
fgene-11-562971 October 9, 2020 Time: 16:6 # 1

METHODS
published: 14 October 2020

doi: 10.3389/fgene.2020.562971

Edited by:
Cheng Peng,

Yunnan University, China

Reviewed by:
Guoli Ji,

Xiamen University, China
Yuriy L. Orlov,

First Moscow State Medical
University, Russia

*Correspondence:
Lei Ma

roy_murray@qq.com
Junpeng Zhang

zhangjunpeng_411@yahoo.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 17 May 2020
Accepted: 31 August 2020

Published: 14 October 2020

Citation:
Xiong C, Sun S, Jiang W, Ma L

and Zhang J (2020) ASDmiR:
A Stepwise Method to Uncover

miRNA Regulation Related to Autism
Spectrum Disorder.

Front. Genet. 11:562971.
doi: 10.3389/fgene.2020.562971

ASDmiR: A Stepwise Method to
Uncover miRNA Regulation Related
to Autism Spectrum Disorder
Chenchen Xiong1†, Shaoping Sun2†, Weili Jiang1, Lei Ma1* and Junpeng Zhang3*

1 Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China,
2 Department of Medical Engineering, People’s Hospital of Yuxi City, Yuxi, China, 3 School of Engineering, Dali University,
Dali, China

Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders
characterized by genetic and environmental risk factors. The pathogenesis of ASD
has a strong genetic basis, consisting of rare de novo or inherited variants among a
variety of multiple molecules. Previous studies have shown that microRNAs (miRNAs)
are involved in neurogenesis and brain development and are closely associated with
the pathogenesis of ASD. However, the regulatory mechanisms of miRNAs in ASD
are largely unclear. In this work, we present a stepwise method, ASDmiR, for the
identification of underlying pathogenic genes, networks, and modules associated with
ASD. First, we conduct a comparison study on 12 miRNA target prediction methods
by using the matched miRNA, lncRNA, and mRNA expression data in ASD. In terms of
the number of experimentally confirmed miRNA–target interactions predicted by each
method, we choose the best method for identifying miRNA–target regulatory network.
Based on the miRNA–target interaction network identified by the best method, we
further infer miRNA–target regulatory bicliques or modules. In addition, by integrating
high-confidence miRNA–target interactions and gene expression data, we identify
three types of networks, including lncRNA–lncRNA, lncRNA–mRNA, and mRNA–mRNA
related miRNA sponge interaction networks. To reveal the community of miRNA
sponges, we further infer miRNA sponge modules from the identified miRNA sponge
interaction network. Functional analysis results show that the identified hub genes, as
well as miRNA-associated networks and modules, are closely linked with ASD. ASDmiR
is freely available at https://github.com/chenchenxiong/ASDmiR.

Keywords: miRNA, lncRNA, mRNA, miRNA regulation, autism spectrum disorder

INTRODUCTION

Autism spectrum disorder (ASD) encompasses a variety of complex inheritable neurodevelopment
disorders that usually occur before 3 years old and last throughout a person’s life (Fregeac
et al., 2016; Quesnel-Vallieres et al., 2019). ASD patients are characterized by controlled
social interactions, restricted activities, and repetitive behavior (Chen et al., 2015). The current
diagnosis of ASD is mainly based on behavioral characteristics (Gillian et al., 2003), which may
cause misdiagnosis or delay treatment. Previous transcriptomic studies (Voineagu et al., 2011;
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Gupta et al., 2014; Ansel et al., 2016; Quesnel-Vallieres et al.,
2019) have reported that ASD has strong genetic complexity,
and many genes are involved in the ASD-related biological
processes, including neuronal activity (Voineagu et al., 2011),
immune response (Gupta et al., 2014; Ansel et al., 2016), and
signaling pathways (Quesnel-Vallieres et al., 2019). Although
great progress has been made to study the pathogenesis of ASD,
the gene regulation in ASD is largely unknown because of the
heterogeneity and complexity of ASD. Therefore, it is necessary
to investigate the pathogenesis and molecular mechanisms
underlying ASD for improving the diagnosis and therapeutic
strategies of patients.

