
COMPUTATIONAL NEUROSCIENCE

A neuron in V2 or V4 is known to respond strongly to a bar 
presented in a neuron’s receptive field if the bar is aligned with the 
neuron’s preferred orientation (Reynolds et al., 1999). This neuronal 
response is markedly suppressed if the bar is accompanied by a second 
bar oriented toward a non-preferred orientation. Interestingly, how-
ever, if attention is prompted at the spatial location of the preferred 
stimulus prior to the presentation of the visual stimuli, the intensity 
of the neuronal response recovers at the original level. Whether simi-
lar attentional modulations occur in V1 remains unknown: small 
receptive fields of V1 neurons precluded such experiment (Luck 
et al., 1997). Lateral inhibition between neurons may account for 
the suppressed response to a preferred stimulus. By contrast, the 
attention-induced response modulation seems to require complex 
interactions between bottom-up sensory and top-down attentional 
inputs within cortical microcircuits (Martinez-Trujillo and Treue, 
2004; Tiesinga and Sejnowski, 2009). Such a top-down control of 
attention has been suggested for the V4 responses evoked by stimula-
tion to the frontal eye field (Armstrong et al., 2006).

Network models were previously proposed to explain the atten-
tional enhancement of visual responses (Reynolds et al., 1999; Boynton, 
2005; Buia and Tiesinga, 2008). However, the laminar dependence of 
attentional modulations by top-down signals has not been studied in 
cortical microcircuit models with biologically plausible layer structure. 
By the same token, it remains unclear how a bottom-up sensory input 

IntroductIon
Neocortical microcircuits have a stereotyped structure, which is a 
six-layered network of excitatory pyramidal neurons and inhibi-
tory interneurons. The structure is preserved across all neocortical 
regions, and is considered to represent the functional module of 
cortical information processing. Uncovering how neurons in the 
different layers process information is a key to understand the prin-
ciples of cortical computation. Various anatomical, electrophysi-
ological and computational studies have attempted to clarify the 
structure and function of cortical microcircuits. The basic design 
of their computation, however, remains largely unknown.

Large-scale simulation is a powerful modern tool to study com-
putation in biological neuronal networks (Markram, 2006). For 
example, such simulations will allow us to study dynamical interac-
tions in a brain-scale neural network, such as a large-scale network 
consisting of multiple cortical areas. As a step toward this direction 
of research, here we model the microcircuit of the visual cortex 
and explore differential functions of the individual cortical layers 
in attentional processing of sensory stimuli by top-down signals. 
Since interactions between top-down signals and bottom-up sensory 
inputs first occur within cortical microcircuits, the analysis of the 
laminar dependence of attentional modulations will provide a cue 
to understand the flow of information within or between cortical 
microcircuits, and hence the basic design of cortical computation.
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and a top-down attentional input may interact with each other in the 
laminar structure and produce the neural modulations observed in 
visual areas. Here, we model the microcircuits of the visual cortex to 
explore the attentional mechanism of selecting sensory inputs. Our 
model attempts to replicate the layered network structure of visual 
cortical columns, expressed in the connectivity patterns between 
excitatory and inhibitory integrate-and-fire neurons. Several biological 
features, such as the morphology of neurons and interneuron subtypes, 
are ignored due to limitations on experimental data and computational 
resources. Thus, our model focuses on a description of intra- and 
inter-laminar information flows during attention.

 In sensory cortices, the bottom-up input carrying sensory infor-
mation projects to cortical layer 4 (L4), whereas the top-down input 
from higher cortical areas to L2/3 and L5, avoiding L4 (Felleman 
and van Essen, 1991; Reid et al., 2009; Tiesinga and Sejnowski, 2009; 
Noudoost et al., 2010). Then, the output to higher cortical areas 
arises from L2/3, L5, and L6 of lower cortical areas. The laminar-
specific input–output organization of the cortical microcircuit 
suggests that the microcircuit processing of sensory information 
is layer-dependent. Our model demonstrates that the response 
modulations in L2/3 and L5 are consistent with those observed in 
V2 and V4 (Luck et al., 1997; Reynolds et al., 1999). Interestingly, 
the response of L4 neurons in our model is modulated in a signifi-
cantly different manner. Analyzing our numerical data, we propose 
distinct roles of top-down signals in attention modulations at L4 
(input terminal of bottom-up signals) and L2/3 and L5 (output 
terminals to higher cortical areas) of the cortical microcircuit.

MaterIals and Methods
MIcrocIrcuIt Model of vIsual cortIcal coluMns
Figure 1 displays the major neuronal and synaptic components of 
our model cortical microcircuit, which consists of two columnar 
circuits, each representing the basic processing unit of the visual 

cortex and sharing their receptive fields. The columnar circuit has 
L2/3, L4, L5, and L6, and each layer consists of an excitatory neuron 
pool and an inhibitory neuron pool (see Table 1 for details). Layer 
1 is not modeled explicitly as it primarily contains dendritic fibers 
of neurons in the other layers. Arrows on Figure 1A present major 
neuronal connections of this cortical microcircuit. Thick arrows 
show dense connections with a connection probability >0.08, while 
thin arrows represent connections with a connection probability 
<0.08 and >0.04. Other sparse connections are not shown. The 
detailed connection probabilities are listed in Table 2. For simplic-
ity, all intra-columnar connections have the same synaptic weight. 
The full network consisting of two columns comprises in total 
around 80,000 integrate-and-fire neurons and 300 million synapses. 
See Tables A1 and A2 in Appendix for details of the neuron models 
and specific values of the parameters.

