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To compare the comprehensive performance of conventional logistic regression (LR) and seven 
machine learning (ML) algorithms in Noise-Induced Hearing Loss (NIHL) prediction, and to investigate 
the single nucleotide polymorphism (SNP) loci significantly associated with the occurrence and 
progression of NIHL. A total of 1,338 noise-exposed workers from 52 enterprises in Jiangsu Province 
were included in this study. 88 SNP loci involving multiple genes related to noise exposure and hearing 
loss were detected. LR and multiple ML algorithms were employed to establish the NIHL prediction 
model with accuracy, recall, precision, F-score, R2 and AUC as performance indicators. Compared 
to conventional LR, the evaluated ML models Generalized Regression Neural Network (GRNN), 
Probabilistic Neural Network (PNN), Genetic Algorithm-Random Forests (GA-RF) demonstrate superior 
performance and were considered to be the optimal models for processing large-scale SNP loci dataset. 
The SNP loci screened by these models are pivotal in the process of NIHL prediction, which further 
improves the prediction accuracy of the model. These findings open new possibilities for accurate 
prediction of NIHL based on SNP locus screening in the future, and provide a more scientific basis for 
decision-making in occupational health management.

Keywords  NIHL, Machine learning, Logistic regression, SNP loci

Noise-Induced Hearing Loss (NIHL) is a common sensory-induced hearing impairment caused by long-
term exposure of workers to high intensity noise1,2. Approximately 16% of disabling cases of adult hearing 
loss worldwide can be attributed to occupational noise exposure3. It is a complex multi-factorial disease 
resulting from the combined effects of genetic, environmental and life behavior factors4,5. Numerous animal 
experiments have confirmed the role of genetic factors in NIHL susceptibility6,7. There is growing evidence that 
significant differences in susceptibility to NIHL exist between individuals8. Based on epidemiological studies of 
noise-exposed populations, susceptibility associations have been found between NIHL and single nucleotide 
polymorphisms (SNPs) in several genes, including HDAC2, SOD2, and STAT39–11. Therefore, in-depth mining 
of the potential information in SNP loci data pertaining to genetic susceptibility to NIHL is the key in accurately 
predicting the occurrence and progression of NIHL, which has significant practical value for the early prevention, 
accurate diagnosis and timely treatment of NIHL.

With the rise of data science and artificial intelligence, various disease risk prediction models have gained 
widespread use12. Logistic regression (LR), a generalized linear model, is usually the primary choice for 
predicting binary classification outcomes (e.g. the presence or absence of disease)13. In recent years, it has 
widely been applied to explore the susceptibility associations between SNP loci and diseases14,15. However, 
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when used to predict NIHL, LR shows limitations in genetic information mining, with accuracy, recall, and 
precision often unsatisfactory. The effectiveness and reliability of applying the SNP loci selected by LR for 
NIHL prediction remains to be validated. In contrast, Machine learning (ML) algorithms, as an essential 
branch of artificial intelligence, have demonstrated superior capability in predicting acute kidney injury16, 
breast cancer17, hypertension18 and other diseases due to their excellent performance and efficiency. They 
have become potential substitute to LR and other conventional statistical methods, such as neural networks, 
random forests, decision trees, etc19–21. Nowadays, ML has made remarkable progress in both the theory and 
application of neural networks, among which Probabilistic Neural Network (PNN), Generalized Regression 
Neural Network (GRNN) standing out as representative models. Compared with other ML algorithms, both of 
them show stronger data adaptability due to the use of hyperparameter optimization, especially when dealing 
with nonlinear and complex datasets. Hyperparameters are manually set before training, and unlike parameters 
that are automatically adjusted during training (like the weight of the neural network), they directly control 
the training process, thus affecting the training efficiency and final performance of the model. Minimizing the 
prediction error by manually setting appropriate hyperparameters (e.g. learning rate, regularization strength and 
kernel function type) before training starts can effectively improve model accuracy. Currently, PNN and GRNN 
have been widely used to learn and perform medical image data discrimination, predict disease survival, and 
analyze clinical decisions22,23.

Since the fundamental differences in model construction, processing data capability and complexity 
among various algorithms, the execution efficiency of using different models on the same datasets may vary 
significantly. According to our knowledge, there is no study that systematically compares and analyzes LR with 
different ML algorithms to clarify the applicability of each algorithm in NIHL risk assessment and early warning. 
Therefore, this study performed a comprehensive analysis and comparison of the model performance of LR and 
seven different ML algorithms in NIHL prediction. We hope to identify more accurate prediction models for 
NIHL, which can be applied in the early screening of susceptible individuals during pre-employment medical 
examinations and the early screening of high-risk individuals already working in noisy environments, to prevent 
the occurrence and further progression of NIHL.

Materials and methods
Study population
This study initially screened 1,490 workers exposed to occupational noise from 52 noise-exposed enterprises 
covered by the Occupational Disease Hazard Surveillance System of Jiangsu Province, following the inclusion 
and exclusion criteria outlined below.

Inclusion criteria: (1) Chinese Han workers; (2) A history of occupational noise exposure ≥ 3 years; (3) 
Complete occupational health surveillance materials; (4) The levels of occupational hazards (heavy metals, 
organic solvents, CO, high temperature and vibration, etc.) that may affect NIHL except noise in the work 
environment are below the requirements of occupational exposure limits (OELs).

Exclusion criteria: (1) A clear family history of hereditary deafness or a current medical history of diseases 
that could affect hearing; (2) A history of head trauma or blast deafness; (3) Have taken or currently taking 
ototoxic drugs (e.g., quinolones, aspirin, aminoglycosides, etc.).

During the health check-up, the study population completed an occupational health questionnaire under the 
guidance of trained and assessed investigators or on their own. The questionnaires mainly included gender, age, 
smoking habits, alcohol consumption, medication use, occupational history medical history.

The noise exposure intensity measurement data in the working environments of these 52 enterprises, 
employees’ previous noise exposure records, occupational health physical examination data, and SNP genotyping 
data were all derived from the database of Jiangsu Provincial Center for Disease Control and Prevention.

The study protocol has been reviewed and approved by the Ethics Committee of Jiangsu Provincial Center 
for Disease Control and Prevention. All research was performed in accordance with relevant guidelines and 
regulations and in accordance with the Declaration of Helsinki. All the participants are informed about the 
study, and they have all signed the informed consent form.

Noise exposure intensity measurement
The noise exposure levels in the work environment are measured according to the “Measurement of Physical 
Factors in the Workplace, Part 8: Noise” national standard (GBZ/T 189.8–2007). Noise exposure measurements 
were conducted three times a year at selected workplaces using a Quest Noise Pro-DL multifunctional personal 
noise dosimeter (Quest, USA). Prior to each measurement, the equipment was calibrated and the results were 
converted to an 8-hour equivalent continuous A-weighted sound pressure (LEX, 8 h) to represent the noise 
exposure intensity.

Pure-tone audiometry and the definition of NIHL
According to the provisions of Chinese Diagnosis of Occupational Noise Deafness(GBZ 49-2014), all the study 
population had to be detached from the noise environment for at least 48 h before undergoing PTA. The formal 
test was conducted in an anechoic chamber with good soundproofing effect (background noise value < 25dB 
(A)), an experienced occupational doctor used an audiometer to measure the hearing threshold of both ears 
of the study population at a total of 6 frequencies: 0.5, 1.0, 2.0, 3.0, 4.0 and 6.0  kHz. All hearing threshold 
measurement results were adjusted for age and gender in accordance with the “Acoustics-Statistical Distribution 
of Hearing Threshold and Age and Gender”. Participants exhibiting an average hearing threshold > 25 dB(A) at 
high frequencies (3.0, 4.0, and 6.0 kHz) in one or both ears were assigned to the case group, and the control was 
frequency matched for age, gender, smoking habit, alcohol consumption and other factors.
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Blood sample collection and DNA extraction
A vacuum Ethylene Diamine Tetraacetic Acid (EDTA) anticoagulation blood collection tube was used to collect 
5 mL venous blood from each participant for genomic DNA extraction.

DNA extraction kit provided by Tiangen Biotechnology Co., Ltd. (Beijing, China) was used to extract 
genomic DNA from blood samples according to the instructions and preserved at -80℃ for later use.