At the genetic level, microRNAs (miRNAs) are important
regulators of brain function and neuronal development (Rajman
and Schratt, 2017; Shen et al., 2019). By binding with messenger
RNAs (mRNAs) at the post-transcriptional level, miRNAs as
tiny non-coding RNA molecules (∼22 nucleotides) can induce
repression or translational inhabitation of mRNAs (Ambros,
2004). Previous studies (Ander et al., 2015; Hu et al., 2017;
Shen et al., 2016) have elucidated that miRNAs participate in
several biological processes that are closely associated with ASD,
including synaptic plasticity and neuronal development (Hu
et al., 2017), immune response (Ander et al., 2015), and signaling
pathways (Shen et al., 2016). These studies have also indicated
that miRNAs and their corresponding targets could help to
uncover ASD pathogenesis.

Long non-coding RNAs (LncRNAs) are transcripts with a
length of more than 200 nucleotides, and they play critical
roles in the progression of neuropsychiatric disorders including
ASD (Hosseini et al., 2019). In the developmental processes
of ASD, lncRNAs take part in several important biological
processes, including neuronal architecture and immune response
(Kerin et al., 2012), synaptic and neuronal excitatory dysfunction
(Noor et al., 2010), neurite elaboration (Wang et al., 2015), and
alternative splicing (Parikshak et al., 2016). These studies have
demonstrated the potential contribution of lncRNAs on revealing
the molecular mechanisms of ASD.

According to competing endogenous RNA hypothesis
(Salmena et al., 2011), coding and non-coding RNA transcripts
compete with each other by base pairing with miRNA-
recognition elements (MREs). These transcripts are also known
as miRNA sponges, including mRNAs (Tay et al., 2011), lncRNAs
(Cesana et al., 2011), pseudogenes (Poliseno et al., 2010), and
circular RNAs (circRNAs) (Hansen et al., 2013). All types of
miRNA sponges crosstalk with other through MREs and form
a large-scale miRNA sponge interaction network (Salmena
et al., 2011). Although accumulating miRNA sponges have been
experimentally identified and are closely relevant to various
cancers (Le et al., 2017), the roles of miRNA sponges in ASD are
largely unknown. To uncover potential roles of miRNA sponges
in ASD, we focus on investigating lncRNA and mRNA related
miRNA sponge interaction networks in ASD in this work.

There have been growing computational methods to
effectively explore miRNA functions based on gene expression
data. However, current bioinformatics research on miRNA
regulatory mechanisms related to ASD is still in its infancy.
In this work, we propose a novel stepwise method, ASDmiR,

to uncover miRNA regulation in ASD. ASDmiR has two main
contributions as follows. First, ASDmiR can be used to study
ASD-related miRNA regulation at both the network and module
level. Secondly, ASDmiR can help to explore both direct and
indirect miRNA regulation in ASD. At the network level, we
identify two types of ASD-related networks: miRNA–target
regulatory network and miRNA sponge interaction network.
Meanwhile, at the module level, we infer two types of ASD-
related modules: miRNA–target regulatory modules and miRNA
sponge modules. Topological analysis and functional analysis
have shown that the identified miRNA-associated networks and
modules are highly implicated in ASD.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
Differential Expression Analysis
Previous studies (Mohr and Liew, 2007; Segura et al., 2015;
Ansel et al., 2016) have discovered that peripheral blood
samples are more accessible than brain tissue samples in the
transcriptomic study of ASD. In this work, we obtained the
matched miRNA, lncRNA, and mRNA expression profiles of
ASD from Kong et al. (2012). The samples of gene expression
profiles are from peripheral blood samples and are categorized
as ASD (104 samples) and normal (82 samples). We apply
the miRBaseConverter (Xu et al., 2018) R package to convert
miRNA names into the latest version of miRBase. To discover the
differentially expressed miRNAs, lncRNAs, and mRNAs between
ASD samples and normal samples, we conduct differential
expression analysis using the limma R package (Ritchie et al.,
2015). In the ASD dataset, the changes in mRNA expression
level between ASD samples and normal samples are large, while
the changes in the case of miRNAs and lncRNAs are small. To
cover important ASD-related miRNAs and lncRNAs and to have
a moderate number of mRNAs for ASDmiR, we select top 100
miRNAs, 300 lncRNAs, and 4,000 mRNAs ranked by adjusted
p-values (adjusted by the Benjamini and Hochberg method) in
the differential gene expression analysis for subsequent analysis.
The detailed results of differentially expressed miRNAs, lncRNAs,
and mRNAs can be seen in Supplementary Table 1.