 Experimental data currently available for the construction of 
microcircuits of visual cortices (V2 and V4) of macaque are limited. 
It is also difficult to obtain all necessary data from literature on a 
single animal species. Therefore, we construct a columnar circuit 
model primarily based on anatomical data of cat primary visual 
cortex (Binzegger et al., 2004) and also on electrophysiological data 
of cat and rat cortices (Thomson and Morris, 2002; Thomson et al., 
2002). To compensate for shortcomings and inconsistencies of the 
individual data sets, we attempt to derive the connectivity from the 
two data sets consistently by carefully taking methodological limita-
tions of anatomical and electrophysiological studies into account 
(Potjans and Diesmann, 2011). See the Section “Appendix” for the 
detailed estimation of intracolumnar synaptic connections and a 
complete model description.

 Cortical L2/3 has rich recurrent synaptic connections within 
the same layer (Callaway, 1998). We introduced lateral inhibition 
between the L2/3 networks of the two columns to induce competi-
tion between them (Lübke et al., 2003; Chalupa and Werner, 2004; 

Figure 1 | Model architecture. (A) Intra-columnar connections. The 
microcircuit model has two columns, each of which comprises 40,000 
integrate-and-fire neurons and constitutes L2/3, L4, L5, and L6. Triangles and 
stars represent excitatory pyramidal and stellate neurons, respectively, whereas 
circles represent inhibitory neurons. All neurons are described by integrate-and-
fire models in the present microcircuit model. Thick arrows represent strong 

synaptic connections with connection probability C > 0.08, and narrow arrows 
synaptic connections with C > 0.04. Other weaker synaptic connections are not 
shown. (B) Inter-columnar and external inputs. Layer 2/3 mediates reciprocal 
lateral inhibition between the columns through projections from excitatory 
neurons in one column to inhibitory in the other. Bottom-up sensory input 
projects to L4, while top-down attentional input projects to L2/3 and L5.
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set to 0.1. Columns of similar orientation specificity have long-range 
horizontal excitatory connections (Gilbert and Wiesel, 1983, 1989; 
Callaway and Katz, 1991). However, we do not introduce inter-
columnar connections between excitatory neurons since the two 
columns of our model have different preferred orientations.

 The parameterization of a previous single columnar model 
(Potjans and Diesmann, 2011) according to the mono-layered bal-
anced random network model (Amit and Brunel, 1997) yielded 
spontaneous firing rates as observed in awake animals (de Kock and 
Sakmann, 2009, and references therein). Due to the lateral inhibi-
tion, L2/3 of the multicolumnar model tends to show spontaneous 
firing of lower frequencies in comparison with the single-columnar 
model. To compensate for this decrease in firing rate, we slightly 
increase the connection probabilities of projections from L4 excita-
tory neurons to L2/3 excitatory or inhibitory neurons and decrease 
the probabilities of projections from L4 inhibitory neurons to L2/3 
excitatory neurons. With these modifications, the spontaneous firing 
rate of each layer falls down within a physiologically realistic range 
(L2/3 ∼1.4 Hz, L4 ∼2.5 Hz, L5 ∼12 Hz, L6 ∼0.5 Hz for pyramidal cells; 
L2/3 ∼5 Hz, L4 ∼5 Hz, L5 ∼9 Hz, L6 ∼6.5 Hz for inhibitory cells).

nuMerIcal experIMents
Excitatory and inhibitory neurons in L4 of the model columnar 
circuits receive bottom-up visual inputs mimicking vertical and 
horizontal bars in experiment. When these visual stimuli are pre-
sented in the receptive field of the two columns, they respond pref-
erentially to one of the two stimuli. Throughout this study, the 
vertical bar represents the preferred stimulus of column 1, whereas 
the horizontal bar its non-preferred stimulus. Column 2 has an 
opposite preference. The preferred and non-preferred inputs are 
sets of independent Poisson spike trains of 20 or 2 Hz, respectively. 
Table 3 lists the probabilities that a L4 neuron receives these sensory 
inputs in our model. We set the population size for these bottom-up 
visual stimuli to about 450 fibers (Potjans and Diesmann, 2011).

 The L2/3 and L5 of the model receive excitatory inputs rep-
resenting the top-down projection mediating selective attention 
(Peters and Rockland, 1994; Reynolds and Desimone, 2003; Ogawa 
and Komatsu, 2004; Reynolds, 2008; Tiesinga and Sejnowski, 2009; 
Noudoost et al., 2010). In our model, this top-down signal projects 
to both excitatory and inhibitory neurons although controversial 
arguments exist for the target cell types of the attentional input 
(Tiesinga and Sejnowski, 2009). Simultaneous input to excitatory 
and inhibitory neurons makes the neuronal response of the pre-
sent model multiplicative (Salinas and Abbott, 1996; Chance et al., 
2002), better explaining experimental observations. The top-down 

Smith et al., 2006; Adesnik and Scanziani, 2010). We model the 
lateral inhibition by projections from L2/3 excitatory neurons in one 
column to L2/3 inhibitory neurons in the other (Figure 1B), since 
typically only excitatory neurons make long-range connections and 
cross-orientation suppression is blocked by the application of GABA 
antagonist bicuculline (Morrone et al., 1987). Lateral connections 
in cortical networks remain largely unknown, and whether long-
range excitatory connections exist between regions with orthogo-
nal orientation preferences is under debate (Li et al., 2006; Priebe 
and Ferster, 2006). Some evidence, however, suggests the existence 
of such connections in the visual cortex (Kisvárday et al., 1997; 
Kimura and Ohzawa, 2009). We also tested another model with 
lateral inhibition from L2/3 inhibitory neurons in one column to 
L2/3 excitatory neurons in the other, and found that such a model 
does not produce significantly different results. Therefore, we will 
not present the results of this model in the present paper. The con-
nection probability of the inter-columnar synaptic  connections was 

Table 1 | The number of neurons in each layer of a single column.

 Neuron types

Layer excitatory neurons inhibitory neurons

L2/3 10341 2917

L4 10957 2739

L5 2425 532

L6 7197 1474

Table 2 | Connection probabilities.