SNP selection, quality control, and genotyping
Selection
By consulting the Thousand Genomes Database (http://www.1000genomes.org/) and the National Center for 
Biotechnology Information (NCBI) dbSNP database (https://www.ncbi.nlm.nih.gov/snp/) to screen suitable 
SNP loci, screening criteria as illustrated below:

	(1)	 The SNP loci frequently reported in both Chinese and English literature over the past decade as being asso-
ciated with NIHL.

	(2)	 The minor allele frequency (MAF) corresponding to locus > 0.05.
	(3)	 The linkage disequilibrium (LD) value between any two loci is r2 > 0.8.

Quality control
The SNP loci screened according to the above criteria were firstly processed by TASSEL 5.024 software, including 
missing data processing, genotype filtering and data format conversion, to ensure data quality and compatibility. 
Then the pLINK v1.0725 with the command line option “--indep-pairwise” was used to prune the SNP loci. 
Across the entire genome, the LD between all SNPs pairs in the window is calculated by sliding forward with 
50 consecutive SNPs as the window size and 10 SNPs as the step size. If the r2 value between any two SNP loci 
exceeds 0.5, one of them is marked as redundant and removed from the dataset. In addition, we also compared 
each SNP site with the known SNP loci in the HapMap3 database26 to further verify the effectiveness and 
reliability of the SNP screening.

Note: The “--indep-pairwise” command option refers to the process of using a sliding window approach, 
calculating the LD value between each pair of SNPs (typically using r2 as the measure), and pruning redundant 
SNP loci according to the set threshold; The HapMap3 database is known for their rigorous quality control (e.g., 
MAF ≥ 5%, genotype leak detection rate > 95%, Hardy-Weinberg equilibrium p > 1 × 10−6, etc.).

Genotyping
The genotyping of SNP loci in this study was entrusted to Shanghai Biowing Applied Biotechnology Company 
(http://www.biowing.com.cn/) utilizing multiplex PCR and next-generation sequencing technology27.

Statistical analysis
All data were processed and analyzed employing SPSS 27.0 software. Among them, the continuous variables 
(age, noise exposure levels, etc.) did not satisfy normal distribution with median and interquartile range M 
(P25,P75) and the Mann-Whitney U test was performed for comparative analysis; Categorical variables (like 
age, gender, smoking habit, and drinking consumption) were compared using Pearson’s Χ2 test. The statistical 
significance was defined as P < 0.05. The genotypes of the 88 SNP loci, which were finally coded as 0, 1, and 2 
to respectively represent wild type, heterozygous type, and mutant type, respectively, to indicate the number 
of alleles at each SNP locus. Additionally, goodness-of-fit chi-square test was used to verify whether the gene 
frequency distribution of each SNP locus in the whole population complied with Hardy-Weinberg law of genetic 
equilibrium (P values > 0.05).

Models and model building strategies
Models

	①	 LR (Logistics Regression)

Logistic Regression (LR) is a widely used statistical modeling technique for binary classification problems. The 
core idea is to model the probability of the event of interest for a binary response variable as a function of 
covariates. The modelling is done using the logit function. The formula can be expressed as follows28:

	
logit (P ) = ln

(
P

1 − P

)
= β0 + β1x1 + β2x2 + · · · + βpxp� (1)

Among them: P represents the probability of the dependent variable Y being 1, given the independent 
variables x1, x2, . . . , xp. x1, x2, . . . , xp represent the genotype values corresponding to the single nucleotide 
polymorphisms (SNPs). β 0 is the intercept term. β 0, β 1, . . . , β pare the regression coefficients corresponding 
to the independent variables x1, x2, . . . , xp.

	②	 DT (Decision Tree)

Decision tree (DT) is a common classification and regression model, which is mainly based on the principle of 
tree structure in probability theory, information theory (especially concepts such as information gain or Gini 
impurity) and graph theory, and constructs a tree structure by splitting the data into several branches through 
recursive partitioning, so as to be able to efficiently classify the target variable homogeneous, in which each 
internal node represents a test condition of a feature attribute, each branch represents a result of the test, and 
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each leaf node corresponds to a category label (classification task). During the construction process, the decision 
tree algorithm tries to select the best features to segment the data to maximize criteria such as information gain 
(ID3 algorithm), Gini impurity (CART algorithm), or information gain rate (C4.5 algorithm), which enhances 
the classification accuracy of the model.

To effectively predict NIHL based on SNP genotype data, this study utilizes information entropy and 
information gain to determine the most informative SNP features for classification. Information entropy 
quantifies the impurity or uncertainty in a dataset, while information gain measures the reduction in entropy 
when the dataset is split based on a given attribute. These metrics help in selecting the most significant SNPs 
contributing to NIHL risk prediction29.

The entropy of a dataset is S given by:

	
info (S) = −

n∑
i=1

freq (Ci, S)
|S| log2

(
freq (Ci, S)

|S|

)
� (2)

 where S represents the dataset containing all samples (genotype and NIHL phenotype data for all individuals); 
Ci denotes the i-th class in the dataset (e.g., NIHL cases and controls); |S| is the total number of samples in S
; freq (Ci, S) is the frequency of class Ci in dataset S.

When a SNP locus X is introduced and splitting S based on an attribute, it results in subsets Sj . The 
entropy of the partitioned dataset is given by:

	
infoX (S) =

m∑
j=1

|Sj |
|S| info (Sj)� (3)

Here, Sj  is a subset of S after splitting by attribute x. |Sj | is the number of samples in subset Sj . m is the 
number of subsets created after the split.

Equation (4) can be obtained from Eqs. (2) and (3) for information gain measurement:

	 gain (X) = info (S) − infoX (S)� (4)

	③	 GBDT (Gradient Boosting Decision Tree)

The Gradient Boosting Decision Tree (GBDT) model, an ensemble tree-based approach, has become widely 
used for regression tasks. Unlike traditional single-tree methods such as M5Tree or Random Forest, GBDT 
builds a complex tree by training on data weighted differently, which helps to reduce bias. The GBDT algorithm’s 
predictive function, denoted as F ( x), is formulated as follows:

	

{
F

(
x; {βm, am}M

1
)

=
M∑

m=1

βmh (x; am) � (5)

	

{
h

(
x; {bj , Rj}J

1

)
=

J∑
j=1

bj1 (x ∈ Rj) � (6)

	

{
Fm (x) = Fm−1 (x) +

J∑
j=1

γjm1 (x ∈ Rjm) � (7)

Each individual tree partitions the input space into j distinct segments, denoted as R1m, R2m, ., Rjm, with 
a constant value γ jm assigned to each region Rjm. Here, amdenotes the average value corresponding to the 
terminal nodes and indicates the points at which the variables of each decision tree are split. bj  is the predicted 
value of the leaf node Rj , representing the fitted output of all samples in the region (usually the mean of the 
samples in the region). Furthermore, β m represents the weights attributed to the nodes within each tree. For an 
exhaustive explanation of this model, please refer to the work of Friedman30.

	④	 KNN (K-Nearest Neighbor)

The algorithm flow of K-Nearest Neighbor (KNN) is outlined as follows31: Initially, K cluster centers are randomly 
assigned, and sample points to be classified are then grouped into respective classes based on the principle of 
nearest proximity. Following this using the average method to recalculate the centroid of each class, to establish 
the new clustering center. This process continues iteratively until the distance between each sample point and its 
assigned cluster center is minimized.

	 T = (x1, y1) , (x2, y2) , . . . , (xN, yN)� (8)
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T represents the training dataset containing N data points, each consisting of a pair (xi, yi). xi denotes the 
feature vector of each sample, representing the SNP genotype data of an individual. y is the class of instances. i 
is the constant, sequence numbers 1, 2, 3… N. Based on the measured distance, the k points in T (sample) that 
are nearest to the classified object are found, and the region encompassing all k points is denoted as Nk (x). 
The class of x within Nk (x) is determined based on the classification decision (minority follows majority voting 
principle):

	
ŷ = arg max

y∈Y

∑
(xi,yi)∈Nk(x)

I (yi = y) , i = 1, 2, . . . , N � (9)

Y denotes the set of all possible category labels (1 for NIHL cases and 0 for healthy controls). The I is the 
indicator function, where I (yi = y) = 1 if yi = y, and I (yi = y) = 0 otherwise. A special case of the k-nearest 
neighbor method occurs when k = 1, which simplifies to the nearest neighbor algorithm. In the nearest 
neighbour method, the class of the input instance x is determined by the class of the nearest point in the dataset 
to x.