MiRNA-Target Interactions
For putative miRNA–mRNA interactions, we have obtained
762,540 unique interactions between 2,600 miRNAs and 21,538
mRNAs from miRTarBase v8.0 (Chou et al., 2018) and TarBase
v8.0 (Karagkouni et al., 2018) databases. By combining the
interactions from LncBase v2.0 (Paraskevopoulou et al., 2016)
and NPInter v4.0 (Teng et al., 2020) databases, we have collected
138,951 unique miRNA–lncRNA interactions between 1,044
miRNAs and 13,243 lncRNAs. The obtained miRNA–target
interactions could be seen in Supplementary Table 2.

ASD-Related Genes
In this work, we collect a list of miRNAs, lncRNAs, and
mRNAs associated with ASD to investigate ASD-related miRNA
regulation. In total, we have obtained a list of 141 ASD-related
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miRNAs from HMDD v3.2 (Huang et al., 2019) and MNDR
v2.0 (Cui et al., 2018), a list of 117 ASD-related lncRNAs from
LncRNADisease v2.0 (Bao et al., 2019) and MNDR v2.0 (Cui
et al., 2018), and a list of 1,658 ASD-related mRNAs from
the Simons Foundation Autism Research Initiative (SFARI)1

and DisGeNET v7.0 (Pinero et al., 2020). The obtained ASD-
related miRNAs, lncRNAs, and mRNAs could be seen in
Supplementary Table 2.

Methods
Overview of ASDmiR
In Figure 1, the workflow of ASDmiR includes three major steps
for identifying miRNA-associated networks and modules related
to ASD. In the first step, by using the matched miRNA, lncRNA,
and mRNA expression profiles, we conduct a comparison study
of 12 commonly used miRNA target prediction methods from Le
et al. (2015). In terms of the number of experimentally validated
miRNA–mRNA interactions, we select the best performing
method to identify miRNA–target regulatory network in ASD
dataset. Furthermore, we infer miRNA–target regulatory modules
based on the identified miRNA–target regulatory network. In
the second step, we use the well-cited sensitivity partial Pearson
correlation (SPPC) method (Paci et al., 2014) to identify miRNA
sponge interaction network by integrating putative miRNA–
target interactions and gene expression data. Moreover, the
Markov cluster (MCL) algorithm (Enright et al., 2002) is
used to discover miRNA sponge modules for investigating
the community of miRNA sponges. In the final step, we
conduct functional analysis of the identified miRNA-associated
networks and modules. In the following, we will describe the
details of these steps.

Identification of miRNA-Target Regulatory Network
and Modules
To identify miRNA–target interactions, we use 12 existing
computational methods implemented in the miRLAB R package
(Le et al., 2015). These miRNA target prediction methods
could be categorized into four types: correlation methods,
regression methods, causal inference methods, and other
methods. The first type of computational methods, including
Pearson (Pearson, 1920), Spearman (Spearman, 1904), Kendall
(Kendall, 1938), Distance correlation (Székely et al., 2007),
and Hoeffding’s D measure (Hoeffding, 1948), could calculate
linear correlation relationships between miRNAs and targets. To
capture non-linear relationships between miRNAs and targets,
the randomized dependence coefficient (Lopez-Paz et al., 2013)
and Mutual Information (MI) (Moon et al., 1995) methods
are utilized. For the second type of computational methods,
Lasso (Tibshirani, 1996) and Elastic-net (Zou and Hastie, 2005)
are used to identify the associations between miRNAs and
targets. As for the third type of computational methods, the
IDA (Intervention calculus when the Directed acyclic graph is
Absent) method (Maathuis et al., 2009) is selected to estimate
the causal effects that miRNAs have on mRNAs. For the fourth
type of computational methods, Z score (Prill et al., 2010) and

1https://www.sfari.org/

probabilistic MiRNA–mRNA Interaction Signature (ProMISe)
(Li et al., 2014) are used. The Z score method is commonly
used in gene-knockdown experiments to estimate the effect of
knocking out a miRNA on mRNAs, and the ProMISe method
estimates the probability of a miRNA targeting each mRNA by
considering the competition among mRNAs and the competition
among miRNAs. In this work, miRNAs are upstream variables,
and targets (lncRNAs and mRNAs) are downstream variables.
For each computational method, we use experimentally validated
miRNA–target interactions as the ground truth to validate top 50,
100, 150, 200 predicted targets of each miRNA. The more the
number of miRNA–target interactions validated by the ground
truth is, the better the computational method performs.

