenon referred to as the “curse of dimensionality”ss; ML, As a representative
of modern advanced technology, can efficiently process large-scale datasets and extract critical information from
them quickly and efficiently’”%. Meanwhile, LR relies on methods such as stepwise regression, forward selection
or backward elimination in the process of variable selection, which may not be efficient or accurate enough when
handling high-dimensional data or complex feature interactions. while ML usually has built-in feature selection
or importance scoring mechanism, which can screen out the most important features for the predicted results,
thus ensuring the objectivity of the results*>®. In addition, the relationship between SNP loci and disease is often
complex and non-linear, and ML algorithm is not constrained by predefined mathematical relationships between
dependent and independent variables, allowing for modeling arbitrarily complex nonlinear relationships and
being able to take into account interactions between variables*>°!; Whereas, the operation of LR needs to satisfy
the linear assumption, which meaning that it assumes a linear relationship between the independent variables
and the log odds ratio, and may fail to capture the complex nonlinear relationships in the data and complex
interactions between variables®2.

This study has certain limitations. First, the study population was limited to noise-exposed workers who
underwent occupational health check-ups during a specific time period, whereas NIHL is a gradual developmental
process that requires long-term observation to fully reveal its long-term associations with exposure time, noise
exposure level, and high-frequency hearing threshold. Second, given the wide variety of machine learning
algorithms with its own characteristics and applicable scenarios, this study may not have comprehensively
evaluated all potential models in the algorithm selection process. Finally, this study is a retrospective study,
which may not fully represent the target population or fulfill the needs of the study design, making it difficult to
directly infer causality.

With the popularization and application of Electronic Health Records (EHRs) in healthcare systems, medical
research is rapidly becoming data-driven®!. Applying ML to disease prediction serves as an attractive alternative
to conventional LR and can provide a tool for developing high-performance NIHL prediction models.
Simultaneously, we also need to flexibly adjust the strategy according to the specific situation of the data and the
peculiarity of the model, and continuously explore and optimize the parameter settings and feature engineering
of the ML model to further enhance the predictive accuracy and practicability. In the future, we will continue to
collect larger population samples and incorporate different risk factors for testing and evaluation to validate the
results of this study, striving to make the results more objective and reduce the variability of the results, thereby
enabling us to realize the accurate prediction of NIHL.

Data availability
The datasets generated and/or analysed during the current study are available in the [NCBI] repository, [https
://dataview.ncbi.nlm.nih.gov/object/PRJNA1251789%reviewer=8aejvc3opedgag6vatln6l52al, PRINA1251789].
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