	⑤	 XGBoost (eXtreme Gradient Boosting)

eXtreme Gradient Boosting (XGBoost) is an ensemble learning model composed of multiple CART (classification 
regression) tree combinations, which generally have strong generalization ability, can effectively avoid high 
degree of fitting, enabling large-scale parallel computation.

The XGBoost model32 can be represented as:

	
ŷi = φ (xi) =

K∑
k=1

fk (xi) , fk ∈ F � (10)

where ŷi is the final prediction result, and ϕ (xi) is the prediction score of sample, and K  is the total number of 
trees, and fk  denotes the specific first k CART tree. F  represents the functional space of all possible regression 
trees (e.g., CART trees).

As shown in the above equation, the XGBoost model is a forward iterative model, which needs to solve for the 
t-th tree according to the objective function and the model containing the first t-1 tree variables, i.e., the process 
entails identifying an optimal set of parameters to minimize the objective function. The objective function of the 
XGBoost model compose of two sections: the first one is the damage function, which quantifies the discrepancy 
between the predicted values and the true values of the model; the second part is the regularization term, which 
constrains the model complexity and thus helps to prevent overfitting to a certain extent. The objective function 
is expressed as:

	
Obj(t) =

n∑
i=1

l
(

yi, ŷ
(t)
i

)
+

t∑
j=1

Ω (fj)� (11)

	
=

n∑
i=1

[
l
(
yi, ŷ

(t−1)
i + ft (xi)

)]
+ Ω (ft) + constant� (12)

For the regularization term, γ  and λ  are two regularization coefficients used to balance and adjust the model’s 
complexity and generalization capacity.

	
Ω (ft) = γT + 1

2λ
T∑

j=1

ω2
j � (13)

Here, T  denotes the number of leaf nodes in each decision tree, while ω  is the number of leaf nodes in the first 
j vector of scores on the first leaf node. Since T  and ω  are known, so we can consider the regularization terms 

involving the first t-1 trees as constants, which will have no effect on the model optimization.
The objective function and gain function after the expansion optimization using second order Taylor series 

are:

	
Obj (x) = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT� (14)

	
Gain = 1

2

[
G2

L

HL + λ
+ G2

R

HR + λ
− (GL + GR)2

HL + HR + λ

]
− γ� (15)

	⑥	 GA-RF (Genetic Algorithm-Random Forests)
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Genetic Algorithm (GA) is classified as a heuristic-based search algorithm, and its core is to simulate the survival 
of the fittest and the genetic variation of individual genes in nature, so as to explore the optimal solution in the 
problem domain. Within this framework, each individual in the population represents a potential solution in 
the solution space. Through continuous selection, crossover, and mutation, an adaptive search is carried out to 
identify the optimal solution to the problem.

Random Forest (RF) is an integrated learning method built upon categorical regression trees, its core 
principle is Bagging (Bootstrap aggregating) technique. Some samples are randomly extracted from the overall 
dataset multiple times to form multiple sample subsets, and each subset is used to train an independent decision 
tree, which achieves effective modeling and prediction of complex data by constructing multiple decision trees 
and integrating their predictions to ultimately determine the final output.

By combining GA and RF, an innovative integrated learning framework Genetic Algorithm-Random Forests 
(GA-RF) is constructed33. This framework cleverly integrates the global optimization search capability of GA 
with the robust prediction performance of RF, and intelligently encodes and evolutionarily optimizes the 
parameters and inter-model weights of RF through GA without being restricted by the continuity or derivability 
of the objective function, thus greatly simplifying the complexity of the model parameter tuning34. The GA-RF 
model not only inherits the global exploration flexibility and efficiency of GA, but also ensures the accuracy 
and generalization ability of RF prediction results, which ultimately forms an efficient and robust combinatorial 
prediction model. The operation flow of the GA-RF algorithm is shown in Supplementary Fig. S1.

	⑦	 PNN (Probabilistic Neural Networks)

Probabilistic Neural Networks (PNN), a forward neural network based on Bayesian classification rules and the 
Parzen window method, comprises four fully-interconnected layers: input, pattern, summation, and output35. 
The pattern layer’s activation is realized through an exponential function.

Operating on probability theory, PNN classifies input vectors by calculating their Probability Density 
Functions (PDFs) for different classes. It leverages statistical class center vectors and variance information for 
efficient sample classification. Each input vector is assumed to be independently and randomly drawn from a 
class, thus having a corresponding PDF. By computing the PDFs of all relevant classes, PNN determines the 
category of an input vector. Its performance hinges on two factors: the number of neurons in the pattern layer 
and the choice of an appropriate activation function36.

PNN’s classification mechanism relies on specific functional expressions. For each neuron in the pattern 
layer, the following activation function measures the relationship crucial for PDF calculation:

	
φ (x) = exp

(
− (ωi − x)T (ωi − x)

2σ2

)
� (16)

This formula describes how the input vector x interacts with the weight-related term ω i, scaled by the 
smoothing parameter σ . It is vital for subsequent probability-based computations, enabling PNN to classify 
input vectors by evaluating functional values. Here, ω i represents the information weight from the input layer 
(with x as the input vector), and σ , which depends on the input data, is the smoothing parameter.

The PDF estimate for class A is given by37:

	
fA (x) = 1

(2π) n
2 σn

1
ma

mA∑
i=1

exp
[

− (x − xAi)T (x − xAi)
2σ2

]
� (17)

where xAi is the i-th training pattern in class A, n is the dimension of the input vector, mA is the number 
oftraining patterns in class A, and σ  corresponds to the standard deviation in a Gaussian distribution. The 
network’s decision-boundary nonlinearity can be adjusted by modifying σ . A large σ  makes the decision 
boundary close to a hyperplane, while a small σ  approaching zero results in a highly nonlinear decision 
surfacesimilar to that of a nearest-neighbor classifier. The PNN structure is shown in Supplementary Fig. S2.

	⑧	 GRNN (Generalized Regression Neural Networks).

Generalized Regression Neural Networks (GRNN), first introduced by D.F. Specht in 1991, is a powerful and 
widely-applicable neural network model. It consists of an input layer, a pattern layer, a summation layer, and 
an output layer38. GRNN offers several advantages, including fast learning, good consistency, and the ability to 
achieve optimal regression for large-scale samples. GRNN is based on probabilistic regression analysis theory, 
typically using Parzen window estimation to construct the Probability Density Function (PDF) from observed 
data samples.

Assume that x is a random vector variable and y is a random scalar variable. Let X and y be the 
measurements, and f(X, y) be their known continuous joint PDFs. The conditional expectation of y given 
X is39:

	
E (y|X) =

∫ ∞
−∞ yf (X, y) dy∫ ∞
−∞ f (X, y) dy

� (18)
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Here, y is the output of GRNN prediction. X is the input vector composed of n predictor variables 
(x1, x2, . . . , xn). E (y|X) represents the expected value of the output y given the input vector X, and 
f(X, y) is the joint probability density function of X and y.

The regression estimate Ŷ (x) is computed as:

	

Ŷ (x) =

∑n

i=1 Y iexp
(

− D2
i

2σ2

)

∑n

i=1 exp
(

− D2
i

2σ2

) � (19)

The squared distance D2
i  is defined as:

	 D2
i =

(
x − xi)T

*
(
x − xi)� (20)

The variable σ  is the smoothing parameter. A larger σ  can smooth out noisy data, while a smaller σ  allows the 
estimated regression surface to exhibit the desired nonlinearity, enabling Ŷ  to approach the actual observations.