It is known that genes tend to implement a specific biological
process in the form of a community or module (Choobdar
et al., 2019). Therefore, we further identify miRNA–target
regulatory modules based on the identified miRNA–target
regulatory network. Different from other biological networks
(i.e., protein-protein interaction network), the miRNA–target
regulatory network is a bipartite network. Consequently, the
generated miRNA–target modules are actually bicliques where
every miRNA of the miRNA set is connected to each target
gene of the target gene set (Yoon et al., 2019). In this work, we
utilize the R package biclique (Zhang et al., 2014) to enumerate
all bicliques from the identified miRNA–target bipartite network.
Here, a biclique corresponds to a miRNA–target regulatory
module, and we only consider the bicliques with at least 3
miRNAs and 3 targets.

Identification of MiRNA Sponge Interaction Network
and Modules
In this section, we apply the SPPC method (Paci et al., 2014)
implemented in the miRspongeR R package (Zhang et al., 2019)
to infer miRNA sponge interactions. The SPPC method takes
miRNA, lncRNA, and mRNA expression data into account
for identifying miRNA sponge interactions, and quantitatively
evaluates the effect of sharing miRNAs on each miRNA sponge
interaction pair at the expression level. This method uses three
constraints (significant sharing of common miRNAs, significant
positive correlation, and adequate sensitivity correlation) to
evaluate whether a candidate RNA–RNA pair (lncRNA–lncRNA,
lncRNA–mRNA, and mRNA–mRNA pair) is a miRNA sponge
interaction or not. Given two competing RNAs (RNAi and
RNAj), the significance p-value of sharing miRNAs and positive
correlation is usually set to be 0.05. The Sensitive Correlation (SC)
between the RNAi–RNAj pair is calculated as follows:

SC = ρij − ρij|n (1)

Where ρij denotes Pearson correlation (Pearson, 1920)
between RNAi and RNAj, and ρij|n is partial Pearson correlation
between RNAi and RNAj on the condition of n sharing
miRNAs. In this work, the cutoff of SC is set to be 0.25 (see
“The Identified MiRNA-Associated Modules Are Functional”
for details). After assembling the identified miRNA sponge
interactions, we could gain three types of networks, including
lncRNA–lncRNA, lncRNA–mRNA, and mRNA–mRNA related
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FIGURE 1 | The workflow of ASDmiR. In Step 1, by integrating expression data of differential miRNAs, lncRNAs, and mRNAs and putative miRNA–target
interactions, we identify miRNA–target regulatory networks using 12 existing computational methods. The miRNA–target regulatory network predicted by the best
method is used for identifying miRNA–target regulatory modules. In Step 2, based on putative miRNA–mRNA interactions and gene expression data, we infer miRNA
sponge interaction network using the sensitivity partial Pearson correlation method. Furthermore, we identify miRNA sponge modules from the identified miRNA
sponge interaction network by using the Markov cluster algorithm. In Step 3, we conduct functional analysis of the identified miRNA-associated networks and
modules. Green rhombic, pink circle, and purple triangle nodes represent miRNAs, mRNAs, and lncRNAs, respectively.

miRNA sponge interaction networks. At the module level, we
further infer miRNA sponge modules by using the Markov cluster
(MCL) algorithm (Enright et al., 2002). For each module, the
number of miRNA sponges (lncRNAs or mRNAs) is at least 3.