 From

To L2/3e L4e L5e L6e

L2/3e 0.1184 0.0846 0.03230 0.0076

L4e 0.0077 0.0519 0.0067 0.0453

L5e 0.1017 0.0411 0.0758 0.0204

L6e 0.0156 0.0211 0.0572 0.0401

L2/3i 0.1008 0.0363 0.0755 0.0042

L4i 0.0691 0.1093 0.0033 0.1057

L5i 0.0436 0.0209 0.0566 0.0086

L6i 0.0364 0.0034 0.0277 0.0658

 From

To L2/3i L4i L5i L6i

L2/3e 0.1552 0.0629 0.0 0.0

L4e 0.0059 0.1453 0.0003 0.0

L5e 0.0622 0.0057 0.3765 0.0

L6e 0.0066 0.0166 0.0197 0.2252

L2/3i 0.1371 0.0515 0.0 0.0

L4i 0.0029 0.1597 0.0 0.0

L5i 0.0269 0.0022 0.3158 0.0

L6i 0.0010 0.0005 0.0080 0.1443

The entry in layer i (row) and layer j (column) is the connection probability that a 
neuron in layer j receives from layer i. e, Excitatory; i, Inhibitory.

Table 3 | Projection probabilities of bottom-up and top-down inputs.

 Sensory Attention

To excitatory inhibitory excitatory inhibitory 

 neurons neurons neurons neurons

L2/3 0.0 0.0 0.1 0.085

L4 0.0983 0.0619 0.0 0.0

L5 0.0 0.0 0.1 0.085

L6 0.0 0.0 0.0 0.0
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out  neuromodulatory and/or thalamic attentional inputs is suf-
ficient for a rate-based description of the attentional modulations 
found in the monkey visual cortices (Reynolds et al., 1999) and 
yields testable predictions.

responses of the MultIcoluMnar MIcrocIrcuIt Model to 
bottoM-up and top-down Inputs
Figure 3A summarizes the mean firing rates of excitatory and 
inhibitory neurons in each layer of column 1 of our microcircuit 
model in various stimulus conditions. This column responded 
strongly to a preferred stimulus (vertical bar) and weakly to a non-
preferred stimulus (horizontal bar). In L2/3 and L5 of the model, 
a simultaneous presentation of two stimuli suppresses neuronal 
responses compared with those to the preferred stimulus, espe-
cially in excitatory neurons. Then, a top-down input enhances the 
responses evoked in these layers up to the levels of the responses 
to the preferred stimulus presented alone. By contrast, attention to 
the non-preferred stimulus, i.e., an attentional input to column 2, 
suppresses neuronal responses in the two layers. The attentional 
effects on excitatory neurons in L2/3 and L5 are statistically signifi-
cant compared to neuronal responses in the absence of attention. 
All the response patterns mentioned above are consistent with the 
previous experimental results (c.f. Figures 6–8 in Reynolds et al., 
1999). However, we note that a simultaneous presentation of two 
visual stimuli enhances the responses of excitatory neurons in L4, 

input is a set of low-frequency Poisson spike trains of 5 Hz, which 
is much smaller than the rate of the preferred stimulus. The weak 
top-down signal seems reasonable as it prevents the lower order 
cortices from being a mere slave to the higher order cortices (Deco 
and Lee, 2004). In each simulation trial, we applied the attention 
signal to one of the two columns that prefers the attended stimulus 
(Buia and Tiesinga, 2008). Actually, to direct attention to multi-
ple features or locations at the same time is known to be difficult 
(Eriksen and Yeh, 1985; Posner and Petersen, 1990). The number 
of spike trains in the top-down projection is set to 600 in both L2/3 
and L5, and the projection probabilities of the top-down connec-
tions are given in a physiologically realistic range (Table 3). The 
way the weak top-down input modulates the neuronal activity in 
L2/3 and L5 is demonstrated in Figure A1.

 In some simulations, we compare the above top-down attention 
model with a bottom-up attention model, in which the top-down 
inputs to L2/3 and L5 are not included and the bottom-up input 
corresponding to an attended bar is enhanced by 25% compared to 
non-attended bottom-up inputs. All simulation results presented 
here were produced with the NEST 2 Simulation Tool (Gewaltig 
and Diesmann, 2007), using 8 cores [Xeon(R) 2.26 GHz] and MPI 
for the parallel computation.

results
The details of our cortical microcircuit model are explained in 
Materials and Methods as well as in Figure 1. We investigated the 
responses of our model in simulation trials that mimicked the 
experimental setting of Reynolds et al. (1999), in which vertical 
and horizontal bars were separately or simultaneously presented 
in the receptive field of visual cortical neurons (Figure 2A). In 
some trials, the expected location of one of the stimuli (circled in 
Figure 2B) was prompted by a visual cue prior to the presenta-
tion of oriented bars in order to direct monkeys’ attention to the 
stimulus shown at the prompted location. Our layered network 
model represents two mutually interacting cortical columns con-
sisting of cortical layers L2/3, L4, L5 and L6. The two columns 
interact with one another through lateral inhibition implemented 
at L2/3 by projections from excitatory neurons in one column to 
inhibitory in the other (Figure 1). L4 of each column receives two 
bottom-up external inputs corresponding to vertical and horizon-
tal bars in the experiment. The bottom-up input representing a 
vertical bar strongly projects to the L4 of column 1 (thick arrow 
in Figure 2C), while that representing a horizontal bar projects 
only weakly to this column (a thin arrow in Figure 2C). Column 
2 has opposite preferences to vertical and horizontal bars. In addi-
tion to the bottom-up sensory inputs, each column receives a 
top-down signal to L2/3 and L5 when its preferred stimulus is 
attended (Figure 2D).