Based on non-parametric kernel regression, GRNN uses sample data as the posterior probability verification 
condition for non-parametric estimation. Its key advantage is the convenient setting of network parameters. 
By adjusting the smoothing factor in the kernel function, one can easily optimize the network’s performance. 
This simplifies network training and learning. GRNN operates by estimating input-output relationships 
through PDFs, demonstrating strong nonlinear mapping capabilities, fast learning speed, and good prediction 
performance even with limited sample data, Additionally, it can effectively handle unstable data. The structure 
of GRNN is shown in Supplementary Fig. S3.

Model Building strategies
To better compare the model performance of conventional LR with different ML algorithms in NIHL prediction 
and to identify SNP loci that significantly impact the occurrence and progression of NIHL, we selected LR 
along with five classical ML algorithms and two hyperparameter-optimized ML algorithms, as outlined in 
Supplementary Table S1, to construct NIHL prediction models, and adopted the following model construction 
strategies.

Firstly, the conventional LR was used to conduct univariate analysis for all SNP loci eventually included in 
the study, and some non-significant SNP loci were eliminated in advance, and the significance level α = 0.10 
was set. If the P value was below 0.10, this SNP locus was included in the multifactorial LR model to evaluate 
the combined impact of multiple loci on the occurrence and progression of NIHL. Confounding factors such as 
gender, age, smoking habit and drinking consumption were adjusted by multifactorial LR, and the significance 
level α = 0.05 was set. If the P value was below 0.05, this SNP locus was an independent factor associated with the 
occurrence and development of NIHL, otherwise, it was considered to be non-significantly associated. Finally, 
SNP loci statistically associated with the occurrence and development of NIHL were selected as candidate 
pathogenic SNP loci to be verified.

Subsequently, five classical ML algorithms (DT, GBDT, KNN, XGBoost, GA-RF) and two hyperparameter-
optimized ML algorithms (PNN and GRNN) were applied to the SNP loci screened by LR to evaluate the 
accuracy and effectiveness of applying these loci for NIHL prediction. Meanwhile, PNN and GRNN were used 
for feature extraction of all SNP loci, and the SNP loci with the top 10 ranked feature importance were selected 
for modeling and analysis using each of the above algorithms.

Finally, LR and seven ML algorithms were used for pattern recognition and modeling of all SNP loci, aiming 
at more accurate prediction of NIHL and further evaluating the performance of each algorithmic model when 
dealing with large-scale SNP locus datasets. In this process, DT, GBDT, KNN, XGBoost, and GA-RF employed 
10-fold cross-validation model perform parameter tuning. The obtained dataset was randomly divided into 10 
equal-sized subsets, where 7 subsamples were served as the training set and the remaining 3 subsamples were 
used as the test set. The cross-validation process was repeated 10 times. For PNN and GRNN, not only normal 
hearing and abnormal hearing signals are considered, but also the running speed of the algorithm and the 
dynamic updating of the features are considered. Additionally, in order not to lose generality, a random method 
was employed to generate training sets and test sets. Among the 1338 samples in each category, 1170 samples 
(585 per category) were randomly selected as the training set and the remaining 234 samples (117 per category) 
were used as the test set. During each cross-validation, the number of normal and pathological cases is ensured 
to be equal. What is more critical is that reasonable hyperparameters should be manually set before training 
begins to obtain the best predictive performance.

In this study, SPSS 27.0 software was used to establish the LR model, which was accepted as statistically 
significant at the 0.05 level, with all tests being two-tailed. All ML models were developed and implemented 
using MATLAB 9.0 (R2016a).

Models performance evaluation
In an effort to evaluate the prediction performance of the model, the accuracy, recall, precision, F-score, R2 and 
AUC were selected as the performance indicators to comprehensively discriminate and compare the model 
performance of LR and seven ML algorithm models.

For LR, we can calculate true positive (TP), false positive (FP), true negative (TN) or false negative (FN) 
according to the number of cases and controls defined by the monaural or binaural high-frequency average 
hearing threshold. These values are then used to construct the classification matrix, as detailed in Supplementary 
Tables S2 and S3.

Scientific Reports |        (2025) 15:15361 7| https://doi.org/10.1038/s41598-025-00050-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Based on the above classification matrix, we calculated the accuracy, which is expressed as the ratio of 
correctly predicted cases (for both NIHL and non-NIHL) to the total number of subjects40. Besides the correct 
classification of noise-exposed workers, we evaluated the precision and recall.

Precision refers to the proportion of predicted NIHL cases that are truly NIHL, while recall is the proportion 
of actual NIHL cases that were correctly identified. precision and recall are respectively given by

	
Accuracy = T P + T N

T P + F P + F N + T N

	
P = TP

T P + F P

	
R = T P

T P + F N

We also employed the F-score as a comprehensive performance indicator to assess the effectiveness of each 
algorithm. A higher F-score, closer to 1, indicates better performance. The F-score is defined as

	
F = 2 × P × R

P + R
= 2 × T P

T otal number of samples + T P − T N

R2 refers to the predictive or explanatory power of the independent variable (genotype coding at the SNP loci) 
to the dependent variable (whether NIHL is present or not). In logistic regression, Nagelkerke R2 is usually 
computed as an approximate estimate since the traditional coefficient of determination R2 is not applicable to 
binary classification problems41,42.

	
R2

Nagelkerke = 1 −
(

L0

Lβ̂

) 2
n

Among them: L0 is the log-likelihood value (null model) of the baseline model that contains only intercept 
terms. L

β̂
 is the log-likelihood value of a regression model with independent variables. n is the sample size.

The area under the curve (AUC) is defined as the integral of the receiver operating characteristic (ROC) 
curve, which quantifies the model’s ability to distinguish between positive and negative classes across all possible 
classification thresholds. It is calculated as the area under the plot of the true positive rate (TPR) versus the false 
positive rate (FPR), where:

	
T P R = T P

T P + F N

	
F P R = F P

T N + F P

For ML, all performance indexes selected in this study were calculated using MATLAB 9.0 (R2016a), with the 
classification threshold for the models set at 0.5.

Results
General characteristics of study population
Table 1 presents the general characteristics of the study population. According to the inclusion and exclusion 
criteria of the study population and combined with the results of pure tone audiometry (PTA), a total of 1138 
noise-exposed workers were finally included in this study as the study population, comprising 753 individuals in 
the case group and 585 in the control group. The case group and the control group were comparable with regard 
to age, gender, smoking and drinking consumption etc., with no statistically significant differences (P > 0.05). 
However, the differences in years of noise exposure, noise exposure levels and High-frequency hearing threshold 
were statistically significant (P < 0.05). In particular, the high frequency hearing threshold of 33(28,42) in the 
case group was significantly higher than that of 15(12,19) in the control group, which was approximately 2.2 
times higher.

Basic information and the results of univariate and multivariate logistic regression analysis 
of the selected SNP loci
Based on the strict screening criteria and quality control process, a total of 88 SNP loci in 40 genes, including 
VEGFA, FOXM1 and AKT1, were included in this study, of which 72 (81.82%) SNP loci were confirmed to 
overlap with HapMap3 SNPs, and the remaining 16 SNP loci (18.18%) were not recorded in HapMap3. The basic 
information and the results of the univariate and multivariate LR analysis of 88 SNP loci are listed in Table 2. 
Univariate analysis revealed that the genotype distributions of 12 SNP loci (rs7895833, rs177918, rs8102445, 
rs195432, rs195434, rs2447867, rs2494732, rs2498786, rs1134648, rs2304277, rs10507486, rs2594972) were 
statistically different between the case and control groups (P < 0.05). After adjusting for age, gender, smoking 
and drinking consumption by multivariate logistics, only 8 SNP loci (rs7895833, rs177918, rs195432, rs195434, 
rs2447867, rs11334648, rs2304277, rs2594972) had statistically significant differences in genotype distribution 
between the case and control groups (P < 0.05). After the diagnosis of multicollinearity, the tolerance of each 
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SNP locus > 0.1, and the Variance Inflation Factor (VIF) < 2, indicating that there was no multicollinearity 
among the SNP loci. After the feature extraction of 88 loci by PNN and GRNN, we selected the top 10 SNP 
loci (rs12582464, rs2295080, rs195420, rs309184, rs7536272, rs13534, rs41275750, rs7204003, rs12049646, 
rs706713) with the highest feature importance. However, these SNP loci did not exhibit statistical significance in 
both univariate and multivariate analyses. Therefore, subsequent model establishment and validation centered 
on these 8, 10 and 88 loci.