Functional Analysis
The hub genes may play key roles in the characteristics
and development of complex diseases (Zhang et al., 2018).
Consequently, at the network level, we focus on identifying hub
genes from both the identified miRNA–target regulatory network

and miRNA sponge interaction network. Empirically, we choose
top 20% miRNAs or miRNA sponges with the largest degree
as hub miRNAs or hub miRNA sponges. Furthermore, we use
the miEAA (Kern et al., 2020) online tool to conduct functional
enrichment analysis of hub miRNAs, and the miRspongeR
(Zhang et al., 2019) R package for functional enrichment analysis
of hub miRNA sponges.

At the module level, to know the potential diseases, biological
processes, and pathways associated with the identified miRNA-
associated modules, we conduct functional enrichment analysis
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FIGURE 2 | Comparison in terms of the number of confirmed miRNA–target interactions using 12 miRNA–target prediction methods. (A) The number of validated
miRNA–target interactions in the case of top 50 miRNA–target interactions of each miRNA. (B) The number of validated miRNA–target interactions in the case of top
100 miRNA–target interactions of each miRNA. (C) The number of validated miRNA–target interactions in the case of top 150 miRNA–target interactions of each
miRNA. (D) The number of validated miRNA–target interactions in the case of top 200 miRNA–target interactions of each miRNA. The numbers in the white circle
denote the overlap of validated miRNA–target interactions by 12 computational methods.

FIGURE 3 | Power law degree distribution of the identified miRNA sponge interaction networks. (A–E) Node degree distribution of the identified miRNA sponge
interaction networks using different SC cutoffs from 0.1 to 0.3 with a step of 0.05. (F) Summary table of power law degree distribution under different SC cutoffs.

using the well-cited clusterProfiler (Yu et al., 2012) R package.
The third-party databases for functional enrichment analysis
include Gene Ontology database (GO)2, Kyoto Encyclopedia
of Genes and Genomes Pathway database (KEGG)3, Reactome

2http://www.geneontology.org/
3http://www.genome.jp/kegg

Pathway database (Reactome)4, Disease Ontology database5,
DisGeNET database6, and Network of Cancer Genes database7.
The enriched term (GO, KEGG, Reactome, Disease Ontology,

4http://reactome.org/
5http://disease-ontology.org/
6http://www.disgenet.org/
7http://ncg.kcl.ac.uk/
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FIGURE 4 | Visualization and functional enrichment analysis of hub miRNA regulatory network. (A) Hub miRNA regulatory network. Green rhombic, pink circle, and
purple triangle nodes denote miRNAs, mRNAs, and lncRNAs, respectively. (B) ASD-related enriched terms related to the target genes of hub miRNAs.

TABLE 1 | Disease and functional enriched terms of top 20 largest miRNA–target regulatory modules related to ASD.

Items Descriptions Module ID Evidence

umls:C1378703 Renal carcinoma 1, 8, 9, 19 Lam et al., 2018

umls:C0003469 Anxiety disorders 19 White et al., 2009

GO:0000380 Alternative mRNA splicing, via spliceosome 1, 2, 4, 6 Quesnel-Vallieres et al., 2019

GO:0007623 Circadian rhythm 1, 8 Hu et al., 2017

GO:0120111 Neuron projection cytoplasm 1, 2 Guo et al., 2019

GO:0099640 Axodendritic protein transport 1, 2 Mandal and Drerup, 2019

hsa03040 Spliceosome 5, 11, 12, 15, 16, 17, 19 Kong et al., 2013

R-HSA-210500 Glutamate neurotransmitter release cycle 5, 14 Horder et al., 2018

R-HSA-165159 mTOR signaling 5 Khlebodarova et al., 2018

DisGeNET, or Network of Cancer Genes term) with adjusted
p < 0.05 (adjusted by the Benjamini and Hochberg method) is
regarded as a significantly enriched term.