 A general assumption here is that attention is mediated by 
an excitatory signal from the higher cortical circuits (e.g., see 
Noudoost et al., 2010). However, there is also ample evidence 
for other possible mechanisms of attention. For instance, neuro-
modulatory inputs, such as Ach (see Klinkenberg et al., 2011 for 
review) and dopamine (Noudoost and Moore, 2011), are known 
to mediate attentional modulations. Furthermore, thalamocorti-
cal input may be also influential in attentional modulations (see 
Saalmann and Kastner, 2009 for review). The present model with-

Figure 2 | Visual stimuli and top-down signals in our model. A total of 
five different stimulus patterns are used in the numerical simulations. (A) 
Visual stimuli mimicking vertical and horizontal bars are presented to the 
model in three different combinations. Gray ellipses represent the overlapping 
receptive field of the two columns. (B) Top-down signal is applied to either the 
vertical or the horizontal bar to be attended. The empty ellipse refers to the 
stimulus attended. (C) Visual inputs to the two columns are schematically 
illustrated in a situation where a vertical bar is presented in the receptive field. 
The vertical orientation is the preferred orientation of column 1. The thickness 
of each projection represents its strength. (D) Visual and top-down inputs to 
the two columns are shown when a vertical bar and a horizontal bar are 
simultaneously presented in the receptive field and the former is attended. 
The horizontal orientation is the preferred orientation of column 2.
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from L2/3 excitatory or L6 excitatory neurons. When a vertical bar 
(the preferred stimulus of column 1) is attended, L2/3 excitatory 
neurons are activated more strongly in column 1 than in column 
2 due to the inter-columnar competition. This means that the L4 
activity is suppressed more strongly in column 1 than in column 2 
by the inhibitory effect of the projections from L2/3 (Figure 4A). 
This explains why the pattern of response modulations is reversal in 
L4 excitatory neurons. Strong projections from L6 excitatory to L4 
inhibitory neurons work essentially in the same fashion, although 
they only play a minor role due to a relatively low activation of 
L6 (Figure 3A). To confirm these arguments and predictions, we 
reduce the connection probabilities of the projection from L2/3 
excitatory to L4 inhibitory neurons as 0.069 → 0.015. To avoid 
too strong winner-take-all behavior, we simultaneously weaken 
the inter-columnar lateral inhibition as 0.1 → 0.08. As expected, 
this modified model does not exhibit strong modulations of activ-
ity of L4 excitatory neurons in column 1 when a vertical bar is 
attended (Figure 4B). Weakening the projections from L6 excitatory 
to L4 inhibitory neurons also gives similar results (not shown), as 
expected.

rapId swItchIng of attentIon by top-down sIgnals In the 
cortIcal MIcrocIrcuIt Model
Comparison between the models shown in Figure 3A (original 
model) and Figure 4B (modified model) allows us to address 
functional implications of the attention-induced suppression in 
L4. To this end, we investigated the transient behavior of these 
microcircuit models when top-down attention is suddenly shifted 
from a vertical bar to a horizontal bar, as illustrated by shaded 
areas in Figure 4C. The transient responses of L2/3 and L4 of both 
models are compared in Figure 4C. We first explain the behavior 
of the original model. When a vertical bar (the preferred stimulus 
of column 1) is attended, column 1 becomes a winner. The activ-
ity of L2/3 of column 1, however, is lower in the original model 
than in the modified model since L4 of the column, which sends 
strong excitatory projections to L2/3, is suppressed by inhibitory 
influences from L2/3 during attention to a vertical bar (Figure 3A). 
After attention is shifted to a horizontal bar, L2/3 activity decays 
rapidly in column 1, as it was initially low. This implies that lateral 
inhibition from column 1 to column 2 also decreases rapidly, and 
hence L2/3 activity can grow rapidly in column 2.

By contrast, in the modified model attention to a vertical bar 
does not suppress the L4 activity of column 1 (Figure 4B), so the 
L4-to-L2/3 excitatory projection keeps the L2/3 activity also high 
(Figure 4C). Because L2/3 is highly activated in column 1, inhibi-
tion from column 1 to column 2 remains strong for a sufficiently 
long time and prevents a rapid activation of the L2/3 of column 2 
after the shift of attention.

 Thus, the L2/3 of column 2 is activated after an attentional shift 
about 10 to 15 ms earlier in the original model than in the modi-
fied one. Activities of L5 also exhibit similar differences between 
the two columns (results not shown). Thus, the suppression of 
L4 activity induced by the top-down signal regulates the inter-
columnar competition in a functionally useful way. Consequently, 
the suppressed L4 activity enables the microcircuits of lower visual 
cortices to immediately respond to a newly attended stimulus and 
output the relevant information to higher visual areas.

whereas attention to a preferred stimulus significantly reduces the 
responses. These modulation patterns are opposite to those in L2/3 
and L5.

The L2/3 and L5 of the bottom-up attention model also dis-
played attentional modulations similar to those observed in the 
top-down model. The L4 of the bottom-up model, however, did not 
exhibit significant attentional modulation (Figure A2). The weak 
modulation of L4 is understood as effects of inhibitory feedback 
from L2/3 to L4. Thus, the attentional modulation in L4 is charac-
teristic to the case where visual attention is mediated by top-down 
signals to L2/3 and L5.

 Figure 3B shows the time course of averaged peri-stimulus-
time-histograms (PSTHs) of L5 excitatory neurons of column 1 
in the different stimulus conditions. The consistency between our 
model and the experiment by Reynolds is most clearly demonstrated 
in the neuronal responses in L5. Since extracellular recordings from 
the cortex of behaving monkeys do not allow us to morphologi-
cally identify recorded neurons, it remains unclear how strongly 
this coincidence with the experimental results supports the model. 
However, it is possible that extracellular recording data contains L5 
neurons more often than others owing to their relatively high firing 
rate. Therefore, the consistency between the model’s L5 activity and 
experiment is particularly interesting.