Model performance comparison
Performance comparison between conventional LR and 5 classical ML algorithms
The accuracy, recall(R), precision(P), F-score, R2 and AUC of conventional LR and five classical ML algorithms 
during training under different SNP loci datasets are displayed in Table 3, Supplementary Table S4, Supplementary 
Table S5 and visualized in Fig. 1, Supplementary Figs. S4, S5. Using LR for a pointwise screening of all 88 loci, the 
model’s accuracy, recall, precision, F-score, R2 and AUC were 62.67%, 80.83%, 64.44%, 0.716, 0.698, and 0.704, 
respectively, with the overall performance did not reach the expected effect. Furthermore, using these five ML 
algorithms to model and validate the 8 SNP loci screened by LR, the performance indicators of these models 
also showed poor or even lower than LR (Supplementary Table S4 and Supplementary Fig. S4), suggesting that 
the effectiveness and reliability of applying SNP loci screened by LR regression to NIHL prediction remains to 
be discussed. In light of this, we performed additional feature extraction using PNN and GRNN, and applied 
LR with five machine learning algorithms to the extracted 10 SNP loci for modelling analysis. The results show 
that the performance of models constructed using each machine learning algorithms is generally improved 
compared to models constructed based on 8 SNP loci, and several algorithms outperform LR. Especially, the 
AUC of GA-RF improves from 0.524 to 0.628, an improvement of about 10% (Supplementary Table S5 and 
Supplementary Fig. S5). Moreover, the performance indicators of LR were similar to those of the model built 
using the 8 SNP loci.

Based on the above findings, we applied five ML algorithms to directly pattern identify and model all 88 
SNP loci. The results, as shown in Table 3; Fig. 1, demonstrate significant improvements in the performance 
indicators of several algorithms, with a clear distinction in model performance when compared to LR. Although 
the accuracy of DT and GBDT has been improved, it is still lower than that of LR at only 60%. However, the 
accuracy of GA-RF, XGBoost and KNN is higher than that of LR, especially GA-RF, which has been greatly 
improved, with an accuracy has reached 84.40%, followed by XGBoost and KNN, which are 71.10% and 68.90% 
respectively, indicating the applicability of ML in NIHL prediction.

Variable

Cases (n = 
753)

Controls (n 
= 585)

Pn % n %

Age (years) 0.127a

M(P25,P75) 41(34,45) 40(34,45) 0.052b

  ≤ 35 218 28.95 191 32.60

  35–45 347 46.08 273 46.70

   > 45 188 24.97 121 20.70

Gender 0.376a

  Male 708 94.00 543 92.80

  Female 45 6.00 42 7.20

Smoking 0.056a

  Now 421 55.91 289 49.40

  Ever 36 4.78 35 6.00

  Never 296 39.31 261 44.60

Drinking 0.395a

  Now 251 33.30 185 31.60

  Ever 92 12.30 86 14.70

  Never 410 54.40 314 53.70

Noise exposure time (years) 0.004b

M(P25,P75) 17 (10,25) 16(10,24)

Noise Exposure levels[dB(A)] 0.001b

M(P25,P75) 87(82,94) 92(84,95)

Threshold [dB(A)]  < 0.001a

M(P25,P75) 33(28,42) 15(12,19)  < 0.001b

  ≤ 26 82 10.89 585 100.00

  > 26 671 89.11 0 0.00

Table 1.  Basic information for noise-exposed workers. aTwo-sided χ2 test. bTwo-sided Wilcoxon signed rank 
sum test.
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Gene SNP

Allele

Chromosome Functional consequence MAFa P for HWEb P valuec P valuedA1/A2

VEGFA

rs10434* A/G Chromosome 6:43,785,473 3 prime UTR variant 0.48 1 0.716 -

rs3024994* T/C Chromosome 6:43,775,770 Non coding transcript exon variant 0.18 0.86 0.818 -

rs3024997* A/G Chromosome 6:43,777,370 Non coding transcript exon variant 0.48 1 0.427 -

rs3025021 T/C Chromosome 6:43,781,426 Non coding transcript exon variant 0.4 0.08 0.853 -

rs3025039 T/C Chromosome 6:43,784,799 3 prime UTR variant 0.34 0.88 0.947 -

rs699947* A/C Chromosome 6:43,768,652 Intergenic variant 0.5 0.75 0.705 -

rs833068* A/G Chromosome 6:43,774,790 Non coding transcript exon variant 0.49 0.99 0.426 -

MTHFR

rs17037396* T/C Chromosome 1:11,801,990 Intron variant 0.2 1 0.246 -

rs1801131* T/G Chromosome 1:11,794,419 Missense variant 0.47 0.98 0.419 -

rs1801133* A/G Chromosome 1:11,796,321 Missense variant 0.5 0.77 0.305 -

rs3737966 T/C Chromosome 1:11,787,702 3 prime UTR variant 0.49 0.83 0.501 -

rs4846048* A/G Chromosome 1:11,786,195 3 prime UTR variant 0.49 0.38 0.622 -

rs4846049* T/G Chromosome 1:11,790,308 3 prime UTR variant 0.5 0.89 0.448 -

SIRT1

rs10997868* A/C Chromosome 10:67,905,202 Intron variant 0.5 0.9 0.424 -

rs12049646* T/C Chromosome 10:67,864,226 Intergenic variant 0.36 0.77 0.973 0.861

rs12778366* T/C Chromosome 10:67,883,321 Intergenic variant 0.19 0.87 0.286 -

rs1885472* C/G Chromosome 10:67,895,054 Intron variant 0.47 0.3 0.543 -

rs3758391* T/C Chromosome 10:67,883,584 Intergenic variant 0.47 0.81 0.531 -

rs7895833* A/G Chromosome 10:67,863,299 Intergenic variant 0.49 0.77 0.076 0.025

UBE2I

rs12925270* A/C Chromosome 16:1,325,936 3 prime UTR variant 0.29 0.32 0.623 -

rs2281226* A/C Chromosome 16:1,314,766 Missense variant 0.49 0.7 0.655 -

rs7204003 A/G Chromosome 16:1,327,362 Synonymous variant 0.5 0.87 0.467 0.211

rs761059* A/G Chromosome 16:1,324,523 Intron variant 0.47 0.92 0.241 -

TP73-AS1

rs1181865* T/C Chromosome 1:3,736,862 Non coding transcript exon variant 0.47 0.78 0.893 -

rs3737589* A/G Chromosome 1:3,746,281 Splice donor region variant 0.49 0.97 0.372 -

rs7515164* A/C Chromosome 1:3,738,183 Non coding transcript exon variant 0.42 0.96 0.537 -

rs9800 C/G Chromosome 1:3,736,258 Non coding transcript exon variant 0.49 0.99 0.409 -

SAE1

rs10424953* A/G Chromosome 19:47,202,026 Intron variant 0.49 0.98 0.128 -

rs177918* T/G Chromosome 19:47,131,056 Synonymous variant 0.22 0.06 0.008 0.004

rs309184* T/G Chromosome 19:47,133,570 Intron variant 0.49 0.24 0.704 0.711

rs8102445 T/G Chromosome 19:47,134,351 Intron variant 0.49 0.24 0.05 0.534

RNF8

rs195420* C/G Chromosome 6:37,354,031 5 prime UTR variant 0.48 1 0.191 0.115

rs195432* A/C Chromosome 6:37,390,246 Intron variant 0.5 0.9 0.074 0.013

rs195434* T/C Chromosome 6:37,392,781 3 prime UTR variant 0.48 0.7 0.095 0.029

rs2284922* A/G Chromosome 6:37,381,257 Synonymous variant 0.49 1 0.853 -

ITGA1

rs1531545* T/C Chromosome 5:52,897,456 Splice region variant 0.5 0.16 0.595 -

rs1979398* A/G Chromosome 5:52,898,497 Intron variant 0.5 0.13 0.565 -

rs2432143* T/C Chromosome 5:52,835,481 Intron variant 0.22 0.36 0.265 -

rs2447867* T/C Chromosome 5:52,861,540 Missense variant 0.46 1 0.016 0.033

TAB2

rs652921* A/G Chromosome 6:149,409,710 Synonymous variant 0.5 0.06 0.161 -

rs7896* C/G Chromosome 6:149,410,340 3 prime UTR variant 0.34 0.94 0.597 -

rs9485372* A/G Chromosome 6:149,287,738 Intron variant 0.48 0.96 0.532 -

PIK3R1

rs1550805* T/C Chromosome 5:68,287,979 Intron variant 0.2 0.74 0.774 -

rs3730089* A/G Chromosome 5:68,292,320 Missense variant 0.47 0.93 0.846 -

rs706713* T/C Chromosome 5:68,226,894 Synonymous variant 0.5 0.99 0.359 0.624

AKT1

rs2494732 T/C Chromosome 14:104,772,855 Intron variant 0.5 0.99 0.044 0.221

rs2494752* A/G Chromosome 14:104,797,271 Regulatory region variant 0.44 0.75 0.401 -

rs2498786 C/G Chromosome 14:104,796,031 Regulatory region variant 0.49 0.91 0.014 0.094