RESULTS

MiRNA-Associated Networks Are
Scale-Free Networks
We first follow Step 1 to obtain miRNA–target interactions
predicted by each of the 12 computational methods (details in
the section “Methods”). The aim of comparing the performance
of these methods is to select the best prediction method to
identify miRNA–target regulatory network in ASD. For each
method, we select top 50, 100, 150, and 200 targets of each
miRNA for the comparison. The method of predicting the largest
number of experimentally validated miRNA–target interactions
is used to identify miRNA–target regulatory network in ASD. As
displayed in Figure 2, the ProMISe method performs the best in
terms of the number of experimentally validated miRNA–target
interactions. Thus, we merge top 200 targets of each miRNA
identified by the ProMISe method as our final predicted miRNA–
target regulatory network (consisting of 20,000 miRNA–lncRNA

interactions and 20,000 miRNA–mRNA interactions). In total,
we obtain a list of 1,679 validated miRNA–target interactions,
consisting of 241 validated miRNA–lncRNA interactions and
1,438 validated miRNA–mRNA interactions. We further analyze
the node degree distribution of the identified miRNA–target
regulatory network using the Network Analyzer plugin (Assenov
et al., 2008) in Cytoscape (Shannon, 2003), and discover that
our identified miRNA–target regulatory network follows power
law distribution well in the form of P(k) = 67.593k−1.022 with
R2 = 0.783, where P(k) represents the number of nodes with the
node degree k. A higher R2 (range from 0 to 1) indicates that the
identified miRNA–target regulatory network is more likely to be
a scale-free network that occurs in the real world. The detailed
results of the identified miRNA–target regulatory network can be
found in Supplementary Table 3.

By following Step 2, we use different SC cutoffs from 0.1 to
0.3 with a step of 0.05, to infer the miRNA sponge interaction
network with better power law distribution. Under different SC
cutoffs, we use R2 value to evaluate the goodness of power law
degree distribution for the identified miRNA sponge interaction
network. If a miRNA sponge interaction network with higher
R2 value, the network is more likely to be a real biological
network. As shown in Figure 3, according to the principle of
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TABLE 2 | Disease and functional enriched terms of miRNA sponge modules related to ASD.

Module ID Items Description Adjusted p-value

1 GO:0061437 Renal system vasculature development 3.06E-02

GO:0071364 Cellular response to epidermal growth factor stimulus 3.06E-02

GO:1903844 Regulation of cellular response to transforming growth factor β stimulus 4.09E-02

R-HSA-380972 Energy dependent regulation of mTOR by LKB1-AMPK 1.36E-02

R-HSA-165159 mTOR signaling 1.68E-02

R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-lymphoid cell 4.90E-02

2 DOID:10155 Intestinal cancer 3.75E-02

umls:C1845055 α-Thalassemia/mental retardation syndrome, non-deletion type, X-linked 2.47E-02

GO:0000380 Alternative mRNA splicing, via spliceosome 4.23E-02

3 GO:0034134 Toll-like receptor 2 signaling pathway 3.33E-04

GO:0002758 Innate immune response-activating signal transduction 2.82E-02

GO:0007616 Long-term memory 2.97E-02

GO:0000380 Alternative mRNA splicing, via spliceosome 3.71E-02

hsa03040 Spliceosome 2.61E-02

R-HSA-5260271 Diseases of immune system 3.03E-02

R-HSA-1236974 ER-phagosome pathway 4.66E-02

R-HSA-168179 Toll-like receptor TLR1:TLR2 cascade 4.66E-02

4 GO:0000784 Nuclear chromosome, telomeric region 8.97E-03

GO:0005912 Adhere junction 1.96E-02

5 GO:0099640 Axodendritic protein transport 4.86E-02

GO:0042754 Negative regulation of circadian rhythm 4.86E-02

GO:1900016 Negative regulation of cytokine production involved in inflammatory response 4.86E-02

GO:0006658 Phosphatidylserine metabolic process 4.86E-02

GO:0002534 Cytokine production involved in inflammatory response 4.86E-02

R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulation 3.64E-02

6 GO:0000783 Nuclear telomere cap complex 4.43E-02

R-HSA-1980145 Signaling by NOTCH2 3.66E-02

R-HSA-177929 Signaling by EGFR 3.66E-02

R-HSA-2644603 Signaling by NOTCH1 in Cancer 3.66E-02

umls:C0267446 Acute gastroenteritis 4.81E-02

umls:C0588008 Severe depression 4.81E-02

7 GO:0005930 Axoneme 3.05E-02

8 umls:C0027889 Hereditary sensory and autonomic neuropathies 1.19E-02

umls:C0235025 Peripheral motor neuropathy 1.68E-02

umls:C0151313 Sensory neuropathy 1.93E-02

umls:C1270972 Mild cognitive disorder 3.32E-02

GO:0007173 Epidermal growth factor receptor signaling pathway 4.00E-02

GO:0038127 ERBB signaling pathway 4.25E-02

GO:0002433 Immune response-regulating cell surface receptor signaling pathway involved in phagocytosis 4.25E-02