 In addition to the rate modulations, the activity evoked in L2/3, 
L4 and L5 of column 1 tends to exhibit synchronized oscillations 
in the gamma frequency range. To see this, we display a typical 
example of spike raster of our microcircuit model in Figure 3C, 
where it receives sensory inputs to columns 1 and 2 (shaded inter-
vals) and an attentional input to column 1 (gray bar above the spike 
raster). Therefore, the raster corresponds to the red trace shown in 
Figure 3B. We found that the gamma oscillations emerge strongly 
when L2/3 has strong recurrent excitatory connections. The gamma 
oscillations are considered to play an active role in visual attention 
(Fries, 2009; Womelsdorf et al., 2006; Khayat et al., 2010). We, how-
ever, do not enter into a detailed analysis of the gamma oscillations 
since the dynamical property of such synchronization depends 
significantly on the biological details of fast-spiking interneurons 
(Lewis et al., 2003; Nomura et al., 2003; Mancilla et al., 2007) that 
are not implemented in the present model.

role of l2/3-to-l4 projectIons In attentIonal processIng by 
cortIcal MIcrocIrcuIts
Laminar-specific neuronal modulations provide experimentally 
testable predictions of our model. Of particular interest are the 
response modulations in L4, which show a remarkable contrast to 
those of L2/3 and L5. In fact, an attentional input gives opposite 
effects on the response of L4 excitatory neurons, which exhibit 
suppressed responses when their preferred stimulus is attended. 
In other words, their responses are enhanced when their non-pre-
ferred stimulus is attended (see Figure 3A). This tendency is also 
seen from the spike raster of L4 neurons in Figure 3C. Thus, our 
model predicts that the top-down input plays differential roles in 
attentional processing at the input (L4) and output (L2/3 and L5) 
stations of the cortical microcircuit.

 The underlying mechanism of the modulation pattern of L4 
can be understood as follows. As shown in Figure 1A, the major 
inter-laminar projections to L4 are those to L4 inhibitory neurons 
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in L2/3 of the microcircuit responding to bottom-up sensory inputs 
(Figure 5A). In such a case, inter-columnar lateral inhibition induces 
synchronous and alternating (between the columns) activation of 
L2/3 neurons, which enslaves also other layers. Thus, the excitatory 
drive on L2/3 by L4 should be kept in an appropriate range.

 Since L2/3 is the source of mutual inhibition, we also inves-
tigate the effects of other intra-columnar connections that may 
influence activity of the L2/3 network. First, we decrease the 

effects of varIous Intra-laMInar connectIons on the 
MIcrocIrcuIt output
In the following, we investigate the influence of different intra-
columnar connections on neuronal responses. We have shown above 
that projections from L4 excitatory to L2/3 excitatory neurons play 
an important role in accelerating the attentional shift. However, too 
much increase in the connection probability of such projections 
(0.0846 → 0.1265) results in over-excitation and bursting activity 

Figure 3 | Neuronal responses of the multicolumnar model. (A) The 
population firing rates of excitatory (filled bars) and inhibitory (empty bars) 
neurons from 20 trials are shown for each layer of column 1 for various 
combinations of visual and top-down inputs. The preferred stimulus of column 1 
is bordered white. An attended stimulus is circled. Asterisks indicate the firing 
rates of excitatory (black) and inhibitory (gray) neurons that are significantly 
different (p < 0.05) from those in the stimulus condition with two oriented bars 
and without attentional bias. (B) Time evolution of the average firing rate is 

shown for the excitatory neuron population in L5 of the multicolumnar model. 
Stimuli are presented during the gray shaded period (0–200 ms). The PSTH is 
computed with 20 ms time bins. Shadings of curves show the SE of the mean 
obtained from 5 simulation trials. (C) Responses of the multicolumnar model to 
vertical and horizontal bars with an attentional input applied to column 1 (gray 
bar). The attentional input to column 1 increases the activities of L2/3 and L5 in 
column 1, while suppressing the activities of the same layers in column 2. 
Layers 4 and also layer 6 exhibit an opposite activation pattern.
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L2/3 inhibitory-to-excitatory connections or with decreased L4 
inhibitory to L2/3 excitatory connections displays similar responses 
(data not shown).

Finally, a model with decreased L2/3 excitatory-to-excitatory 
recurrent connections (0.1184 → 0.0592) significantly weakens the 
effects of top-down signals on attentional modulations (Figure 6B) 
compared to those shown in Figure 3A, implying that competition 
between the columns is too weak. Thus, L2/3 excitatory neurons 
should be activated sufficiently strong (but not too strong) to make 
the inter-columnar inhibition effective.

 connection probability from L5 excitatory to L2/3 inhibitory 
neurons (0.0755 → 0.0485) to enhance the L2/3 activity. As seen 
from Figure 5B, this modification induces too strong winner-take-
all competition between the two columns even without sensory 
stimuli, where a winner is essentially selected by chance. Such a 
microcircuit model cannot adequately process sensory stimuli.

 Next, decreasing the connection probability of excitatory-to-
inhibitory synaptic connections within L2/3 (0.1008 → 0.0504) 
also results in a rather strong inter-columnar competition in 
response to sensory inputs (Figure 6A). A model with decreased 