FOXM1

rs12582464 T/C Chromosome 12:2,877,437 Intron variant 0.5 0.37 0.479 0.371

rs2072360* T/C Chromosome 12:2,864,449 Synonymous variant 0.42 0.36 0.214 -

rs2302257* C/G Chromosome 12:2,859,822 Intron variant 0.28 0.92 0.468 -

P21
rs3829964 T/C Chromosome 6:36,676,721 intron variant 0.5 0.98 0.453 -

rs762624 A/C Chromosome 6:36,677,811 Non coding transcript exon variant 0.5 0.4 0.843 -

ATG5
rs510432* T/C Chromosome 6:106,326,155 TF binding site 0.49 0.74 0.895 -

rs803360* C/G Chromosome 6:106,318,254 Intron variant 0.49 0.79 0.809 -

Continued
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Precision and recall are variables that affect each other, and while a high level of both is a desired ideal 
situation, in practice it is the high precision that often leads to low recall43. Except for GA-RF, the recall rate of 
the other 4 ML algorithms were all lower than LR, which were 71.10%, 60.00%, 68.90% and 60.00% respectively. 
In turn, the precision rate of LR was only slightly better than that of GBDT ‘s 58.10%. Notably, GA-RF has 

Number of SNP\Algorithm Accuracy R P F score R2 AUC

88,8\Logistic Regression (LR) 62.67% 80.83% 64.44% 0.716 0.698 0.704

88\Decision Tree (DT) 60.00% 60.00% 70.40% 0.637 0.621 0.619

88\Gradient Boosting Decision Tree (GBDT) 60.00% 60.00% 58.10% 0.589 0.570 0.581

88\K-Nearest Neighbor (KNN) 68.90% 68.90% 66.00% 0.674 0.648 0.652

88\eXtreme Gradient Boost (XGBoost) 71.10% 71.10% 72.30% 0.717 0.694 0.706

88\Genetic Algorithm-Random Forests (GA-RF) 84.40% 84.40% 71.30% 0.773 0.757 0.752

88\Probabilistic Neural Network (PNN) 78.64% 79.45% 78.44% 0.805 0.797 0.808

88\Generalized Regression Neural Network (GRNN) 85.36% 85.09% 84.60% 0.897 0.862 0.857

Table 3.  Accuracy, recall, precision, F-scores, R2 and AUC of LR and seven ML algorithms on 88 SNP loci 
datasets.

 

Gene SNP

Allele

Chromosome Functional consequence MAFa P for HWEb P valuec P valuedA1/A2

AKT2
rs2304186* T/G Chromosome 19:40,233,814 3 prime UTR variant 0.5 0.39 0.359 -

rs41275750 C/G Chromosome 19:40,232,188 3 prime UTR variant 0.37 0.97 0.613 0.997

AIMP1
rs1134648* C/G Chromosome 4:106,328,087 Missense variant 0.37 0.06 0.092 0.023

rs13534 A/G Chromosome 4:106,348,870 3 prime UTR variant 0.31 0.85 0.687 0.705

OGG1
rs159193* A/G Chromosome 20:39,691,100 Intergenic variant 0.49 0.09 0.673 -

rs2304277* A/G Chromosome 3:9,759,396 Non coding transcript exon variant 0.49 0.57 0.099 0.047

MTOR
rs1034528* C/G Chromosome 1:11,189,075 Intron variant 0.49 0.65 0.691 -

rs2295080* T/G Chromosome 1:11,262,571 Regulatory region variant 0.42 0.08 0.768 0.976

HDAC2
rs3757016* T/C Chromosome 6:113,939,556 3 prime UTR variant 0.5 0.63 0.734 -

rs6568819* T/C Chromosome 6:113,949,764 Intron variant 0.49 0.97 0.7 -

CBX4
rs1285243 T/C Chromosome 17:79,840,307 Regulatory region variant 0.49 0.65 0.838 -

rs4889898* A/C Chromosome 17:79,824,605 Intron variant 0.5 0.76 0.454 -

FOXO1
rs10507486* A/G Chromosome 13:40,612,364 Intron variant 0.32 0.72 0.069 0.056

rs2701891* T/C Chromosome 13:40,550,515 Intron variant 0.5 0.99 0.873 -

RIPK1 rs17548629* T/C Chromosome 6:3,114,223 3 prime UTR variant 0.38 0.72 0.921 -

RAP1A rs6573* A/C Chromosome 1:111,712,767 3 prime UTR variant 0.28 0.92 0.922 -

RANBP2 rs1478517 A/G Chromosome 2:108,894,481 3 prime UTR variant 0.5 0.66 0.2 -

PON1 rs854552* T/C Chromosome 7:95,298,612 3 prime UTR variant 0.45 0.07 0.647 -

PIK3R3 rs7536272* A/G Chromosome 1:46,177,421 Intron variant 0.48 0.77 0.662 0.838

PIK3CA rs7651265* A/G Chromosome 3:179,175,241 Intron variant 0.24 0.59 0.807 -

NOB1 rs56259873 T/C Chromosome 16:69,755,293 TF binding site 0.2 0.96 0.314 -

MTPN rs17168525* A/G Chromosome 7:135,928,514 3 prime UTR variant 0.23 0.14 0.572 -

MAPK8 rs9284* T/G Chromosome 10:48,435,527 3 prime UTR variant 0.5 0.18 0.939 -

MAPK1 rs13515* T/C Chromosome 22:21,761,597 3 prime UTR variant 0.35 0.61 0.445 -

HPGD rs8752* T/C Chromosome 4:174,491,326 3 prime UTR variant 0.49 0.14 0.711 -

GAPDH rs1136666* C/G Chromosome 12:6,534,825 5 prime UTR variant 0.39 0.23 0.151 -

FAS rs2862833* A/G Chromosome 10:89,015,872 3 prime UTR variant 0.5 0.89 0.3 -

CDKN1A rs1801270* A/C Chromosome 6:36,684,194 Missense variant 0.49 0.33 0.185 -

BCL-2 rs1564483* T/C Chromosome 18:63,127,421 3 prime UTR variant 0.49 1 0.283 -

ATG7 rs2594972* A/G Chromosome 3:11,355,943 Intron variant 0.49 0.59 0.042 0.019

UBAC2 rs2296860* A/G Chromosome 13:99,200,499 Non coding transcript exon variant 0.5 0.09 0.486 -

UBA2 rs7258977* A/G Chromosome 19:34,468,907 Intron variant 0.43 0.9 0.953 -

STAT3 rs1053004* A/G Chromosome 17:42,314,074 3 prime UTR variant 0.49 0.28 0.682 -

Table 2.  Basic information and the results of univariate and multivariate logistic regression analysis of SNP 
loci. aData from the NCBI dbSNP database. bP value for Hardy–Weinberg test. cTwo-sided χ2 test. dAdjusted 
for age, gender, smoking and drinking status. *SNP loci are common with HapMap3 SNPs.
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higher precision and recall than LR with 84.40% and 71.30%, respectively, indicating that it has better prediction 
performance.

