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Abstract
Introduction  Cerebral amyloid angiopathy (CAA) is associated with symptomatic intracerebral haemorrhage. Biomarkers 
of clinically silent bleeding events, such as cerebrospinal fluid (CSF) ferritin and iron, might provide novel measures of 
disease presence and severity.
Methods  We performed an exploratory study comparing CSF iron, ferritin, and other metal levels in patients with CAA, 
control subjects (CS) and patients with Alzheimer’s disease (AD). Ferritin was measured using a latex fixation test; metal 
analyses were performed using inductively coupled plasma mass spectrometry.
Results  CAA patients (n = 10) had higher levels of CSF iron than the AD (n = 20) and CS (n = 10) groups (medians 23.42, 
15.48 and 17.71 μg/L, respectively, p = 0.0015); the difference between CAA and AD groups was significant in unadjusted 
and age-adjusted analyses. We observed a difference in CSF ferritin (medians 10.10, 7.77 and 8.01 ng/ml, for CAA, AD and 
CS groups, respectively, p = 0.01); the difference between the CAA and AD groups was significant in unadjusted, but not 
age-adjusted, analyses. We also observed differences between the CAA and AD groups in CSF nickel and cobalt (unadjusted 
analyses).
Conclusions  In this exploratory study, we provide preliminary evidence for a distinct CSF metallomic profile in patients 
with CAA. Replication and validation of these results in larger cohorts is needed.
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Introduction

Cerebral amyloid angiopathy (CAA) is a cerebral small vessel 
disease characterised by amyloid-beta (Aβ) deposition in corti-
cal and leptomeningeal blood vessels [4]. CAA is associated 
with lobar intracerebral haemorrhage; this, together with other 
haemorrhagic imaging markers (cerebral microbleeds, cortical 
superficial siderosis), forms the basis for in vivo diagnosis [8, 
11, 14]. Cerebrospinal fluid (CSF) biomarkers of clinically 
silent bleeding events might provide a novel means of quan-
tifying disease presence and severity; however, data in CAA 
are limited [13].

We performed a pilot study investigating CSF iron and fer-
ritin levels in patients with CAA, control subjects (CS) and 
patients with Alzheimer’s disease (AD), and how these cor-
related with other neurodegenerative CSF biomarkers (Aβ-40, 
Aβ-42, total tau, phospho-tau, and neurofilament light). We 
hypothesised that CSF ferritin and iron would be highest in the 
CAA group. In exploratory analyses, we measured concentra-
tions of other CSF metals (nickel, chromium, zinc, manganese, 
cobalt and copper).

Methods

Patient selection

We included samples from the cross-sectional prospective 
observational BOCAA (Biomarkers and Outcomes in Cer-
ebral Amyloid Angiopathy) study [5], and samples collected 
by the Specialist Cognitive Disorders Service at the National 
Hospital for Neurology and Neurosurgery, London, UK; group 
inclusion and exclusion criteria and the standardised protocol 
for sample collection have been provided in detail previously 
[3] and therefore will only be described briefly here. Patients 
with CAA all met “probable” modified Boston Criteria [11] 
and had been asymptomatic (i.e. without clinical evidence of 
acute intracerebral haemorrhage) in the 6 months prior to their 
study visits; CSF biomarkers were not used in the diagnostic 
process. Patients with AD had an amnestic presentation and 
were diagnosed on the basis of clinical assessment, imaging, 
and CSF measures; those with haemorrhagic imaging markers 
of CAA (cerebral microbleeds, cortical superficial siderosis) 
were excluded. Control subjects had no significant neuro-
logical diagnoses and had no evidence of significant cerebro-
vascular disease (including CAA) or atrophy on brain (MR) 
head imaging. Informed written consent was obtained for all 
participants.

CSF analysis

Methods for CSF processing, including measurement of 
Aβ-40, Aβ-42, total tau, phospho-tau and neurofilament 
light, have been described previously [3].

Ferritin was measured using  a latex fixation test accord-
ing to manufacturer’s instructions (described previously) 
[9]. All samples were measured on the same day by a single 
operator using the same reagents.

CSF metal analyses were performed by inductively cou-
pled plasma mass spectrometry (ICP-MS) with an octopole 
reaction system operated in the helium collision mode (Agi-
lent 7700 × ICP-MS; Agilent Technologies, Santa Clara, Ca, 
USA). All samples were diluted 10 times with a basic diluent 
containing 1-butanol (2%w/v), ethylenediaminetetraacetic 
acid (EDTA) (0.05%w/v), Triton X-100 (0.05%w/v), and 
ammonium hydroxide (1%w/v) and were analysed in a single 
batch after calibration performed in the dilution medium. 
Germanium was used as internal standard for all elements. 
One quality control sample was analysed in the beginning 
and end of the batch (Seronorm™ Trace Elements Urine 
L-1, Lot no. 1011644); all element concentrations were 
within the stated acceptable limits.