Figure 4 | role of the attention-induced suppression of L4 activity in 
attention shift. (A) The circuit mechanism of the response modulation in L4 is 
explained schematically. When the L2/3 activity is increased, connections from 
L2/3 excitatory to L4 inhibitory neurons suppress the L4-to-L2/3 excitatory drive, 
which in turn weakens the inter-columnar competition and leads to the 
attentional suppression of L4. (B) The averaged firing rates obtained from 
twenty simulation trials of a microcircuit model with a reduced connection 
probability from L2/3 excitatory to L4 inhibitory neurons. Activity of L4 neurons 

is not much modulated by a top-down input, while L2/3 and L5 display response 
modulations similar to those in the original model (see Figure 3A). Asterisks 
indicate statistically significant differences in firing rate compared to the 
responses to horizontal and vertical bars presented simultaneously.  
(C) Responses of L2/3 and L4 of the original and modified models before and 
after the attentional shift at 0 ms. Upper and lower two panels show activities of 
columns 1 and 2, respectively. At 0 ms, the attentional input switches off in 
column 1, while it switches on in column 2.
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1980; Carrasco et al., 2004; Wagatsuma et al., 2008). To explore 
the circuit mechanism of visual attention, we have constructed 
a detailed model of the visual cortical microcircuit consisting 
of two multi-layer columns of about 40,000 integrate-and-fire 
neurons (about 80,000 neurons in total). The two columns receive 
different preferred bottom-up sensory inputs at L4 as well as top-
down inputs representing the attentional bias at L2/3 and L5, and 

dIscussIon
Visual attention is a function that boosts the activity of neu-
rons (Treue and Maunsell, 1999; Reynolds et al., 2000; Martinez-
Trujillo and Treue, 2004; Sommer, 2007; Ogawa and Komatsu, 
2009; Tiesinga and Sejnowski, 2009). It enables the brain to attend 
the most important information at the moment (Itti and Koch, 
2001), enhancing perception in a number of aspects (Posner, 

Figure 5 | influences of interlaminar connections on the response of the multicolumnar model. Both columns receive visual stimuli (shaded), but no 
attentional input. (A) For an increased connection probability from L4 excitatory to L2/3 excitatory neurons. (B) For a decreased connection probability from L5 
excitatory to L2/3 inhibitory neurons. Even without attentional input, the two columns compete with one another strongly to determine a winner just by chance.
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exhibits an elevated activity. Then, the feedback projection from 
L2/3 excitatory to L4 inhibitory neurons increases the activity of 
latter neurons and hence suppresses activity of L4 excitatory neu-
rons in the winner column (Figure 1). In contrast, attention to a 
non-preferred stimulus of a column makes this column a looser 
for the inter-columnar competition, hence suppressing its L2/3 
activity. Consequently, its L4 excitatory neurons are released from 
inhibitory influences (via L4 inhibitory neurons) of L2/3 excita-
tory neurons, and exhibit an enhanced response to the stimulus 
(Figures 4A,B).

 While the attention-induced enhancement of output from 
L2/3 and L5 is considered to facilitate the analysis of the attended 
object by higher visual areas (Felleman and van Essen, 1991; 
Noudoost et al., 2010), the role of the attention-induced sup-
pression of L4 activity is not so obvious. We have suggested that 
the suppression is advantageous for a rapid exchange of the roles 
of winner and looser between the columns when attention is 
shifted to one visual stimulus to another (Figure 4C). Too strong 
activation of L4 in a winner column innervates its L2/3 very 
strongly, and slows down the exchange of L2/3 activities between 
the columns that follows the shift of top-down signals for atten-
tion (Figure 4C). Thus, an adequate regulation of L4 activity by 
inhibitory feedback from L2/3 excitatory neurons is necessary 
for the attentional processing of bottom-up sensory stimuli by 
top-down input (Figure 5A). In fact, cortical microcircuits would 
not stably response to sensory stimuli if L2/3 had strong excita-
tory projections to L4, hence closing an excitatory feedback loop 
between L2/3 and L4.

interact with each other via the lateral inhibition implemented 
within L2/3. We also tested a model with additional lateral inhi-
bition from L2/3 excitatory to L5 inhibitory neurons (Adesnik 
and Scanziani, 2010), and found that the model does not produce 
essential differences (data not shown). The layers 2/3 and 5 of our 
multicolumnar model successfully replicated the responses of vis-
ual cortical neurons and their attentional modulations reported 
by experiments (Reynolds et al., 1999). In single unit recordings 
from behaving animals, a random sampling of neuronal activity 
likely results in a biased sampling of L5 neurons, as they are more 
active and larger than neurons in the superficial layers. Therefore, 
the attentional modulations in L2/3 and L5 of our model are likely 
to be consistent with experimental findings. More interestingly, 
our model has predicted that attention mediated by top-down 
signals induces in L4 a response modulation pattern opposite to 
that in L2/3 and L5.

MechanIsM and IMplIcatIons of the attentIon-Induced 
response suppressIon In layer 4
In our model, top-down attention on a preferred stimulus 
suppresses, rather than enhances, the response of L4 neurons 
(Figure 3). Our numerical analysis has shown that bi-directional 
synaptic interactions between L2/3 and L4 underlie the attention-
induced suppression of the L4 activity in the following manner. 
Sensory input received at L4 is routed by excitatory-to-excitatory 
connections to L2/3, which implements a winner-take-all com-
petition between columns. If attention is given to the preferred 
stimulus of a column, this column becomes a winner and its L2/3 

Figure 6 | influences of L2/3 intralaminar connections on the response of 
the multicolumnar model. Both columns receive visual stimuli from 0 ms 
onward, but not an attentional input. (A) A model with a decreased connection 
probability of L2/3 excitatory-to-inhibitory synapses exhibits a rather strong 
inter-columnar competition. In such a situation, an attentional input does not play 
a meaningful role. (B) Attentional response modulations are shown for the 

column 1 of a model with a decreased connection probability of L2/3 
excitatory-to-excitatory recurrent synapse. Asterisks indicate the statistical 
significance of rate changes compared to the responses to horizontal and 
vertical bars presented simultaneously. The modulations of excitatory activity are 
statistically significant in both L2/3 and L5 of column 1. However, the 
magnitudes of these modulations are very small.
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 These results can be applied to the present model if we regard 
the entire L2/3 neuronal network as an effective processing unit 
(Figure 7B). For instance, excitatory-to-inhibitory connections 
within L2/3 of each column represent self-inhibition on the 
processing unit. Therefore, weakening these connections leads 
to a stronger winner-take-all competition between columns 
(Figure 6A). Similarly, weakening inhibitory-to-excitatory connec-
tions in L2/3, connections from L5 excitatory to L2/3 inhibitory 
neurons (data not shown), and recurrent excitatory connections 
in L2/3 (Figure 6B) all weaken the self-inhibition, hence induc-
ing a stronger inter-columnar competition. Thus, the strengths of 
various inter- and intra-laminar connections must be adequately 
balanced for the proper processing of bottom-up sensory and top-
down attentional inputs by the present cortical microcircuit model.