The F-score is the harmonic mean of precision and recall. The F-scores of GA-RF and XGBoost are higher 
than that of LR, at 0.773 and 0.717, respectively, while the remaining three ML algorithms fail to reach the level 
of LR with F-scores of 0.589, 0.674, and 0.637 respectively. This relationship can be confirmed by comparing the 
recall and precision scores.

The coefficient of determination R2, denoted in this study as Nagelkerke R2, is a measure of the goodness of fit 
of the regression model. Among the five ML algorithms, only GA-RF demonstrated an R2 value of 0.757, which is 
higher than the 0.698 achieved by LR, suggesting a better overall fit and explanatory power. The R2 values of the 
other four algorithms were all lower than that of LR, indicating their limitations in data fitting.

AUC provides a comprehensive evaluation of the model performance. The AUC of LR and different ML 
models are as follows: 0.704 for LR, 0.619 for DT, 0.581 for GBDT, 0.652 for KNN, 0.706 for XGBoost, and 0.752 
for GA-RF. Among them, the AUC of GA-RF and XGBoost are higher than those of LR, indicating that both 
of them are discriminative ability is better than logistic regression and can provide higher prediction accuracy, 
especially in the prediction task of large-scale SNP loci dataset.

Based on the above analysis, under the 88 SNP loci dataset, GA-RF outperforms LR in all the performance 
indexes. Therefore, GA-RF is selected for feature filtering of 8, 10 and 88 SNP loci for further analysis. For the 
8 SNP loci, rs2304277 was the most important SNP locus with a feature importance of 15.30%, as shown in 
Supplementary Fig. S6. For the 10 SNP loci, rs309184 was identified as the most significant, exhibiting a feature 
importance of 13.51%, as illustrated in Supplementary Fig. S7. For the 88 SNP loci, the top 20 SNP loci based on 
feature importance are outlined in Fig. 2, which are particularly effective for binary classification of NIHL data, 
among which the most important SNP locus is rs2447867 with a feature importance of 2.70%.

Performance comparison between conventional LR and two hyperparameter-optimized ML algorithms
The training process and corresponding accuracy using PNN and GRNN for the 8 SNP loci screened by LR are 
shown in Supplementary Fig. S8, the highest accuracy of the model at this time was 63.24%, when the three SNP 
loci rs1134648, rs195434 and rs2304277 were trained together. The lowest accuracy of the model was 51.28%, 
when rs2594972 was trained alone. At this time, the limited number of model training iterations results in 
similar outcomes.

Training and testing of 10 SNP loci were conducted applying these two ML models, with the training process 
and corresponding accuracy presented in Supplementary Fig. S9. The results show that when nine SNP loci, 
namely rs309184, rs12582464, rs12049646, rs2295080, rs195420, rs7204003, rs7536272, rs13534, rs41275750, 
are selected for joint training, the model achieves the highest accuracy of 70.98%; When only the rs12049646 
locus was used for training, the accuracy of the model was reduced to the lowest at 54.13%.

The process and corresponding accuracy of training and testing all 88 SNP loci using these two ML algorithms 
are shown in Fig. 3. It is evident from Fig. 3, GRNN has a significant advantage over PNN under the condition of 
large sample size. This is because one of the advantages of GRNN over PNN is that it is able to give continuous 
output values in the range of [0, 1], allowing it to describe experimental conditions in a more accurate way. The 
highest accuracy of the model was 97.50%, occurring when rs10424953, rs1181865, and rs12582464 were trained 

Fig. 1.  (a–f) Represents the comparison of accuracy, recall, precision, F-score, R2 and AUC between LR and 
five classical ML algorithms on 88 SNP loci dataset.
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together. As for the individual SNP locus, PNN and GRNN reached the consistent conclusion that rs12582464 
was the most significant one among the 88 SNP loci, which is significantly associated with the occurrence and 
development of NIHL. At this point, Table 4 presents the top 20 SNP combinations with the highest accuracy 
during the PNN and GRNN training processes.

Fig. 3.  Comparison of GRNN and PNN on the training process of all 88 SNP loci.

 

Fig. 2.  The top 20 SNP loci ranked by feature importance among all 88 SNP in the GA-RF model.

 

Scientific Reports |        (2025) 15:15361 13| https://doi.org/10.1038/s41598-025-00050-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The accuracy, recall, precision, F-score, R2 and AUC of conventional LR and two hyperparameter-optimized 
ML algorithms during training under different SNP loci datasets are shown in Table 3, Supplementary Tables 
S4, Supplementary S5 and Fig. 4, Supplementary Figs. S10, S11. Under the 8 SNP loci dataset, the performance 
indicators of PNN and GRNN still demonstrate poor results and are lower than those of LR itself (Fig.  4). 
When constructing the model using these two ML models for the 10 SNP loci dataset, the model performance 
was improved to a certain extent, surpassing that of the model built based on 8 SNP loci selected by LR 
(Supplementary Fig. S10). However, when these two models are directly applied to the 88 SNP loci dataset, all 
performance indicators showed significant improvements. Except for the recall rate of PNN being slightly lower 
than that of LR, the other performance indicators are higher than those of LR (Supplementary Fig. S11).

Fig. 4.  (a–f) Represents the comparison of accuracy, recall, precision, F-score, R2 and AUC between LR and 
two hyperparameter-optimized ML algorithms on 88 SNP loci dataset.

 

SN GRNN PNN

1 rs10424953, rs1181865, rs12582464 rs1181865, rs12582464

2 rs1181865, rs12582464 rs12582464

3 rs1181865, rs12582464, rs12925270 rs12582464, rs12925270

4 rs12582464 rs1181865, rs12582464, rs12925270

5 rs12582464, rs12925270 rs12582464, rs12925270, rs159193

6 rs12582464, rs12925270, rs159193 rs10424953, rs1181865, rs12582464

7 rs854552, rs10424953, rs1181865, rs12582464 rs10424953, rs1181865, rs12582464, rs12925270, rs159193

8 rs1181865, rs12582464, rs12925270, rs159193 rs1181865, rs12582464, rs12925270, rs159193

9 rs1181865, rs12582464, rs12925270, rs159193, rs195420, rs195434, rs2281226 rs1181865, rs12582464, rs12925270, rs159193, rs195420

10 rs12582464, rs12925270, rs159193, rs195420, rs195434 rs10424953, rs1181865, rs12582464, rs12925270

11 rs10424953, rs1181865, rs12582464, rs12925270, rs159193 rs12582464, rs12925270, rs159193, rs195420

12 rs1181865, rs12582464, rs12925270, rs159193, rs195420, rs195434 rs12582464, rs12925270, rs159193, rs195420, rs195434, rs2281226

13 rs12582464, rs12925270, rs159193, rs195420, rs195434, rs2281226 rs1181865, rs12582464, rs12925270, rs159193, rs195420, rs195434

14 rs12582464, rs12925270, rs159193, rs195420 rs12582464, rs12925270, rs159193, rs195420, rs195434

15 rs1181865, rs12582464, rs12925270, rs159193, rs195420 rs6573, rs854552, rs10424953, rs1181865, rs12582464

16 rs854552, rs10424953, rs1181865, rs12582464, rs12925270 rs854552, rs10424953, rs1181865, rs12582464

17 rs6573, rs854552, rs10424953, rs1181865, rs12582464 rs2295080, rs2432143, rs2447867, rs2494732, rs2494752

18 rs1885472, rs1979398, rs2295080 rs1801131, rs1801133, rs1885472, rs1979398, rs2295080

19 rs2295080, rs2432143, rs2447867, rs2494732 rs1885472, rs1979398, rs2295080

20 rs1979398, rs2295080, rs2432143 rs1979398, rs2295080, rs2432143

Table 4.  The top 20 models with the highest accuracy during the training process of PNN and GRNN.
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Discussion
With the deepening of the global industrialization process, NIHL has gradually revealed its extensive impact 
and has become one of the major public health problems worldwide. According to the world health organization 
(WTO) estimates that there are billions of people worldwide due to exposure to hazardous levels of noise 
inevitably faces a risk of NIHL44,45. Due to the lack of specific and sensitive early screening indicators for NIHL, 
most individuals have already progressed to moderate or severe stages when the disease is confirmed by physical 
examination, and there is currently no effective treatment, which are mainly based on early prevention46,47. 
Therefore, accurate prediction of noise-exposed workers who are most at risk of developing NIHL is crucial 
to improving their quality of life and reducing the associated medical and socioeconomic burden. Several 
studies have shown that ML outperforms LR in analyzing high-dimensional genomic data, SNP loci data, or 
other biomarker data for disease prediction48,49. Given the advanced capabilities and flexibility of various ML 
algorithms, as well as their potential in complex data analysis, we believe that incorporating ML into NIHL 
prediction and classification aligns well with the development trend in real-time conditions.