GO:0038094 Fc-gamma receptor signaling pathway 4.25E-02

hsa04144 Endocytosis 8.81E-03

9 DOID:0060116 Sensory system cancer 4.63E-02

GO:0000380 Alternative mRNA splicing, via spliceosome 8.07E-03

GO:0007050 Cell cycle arrest 3.34E-02

GO:0099640 Axodendritic protein transport 3.44E-02

GO:1904357 Negative regulation of telomere maintenance via telomere lengthening 4.29E-02

GO:0032839 Dendrite cytoplasm 4.62E-02

GO:0005925 Focal adhesion 4.62E-02

hsa04218 Cellular senescence 1.90E-02

hsa03040 Spliceosome 1.37E-02

R-HSA-9617828 FOXO-mediated transcription of cell cycle genes 3.36E-02

10 DOID:0050735 X-linked disease 1.31E-02

GO:0005160 Transforming growth factor β receptor binding 3.18E-02

R-HSA-2173789 TGF-β receptor signaling activates SMADs 4.82E-02

R-HSA-2029480 Fc-gamma receptor–dependent phagocytosis 4.82E-02
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the largest R2 value, we select the SC cutoff as 0.25 to infer
miRNA sponge interaction network (containing 156 miRNA
sponge interactions) that fits power law distribution well in the
form of P(k) = 26.127k−1.176 with R2 = 0.815. The detailed results
of the identified miRNA sponge interaction network can be found
in Supplementary Table 3.

Hub Genes Are Closely Associated With
ASD
In this work, we have identified 12 hub miRNAs (hsa-miR-195-5p,
hsa-miR-15a-5p, hsa-miR-26b-5p, hsa-miR-23a-3p, hsa-miR-93-
5p, hsa-miR-210-3p, hsa-miR-25-3p, hsa-miR-30b-5p, hsa-miR-
148b-3p, hsa-miR-149-5p, hsa-miR-200c-3p, and hsa-miR-147a)
and 15 hub miRNA sponges (SLC38A2, SHOC2, DDX6, WSB1,
PURB, DDX5, DLEU2, USP15, C6orf62, ADAM10, STK4, LBR,
PNISR, ANKRD44, and SERINC1). It is noted that four hub
miRNAs (hsa-miR-148b-3p, hsa-miR-15a-5p, hsa-miR-23a-3p,
and hsa-miR-93-5p) and two hub miRNA sponges (DLEU2 and
USP15) are experimentally validated ASD-related hub genes.

In Figure 4A, we discover that 12 hub miRNAs are highly
connected with their target genes, and several hub miRNAs
synergistically regulate their target genes. To investigate the
underlying biological implications of these hub miRNAs, we
conduct functional 1enrichment analysis of the target genes of
these hub miRNAs. Functional enrichment analysis results show
that 439 GO terms and 128 KEGG pathways are significantly
associated with the target genes of the hub miRNAs. Moreover,
several significantly enriched GO biological processes and KEGG
pathways, including Cell cycle arrest (GO: 0007050), Regulation
of immune response (GO: 0050776) (Gupta et al., 2014) (Ander
et al., 2015), Nervous system development (GO:0007399) (Hu
et al., 2017), NF-kappa B signaling pathway (hsa04064) (Malik
et al., 2011), Long-term depression (hsa04730) (Monday et al.,
2018), Wnt signaling pathway (hsa04310) (Shen et al., 2016), and
gastric cancer (hsa05226) (Wasilewska and Klukowski, 2015) are
closely associated with the progression and development of ASD
(Figure 4B). As for the identified hub miRNA sponges, functional
enrichment analysis results indicate that they are significantly
enriched in SMAD binding (GO: 0046332). A previous study
(Avazzadeh et al., 2019) has demonstrated that SMAD binding
is closely related to ASD. Altogether, the above functional
enrichment analysis results imply that the identified hub genes
are closely associated with the occurrence and development of
ASD. The functional enrichment analysis results of hub genes can
be found in Supplementary Table 4.