lIMItatIon of the present Model
Our microcircuit model is primarily based on the anatomical 
(Binzegger et al., 2004) and electrophysiological data (Thomson 
et al., 2002) obtained from the visual cortices of cat and rat. 
Although visual cortices of both cat and monkey have a colum-
nar structure, whether our model gives a reasonable approxima-
tion of the cortical microcircuit of monkey visual cortex, where 
experimental data were collected (Reynolds et al., 1999), remains 
unclear at present. Similarities and dissimilarities in the structure 
and function of cortical microcircuits between different animal 
species have to be further explored.

 Firing rates of neurons decreased rapidly in our model if 
sensory input to layer 4 was removed. In experiments, however, 
the firing rate decayed slowly in a few hundreds of millisec-
onds after the disappearance of visual stimuli. We can think 
of several reasons for this discrepancy. Cortical microcircuits 
in V2 or V4 may receive more complex subcortical or corti-
cal inputs that were not incorporated into the present model. 
Another possible reason is that our network model does not 
contain NMDA receptor-mediated currents at recurrent syn-
apses due to a limitation on our computational resource. In 
fact, NMDA receptors can generate asynchronous persistent 
firing in recurrent cortical networks (Wang, 1999), so the inclu-
sion of NMDA receptors would slow the activity decay in our 
microcircuit model. However, the slow decay of activity after 
stimulation was not the focus of this work and a large number 
of excitatory synapses in the model make such modifications 
computationally very costly.

Attention is known to involve cholinergic modulation on 
neuronal activity (Bentley et al., 2003; Herrero et al., 2008), and 
acetylcholine enhances gamma-band oscillations of visual cor-
tical neurons (Rodriguez et al., 2004). Gamma-band synchro-
nized oscillations are likely to be crucial for attention (Fries, 2009; 
Tiesinga and Sejnowski, 2009; Ardid et al., 2010). Our microcircuit 
model also exhibits such activity (Figure 3C), if excitatory connec-
tions, particularly recurrent excitatory connections in layer 2/3, 
are sufficiently strong. The present model, however, is not realistic 
enough to address the role of gamma-band synchronization in 
the microcircuitry processing of attention. For this purpose, we 
should use a more realistic model of fast-spiking interneurons 
since they strongly influence the dynamics of such synchroniza-
tion (Lewis and Rinzel, 2003; Nomura et al., 2003; Cardin et al., 

Influences of varIous Intra- and Inter-laMInar connectIons 
on Inter-coluMnar coMpetItIon
Like many other models of visual attention, the response of our 
microcircuit model is determined by the dynamical competition 
between mutually inhibiting columns. How various intra- and 
inter-laminar connections influence this competition is well under-
stood from the previous results of multiple-winner selection by 
inhibitory neural networks (Fukai and Tanaka, 1997), which are 
summarized as follows. When lateral inhibition between inhibitory 
neurons dominates over self-inhibition, a unique winner survives 
for the competition (winner-take-all behavior). In contrast, if self-
inhibition dominates over the lateral inhibition, multiple winners 
can survive (winners-share-all). The different dynamical behaviors 
are schematically illustrated for a competitive network consisting 
of two inhibitory neurons (Figure 7A).

Figure 7 | Schematic illustrations of the underlying mechanism of 
attentional modulations by top-down signals. (A) The number of winners 
surviving the competition in a mutually inhibiting neural network can be 
determined analytically by the balance between lateral and self-inhibition. 
Multiple winners can survive if the self-inhibition dominates over lateral 
inhibition (Winners-Share-All), whereas only a single winner survives in the 
opposite case (Winner-Take-All). The two situations are illustrated in the 
simplest network with only two inhibitory neurons. (B) The above results hold 
for the present microcircuit model if we regard the L2/3 network in each 
column as a single processing unit. Black solid lines represent intercolumnar 
connections, while gray sold and dashed lines show intracolumnar 
connections within and toward L 2/3, respectively.
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each of which comprises one excitatory and two inhibitory neu-
rons, and mutually inhibiting one another. These are the minimal 
number of elements required to produce the physiological find-
ings. Attention essentially releases a visual pathway by suppressing 
the lateral inhibition on it. Our model is closely related to this 
model, and demonstrates how lateral (and self-) inhibition is 
controlled by the realistic connectivity of the cortical microcircuit. 
Most interestingly, our model revealed layer-specific effects of 
top-down input on attentional processing that are experimen-
tally testable.