Statistics

Statistical analysis was performed using Stata (Version 
15.1). Group characteristics were compared using either 
one-way ANOVA (normally distributed variables), Chi-
squared (categorical variables) or Kruskal–Wallis (non-nor-
mally distributed data, including all biomarkers) tests. For 
biomarkers, if a significant difference was identified (defined 
as p < 0.05), Dunn’s test was used for post hoc comparisons, 
and a Bonferroni correction (resultant p value multiplied by 
3) applied.

In order to perform age-adjusted analyses, we used quan-
tile regression (comparing group medians) and calculated 
predicted medians. We then performed post hoc pairwise 
comparisons of the age-adjusted medians; statistical signifi-
cance was defined as Bonferroni-corrected p < 0.05.

Spearman correlation was used to look for correlations 
between CSF ferritin and iron and other neurodegenerative 
CSF markers. Associations with a Spearman’s rho value (ρ) 
above 0.3 or below − 0.3 were regarded as correlations of 
potential interest.
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Results

We included 10 patients with CAA, 20 patients with AD and 
10 control subjects (Table 1). Patients with CAA were older 
than the two other groups, and patients with AD had lower 
mini-mental state examination (MMSE) scores.

In univariable comparisons (Table 1, Fig. 1), patients with 
CAA had higher CSF ferritin levels than the other groups 

(median 10.10 ng/ml in CAA group vs 7.77 ng/ml in AD 
group and 8.01 ng/ml in the CS group, p = 0.01). Patients 
with CAA also had significantly higher CSF iron levels 
than the AD group (median 23.42 μg/L, vs 15.48 μg/L, 
p = 0.0006); the difference in medians between the CAA and 
CS group was of a similar magnitude (median 23.42 µg/L 
vs 17.71 µg/L), but did not reach statistical significance 
(p = 0.09). There were no significant differences in CSF fer-
ritin or iron when comparing the AD and CS groups.

Table 1   Comparison of characteristics and biomarkers by group

Group comparison p values were obtained using one-way ANOVA (age), Chi-squared tests (sex), or Kruskal–Wallis tests (remainder). Post hoc 
comparisons were made using Dunn’s test; the presented p values are Bonferroni-corrected
AD Alzheimer’s disease, CAA​ cerebral amyloid angiopathy, CS control subjects, IQR interquartile range, MMSE mini-mental state examination, 
SD standard deviation

CAA (n = 10) AD (n = 20) CS (n = 10) Group com-
parison, p 
value

Post hoc comparisons; p 
values

CAA/AD CAA/CS AD/CS

Age, years, mean (SD) 68.6 (3.0) 62.5 (4.1) 62.2 (5.4) 0.001 – – –
Sex, female, n (%) 2 (20%) 11 (55%) 5 (50%) 0.18 – – –
MMSE, median (IQR) 29 (28 to 30) 24 (19.5 to 26) 29 (29 to 30)  < 0.001 – – –
CSF biomarkers
Ferritin, ng/ml, median 

(IQR)
10.10 (8.37 to 14.00) 7.77 (6.39 to 9.18) 8.01 (6.94 to 8.95) 0.0136 0.0060 0.0483 1.0000

Iron, concentration 
(μg/L), median (IQR)

23.42 (18.82 to 25.30) 15.48 (12.28 to 18.26) 17.71 (15.19 to 20.76) 0.0015 0.0006 0.0912 0.2268

Fig. 1   CSF ferritin (A) and iron (B) by group. Horizontal line indi-
cates median value per group; box shows 25th and 75th percentile. 
Each diamond indicates an individual data point. p values are derived 
from post hoc Dunn’s test and have been Bonferroni-corrected. *Indi-

cates p ≤ 0.05; **indicates p ≤ 0.01; ***indicates p ≤ 0.001. AD Alz-
heimer’s disease, CAA​ cerebral amyloid angiopathy, CS control sub-
jects
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In age-adjusted quantile regression (Supplementary 
Table 1), there was a significant difference in CSF iron 
between the CAA and AD groups (median difference 
− 7.11 μg/L), but no significant difference in CSF ferritin.

We then looked for correlations between CSF ferritin 
and iron and other CSF biomarkers observed in neurode-
generative disease (Supplementary Table 2, Supplementary 
Fig. 1). When considering all groups together, there was a 
significant correlation between CSF Aβ-42 and CSF ferritin 
(Spearman’s ρ − 0.5057, p = 0.0009); there was a modest 
correlation between CSF ferritin and Aβ-40 (Spearman’s 
ρ − 0.3068, p = 0.054), although this did not quite reach 
statistical significance by our definition. There was evidence 
of a modest correlation between CSF Aβ-42 and CSF iron 
(Spearman’s ρ − 0.3122, p = 0.0499).