The Identified MiRNA-Associated
Modules Are Functional
Based on the identified miRNA–target network, we have
identified 9,625 miRNA–target regulatory modules. In this work,
we are only interested in studying the potential biological
functions of top 20 largest miRNA–target regulatory modules.
Moreover, we have obtained 10 miRNA sponge modules from
the identified miRNA sponge interaction network. Disease and
functional enrichment analysis indicate that the top 20 largest
miRNA–target regulatory modules are significantly enriched in

397 GO terms, 3 KEGG pathways, 12 Reactome pathways, and
69 DisGeNET terms. Specifically, several biological processes,
pathways, and diseases, including anxiety disorder (umls:
C0003469) (White et al., 2009), Alternative mRNA splicing (GO:
0000380) (Quesnel-Vallieres et al., 2019), circadian rhythm (GO:
0007623) (Hu et al., 2017), and mTOR signaling pathway (R-
HSA-165159) (Khlebodarova et al., 2018) are closely related to
ASD (Table 1).

Furthermore, the identified 10 miRNA sponge modules are
significantly enriched in 711 GO terms, 23 KEGG pathways,
117 Reactome pathways, 22 Disease Ontology terms, and 157
DisGeNET terms. In Table 2, several GO, KEGG, Reactome,
Disease Ontology, DisGeNET, and Network of Cancer Genes
terms are closely associated with ASD. For instance, severe
depression (umls: C0588008) (Hedley et al., 2018), Mild cognitive
disorder (umls: C1270972) (Leekam, 2016), acute gastroenteritis
(umls: C0267446) (Wasilewska and Klukowski, 2015), Focal
adhesion (GO: 0005925) (Ander et al., 2015), long-term memory
(GO: 0007616) (Toichi and Kamio, 2002), and spliceosome
(hsa03040) (Kong et al., 2013) are experimentally confirmed to
be ASD-related terms. Taken together, the above enrichment
analysis results indicate that the identified miRNA-associated
modules are functional. The disease and functional enrichment
analysis results of miRNA-associated modules can be seen in
Supplementary Table 5.

DISCUSSION AND CONCLUSION

Given the high prevalence rate of ASD, it becomes more and more
urgent to reveal the underlying molecular mechanisms associated
with ASD. Growing evidence (Fregeac et al., 2016; Shen et al.,
2016; Hu et al., 2017) has revealed that miRNA dysregulation
has made a great contribution to the pathology of ASD. However,
there is still a lack of computational methods to uncover miRNA
regulation in ASD at both the network and module level.

In this work, we propose a stepwise method, ASDmiR, to
reveal miRNA regulation in ASD. The comparison study suggests
that the ProMISe method is the best miRNA target prediction
method for identifying miRNA–target regulatory network in ASD
dataset. Network topological analysis indicates that the identified
miRNA–target network and miRNA sponge interaction network
are all scale-free networks. Moreover, functional enrichment
analysis shows that hub miRNAs and hub miRNA sponges are
closely associated with ASD. As functional units, the identified
miRNA-associated modules are found to be significantly enriched
in several important ASD-related terms.

ASDmiR can be improved in the following aspects. First,
ASD-related samples can be obtained from peripheral blood,
post-mortem brain, gastrointestinal tissue, adult olfactory stem
cells, and scalp hair follicles (Ansel et al., 2016). In future, we will
apply ASDmiR into other types of ASD-related datasets. Second,
we will conduct a more comprehensive comparison to identify
miRNA–target regulatory network by considering more miRNA
target prediction methods. Third, we will cover other types of
miRNA sponges (e.g., circRNAs, pseudogenes) to further uncover
the potential roles of miRNA sponges in ASD. Finally, a previous
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study (Iakoucheva et al., 2019) has shown that de novo mutations
(e.g., structure variants, protein-altering point mutations) and
genetic variants (e.g., copy number variations, single nucleotide
polymorphisms) could also contribute to the occurrence of ASD.
Therefore, to further understand the molecular mechanisms of
ASD, it is necessary to integrate these heterogeneous data to
explore miRNA regulation.
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