In this study, we used TASSEL and pLINK software to perform quality control on the relevant SNP loci dataset 
and verified the overlap between these SNP loci and those in the HapMap3 database to ensure the effectiveness 
and reliability of the SNP loci, enhanced the confidence and biological significance of the findings. On this 
basis, we systematically analyze and compare the performance of conventional LR and seven ML algorithms in 
predicting NIHL across different SNP loci datasets for the first time, and cross-validated the SNP loci screening 
results of multiple models.

Applying LR to all of the 88 SNP loci for pointwise screening, the various performance indicators of the 
models performed poorly and did not meet the expected standards. In addition, when we used multiple ML 
algorithms to model and analyse the 8 SNP loci screened by LR, the performance of the models did not improve 
significantly, and and the various performance indicators of each model were generally low, even lower than 
those of the LR models on the same dataset. This finding prompted us to re-examine the general applicability 
of conventional LR in NIHL prediction and the effectiveness and reliability of its screened SNP loci in NIHL 
prediction. We suggest that the SNP loci screened by LR that are statistically associated with the occurrence 
and progression of NIHL may not be the SNP loci that were significantly associated with the occurrence and 
progression of NIHL.

Under the 10 SNP loci dataset extracted based on PNN and GRNN, the model performance of each model 
was improved to different degrees compared with the models built based on the 8 loci, and several ML models 
outperformed the LR. Nevertheless, the comprehensive performance of each model is still fell short of the 
expected results, showing a certain gap compared to the ideal level.

Under the all 88 SNP loci dataset, most of the ML algorithms had higher accuracy than LR’s 62.67% (except 
for DT and GBDT). However, it is not comprehensive to evaluate the model solely on the basis of accuracy, 
considering the imbalance of dataset categories due to the relatively low incidence of NIHL, a model that 
accurately predicts that all people will not develop NIHL also can achieve a fairly high accuracy, even if it performs 
poorly in predicting that NIHL will actually occur. In addition, we also expected the model to have a high recall 
rate because we want to minimize missed diagnoses and ensure that all potential NIHL cases are identified in 
a timely manner for early intervention, thereby reducing the long-term health risks associated with missed 
diagnoses. Although this would sacrifice accuracy, it could lead to some non-NIHL cases being incorrectly 
identified as positive, resulting in a waste of medical resources, such as unnecessary further examinations and 
treatment for individuals who do not actually have NIHL. In all models, GRNN and GA-RF had higher recall 
and precision rates than LR’s 80.83% and 64.44%. In fact, in NIHL prediction, we would like to find a balance 
that maintains a high recall to minimize missed diagnoses while also maintaining a relatively high precision to 
reduce misdiagnoses as much as possible, and the trade-off between the two can be comprehensively evaluated 
by the F-score. The F-score of LR is 0.716, while those of GRNN, PNN, GA-RF and XGBoost are better than 
that of LR. Comparing the results of R2, it is clear that the goodness-of-fit of the three ML models, GRNN, 
PNN & GA-RF, is significantly outperforms that of LR. Notably, GRNN and PNN demonstrate a greater ability 
to capture the complex patterns associated with the occurrence and progression of NIHL. As for AUC, GRNN 
and PNN also performed excellently, with XGBoost slightly outperforming LR (0.706 vs. 0.704), suggesting that 
these models models show enhanced comprehensive performance in predicting the occurrence and progression 
of NIHL.

From the above analyses, it can be argued that multiple ML algorithms outperform or at least equal to 
conventional LR in NIHL prediction, and its results have good consistency and reproducibility. It is noteworthy 
that GRNN, PNN and GA-RF exhibit better comprehensive performance across various indicators than 
conventional LR, which makes them the primary choice for NIHL prediction, and these can also be used as a 
valuable complementary method to the conventional LR. This result strongly validates our initial idea that when 
analyzing the association between the NIHL and SNP loci, considering the combined effects of multiple SNP loci 
and employing ML algorithms can more accurately reveal the underlying associations.

Compared with LR, the SNP loci screened by the ML algorithms with better performance indicators 
(GRNN, PNN, GA-RF) are more reliable and representative, which is consistent with the results of studies in 
other fields, they found that ML algorithms have achieved superior predictive effect than LR in identifying SNP 
associated with disease occurrence and progression50–52. By comparing the SNP loci screening results of multiple 
models, for all 88 SNP loci, rs12582464 located on the FOXM1 gene, rs309184 located on the SAE1 gene and 
rs2447867 located on the ITGA1 gene, which may be novel pathogenic loci in the NIHL population, significantly 
improved the accuracy of NIHL prediction, which was also reflected in the screening results of the respective 
models. Whereas, rs2304277 located on the gene OGG1 is more likely to be associated with the occurrence and 
progression of NIHL, and it contributes to the prediction accuracy of NIHL across various models.
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The performance of various modeling algorithms differs across different studies53–55. The performance of LR 
in NIHL prediction is not as good as desired, which may be closely related to factors such as sample size, model 
peculiarity and dataset characteristics. For NIHL prediction based on SNP loci data, the model often contains 
many variables (SNP loci), while LR may be limited by computational power when processing high-dimensional 
data (such as thousands or tens of thousands of SNP loci), resulting in poor performance and significantly 
reduced model robustness-a phenomenon referred to as the “curse of dimensionality”56; ML, As a representative 
of modern advanced technology, can efficiently process large-scale datasets and extract critical information from 
them quickly and efficiently57,58. Meanwhile, LR relies on methods such as stepwise regression, forward selection 
or backward elimination in the process of variable selection, which may not be efficient or accurate enough when 
handling high-dimensional data or complex feature interactions. while ML usually has built-in feature selection 
or importance scoring mechanism, which can screen out the most important features for the predicted results, 
thus ensuring the objectivity of the results59,60. In addition, the relationship between SNP loci and disease is often 
complex and non-linear, and ML algorithm is not constrained by predefined mathematical relationships between 
dependent and independent variables, allowing for modeling arbitrarily complex nonlinear relationships and 
being able to take into account interactions between variables55,61; Whereas, the operation of LR needs to satisfy 
the linear assumption, which meaning that it assumes a linear relationship between the independent variables 
and the log odds ratio, and may fail to capture the complex nonlinear relationships in the data and complex 
interactions between variables62.

This study has certain limitations. First, the study population was limited to noise-exposed workers who 
underwent occupational health check-ups during a specific time period, whereas NIHL is a gradual developmental 
process that requires long-term observation to fully reveal its long-term associations with exposure time, noise 
exposure level, and high-frequency hearing threshold. Second, given the wide variety of machine learning 
algorithms with its own characteristics and applicable scenarios, this study may not have comprehensively 
evaluated all potential models in the algorithm selection process. Finally, this study is a retrospective study, 
which may not fully represent the target population or fulfill the needs of the study design, making it difficult to 
directly infer causality.

With the popularization and application of Electronic Health Records (EHRs) in healthcare systems, medical 
research is rapidly becoming data-driven51. Applying ML to disease prediction serves as an attractive alternative 
to conventional LR and can provide a tool for developing high-performance NIHL prediction models. 
Simultaneously, we also need to flexibly adjust the strategy according to the specific situation of the data and the 
peculiarity of the model, and continuously explore and optimize the parameter settings and feature engineering 
of the ML model to further enhance the predictive accuracy and practicability. In the future, we will continue to 
collect larger population samples and incorporate different risk factors for testing and evaluation to validate the 
results of this study, striving to make the results more objective and reduce the variability of the results, thereby 
enabling us to realize the accurate prediction of NIHL.

Data availability
The datasets generated and/or analysed during the current study are available in the [NCBI] repository, [​h​t​t​p​s​
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