Other CSF metals

We performed further exploratory analyses for other CSF 
metals, the results of which are provided in the Online Sup-
plementary Material (Supplementary Tables 3 and 4; Sup-
plementary Fig. 2). Briefly, there were differences between 
the CAA and AD groups in CSF nickel (median 0.39 μg/L vs 
0.16 μg/L, p = 0.03), cobalt (median 0.03 μg/L vs 0.01 μg/L, 
p = 0.003); and manganese (median 1.19 μg/L vs 0.84 μg/L), 
although the latter was not quite of statistical significance 
(p = 0.05). In age-adjusted analyses, only the difference in 
CSF nickel remained of statistical significance (median dif-
ference − 0.25 μg/L).

Discussion

In this pilot study, we provide evidence for a distinct CSF 
metallomic profile in patients with CAA, with higher lev-
els of CSF iron observed in unadjusted and age-adjusted 
analyses. We also observed higher levels of CSF ferritin in 
the CAA group, reaching significance in unadjusted but not 
age-adjusted analyses. When considering correlations with 
CSF biomarkers associated with neurodegenerative disease, 
negative correlations of interest were observed with Aβ-40 
(CSF ferritin), and Aβ-42 (CSF ferritin, CSF iron); together 
these measures might reflect the degree of underlying Aβ 
pathology (Supplementary Fig. 1), and a combination might 
provide useful diagnostic information in differentiating AD 
and CAA. In further exploratory analyses, we found differ-
ences of potential interest between the AD and CAA groups 
in CSF nickel, cobalt and manganese. CSF metallomic pro-
file might therefore provide a novel means to differentiate 
between disease secondary to parenchymal versus vascular 
Aβ.

We hypothesise that the elevation in CSF iron observed 
in CAA is due to small asymptomatic bleeding events into 

the subarachnoid space, which later evolve on MRI into 
haemorrhagic features such as cortical superficial siderosis 
and superficially located lobar cerebral microbleeds. In 
aneurysmal subarachnoid haemorrhage, iron is released 
into the CSF following the haemolysis of extravasated 
erythrocytes and subsequent degradation of haemoglobin 
[12]. In this context, iron is toxic, and ferritin is produced 
intrathecally within 24 to 48 h of a haemorrhage in order 
to sequester the free iron [9, 12]. CSF ferritin levels in 
aneurysmal subarachnoid haemorrhage peak after 7 to 
10 days, and can remain elevated for up to 2 months [9]. 
Cortical superficial siderosis in CAA develops after epi-
sodes of acute convexity subarachnoid bleeding [4], but 
provides no temporal information about when these haem-
orrhages occurred. A recent study [15] in a memory clinic 
population did not find any association between CSF iron 
and haemorrhagic MRI markers of CAA; this might reflect 
a lower frequency of CAA-related bleeding events (asymp-
tomatic or symptomatic) in a memory clinic cohort than 
that expected in a stroke cohort, where haemorrhagic fea-
tures might be more apparent. Although our observed dif-
ference in CSF ferritin was not significant in age-adjusted 
analyses, this might reflect a lack of power due to our 
small group sizes, given the biologically plausible mecha-
nism for this observation. CSF iron and ferritin might be 
attractive new dynamic biomarkers for recent bleeding and 
thus haemorrhagic disease activity in an individual with 
CAA; future work is needed to explore this further.

Data from patients with AD have suggested that iron 
might have a role in accelerating disease progression. CSF 
ferritin has been associated with brain hypometabolism [7], 
and more rapid deteriorations in cognitive performance [2] 
and CSF Aβ-42 levels [1, 15]. Moreover, iron is thought to 
enhance Aβ production and pathogenicity via a number of 
mechanisms [10]. In our work, as in these previous reports, 
we observed that CSF ferritin and Aβ-42 were (negatively) 
correlated. However, we did not detect differences between 
controls and AD patients in CSF ferritin or iron; of the three 
groups in our study, levels of ferritin and iron were lowest 
in the AD group, although this was only statistically signifi-
cant in comparisons (unadjusted for ferritin, unadjusted and 
age-adjusted for iron) with the CAA group. Our data might 
therefore suggest that previously described associations 
between CSF ferritin and poor outcomes in AD reflect the 
coexistence (and severity) of CAA [1, 7]. This hypothesis 
is supported by neuropathological data demonstrating that 
CAA has an independent negative effect on cognition in AD 
patients, independently of AD pathology [6]. Future studies 
should quantify the degree of CAA in AD patients and the 
impact this has on CSF iron and ferritin.

In our exploratory analyses for other CSF metals, we 
identified potential differences of interest between the CAA 
and AD groups in CSF nickel, manganese, and cobalt. 
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Although there are some data for these and other CSF met-
als in AD, to our knowledge similar findings have not been 
described in CAA. This might suggest that CAA results in 
a more widespread disruption in metal homeostasis, but 
the clinical and mechanistic relevance of these results are 
unclear; again, replication and further study in larger cohorts 
is needed.

We acknowledge that our exploratory study is small and 
therefore potentially underpowered; however, our aim was to 
provide hypothesis-generating data for novel biomarkers of 
CAA. Our preliminary data suggest that CAA might result in 
a distinct CSF metallomic profile; replication and validation 
of these results in larger cohorts is needed.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00415-​021-​10711-6.
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