 The present attentional modulations may be also modeled in 
terms of bottom-up spatial attention on the location of a visual 
object. Bottom-up spatial attention increases the contrast gain in 
early visual areas (Lee et al., 1999; Carrasco et al., 2004; Peters 
et al., 2005), and such attention was previously modeled as a 
slight increase in sensory input at the locus of attention (Buia and 
Tiesinga, 2008). If we model the spatial attention in this fashion, 
the responses of L2/3 and L5 of the bottom-up microcircuit model 
were quite similar to those of the present top-down model, whereas 
the L4 of the bottom-up model exhibited no significant response 
modulations (Figure A2). In reality whether the spatial attention 
works at a resolution less than the size of the cell’s receptive field 
remains to be further studied.

conclusIon
We have demonstrated that a layered cortical microcircuit model 
based on an integrated connectivity map derived from anatomi-
cal and electrophysiological data can account for the previous 
experimental observations on neuronal responses to visual stimuli 
with and without attention. Our multicolumnar model provides 
a canonical microcircuit model for the dynamic selection of 
multiple sensory inputs in the visual cortices, and made several 
testable predictions about the layer-dependence of the response 
modulations. In particular, our model predicted that attention to 
a preferred stimulus of a L4 neuron should suppress its response 
in order to prepare for a shift of attention to a different sensory 
stimulus.
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2009). Some hypothesis says that acetylcholine levels modulate 
the interaction between top-down and bottom-up processing 
to generate appropriate neural representations for inputs (Yu 
and Dayan, 2002). Testing such a hypothesis in a microcircuit 
model similar to the present one seems to be an intriguing future 
problem.

usefulness of large-scale sIMulatIon Models
In this study, we have interpreted the dynamical behavior of 
the microcircuit model only on a rate-based level, and have not 
explored the temporal structure of simulated activities. We could 
have achieved a similar insight into the microcircuit dynamics using 
a rate-based model or a reduced mean-field model without simu-
lations of spiking neurons. However, to derive a reliable reduced 
model, we need a correct mapping of biological parameters onto 
the space of reduced variables and intuition about what would 
occur in the original complex network of spiking neurons. For 
example, we have shown that the reciprocal interactions between 
L2/3 and L4 in single columns are crucial for the rapid switching 
of top-down attention between multiple sensory signals (Figure 4). 
It would be difficult to derive the theoretical prediction from a 
reduced model without simulating the microcircuit model having 
a connectivity matrix constructed as realistic as possible according 
to known anatomical and physiological data. We also note that a 
discovery in a rate-based model should be cross-validated in a more 
realistic spiking model.

 In addition, large-scale simulation of spiking neurons is use-
ful for studying spike-based learning in complex biological neural 
networks. For example, we may use a microcircuit model with 
spike-timing-dependent plasticity for investigating the activity-
dependent development of a fine-scale network structure in spe-
cific cortical areas. To make such studies technically tractable, we 
have developed techniques for efficient simulations of large-scale 
spiking neuron networks, providing a proof of concept, merit and 
constraint for the method.

coMparIson to prevIous Models
Several models were proposed to account for the attentional 
modulations of visual responses studied here. First, Reynolds 
et al. (1999) proposed a simple feed-forward network model in 
which attention strengthened the synapses mediating the attended 
stimulus. However, modifications of synaptic weights or neu-
ronal excitability are generally slow and the rapid modification 
may be somewhat unrealistic. Deco and Lee (2004) proposed 
that interactions between lower- and higher-visual areas mediate 
the attentional modulations, without modeling the microscopic 
circuit-level mechanism. Buia and Tiesinga (2008) constructed a 
simple network model representing two parallel visual  pathways, 
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appendIx
outlIne of the MIcrocIrcuIt Model
A single column of the cortical network model (Figure 1 in main 
text) consists of an excitatory and an inhibitory population in 
layers 2/3, 4, 5, and 6. The populations consist of current-based 
integrate-and-fire neurons with exponential synaptic currents, and 
the neurons are randomly connected. The connection probabilities 
correspond to a connectivity map that integrates a major part of 
the current knowledge on the cortical microcircuitry (Potjans and 
Diesmann, 2011; see below for details). Every population receives 
Poissonian background spike trains in addition to the specific 
sensory and attentional inputs. Synaptic parameters are chosen 
such that the average shape (rise time and width) of an excitatory 
postsynaptic potential resembles the in vivo situation (Fetz et al., 
1991). We draw delays from a Gaussian distribution (forcing delays 
to be positive and multiples of the simulation stepsize). The com-
prehensive model description according to Nordlie et al. (2009) 
is given in Table A1. The number of neurons is given in Table 1, 
the connection probabilities in Tables 2 and 3 and the Poissonian 
background firing rates in Table A2. Table A2 also contains all 
neuronal and synaptic model parameters.

connectIvIty Map
The connectivity map of the layer-specific microcircuit is based 
on the integrated data set, which is primarily based on the data 
derived from anatomical reconstructions by Binzegger et al. (2004) 
and the electrophysiological hit rate estimates from Thomson et al. 

(2002). Furthermore, it includes data from further electrophysi-
ological studies (see references in Thomson and Lamy, 2007) as 
well as information from photostimulation studies (Dantzker 
and Callaway, 2000; Zarrinpar and Callaway, 2006) and electron 
microscopy (McGuire et al., 1984). The derivation of the integrated 
connectivity map takes into account specific differences of the 
underlying experimental procedures, as explained below (Potjans 
and Diesmann, 2011).

The anatomical data (Binzegger et al., 2004) provides the rela-
tive number of synapses participating in a connection and the total 
number of synapses, depending on pre- and post-synaptic type, of 
area 17. The product of these measures gives the absolute numbers 
of synapses K participating in individual connections. Following 
Binzegger et al. (2004), we use the layer- and type-specific absolute 
numbers of neurons N from Beaulieu and Colonnier (1983). For the 
connection probabilities C

a
 between populations we assume that 

the synapses are randomly distributed without preventing multi-
ple contacts (multapses) between any neuron pair. With Npre(post) 
being the number of neurons in the presynaptic (postsynaptic) 
population:

C
N Na

K

= − −





1 1
1

pre post

 
(1)

The often used expression

C
K

N Na =
pre post

 
(2)

Figure A1 | The sensory responses of layers 2/3 and 5 excitatory (filled) 
and inhibitory (empty) neurons for various intensities of the attentional 
input. Asterisks show the values used for the present study. (A) We vary the 
number of spike trains representing the attentional input. Sensory input is 

applied in all simulations. (B) We vary the projection probability of attentional 
input described by 600 spike trains. The results show that the activity of layers 
2/3 and 5 is mainly determined by visual stimuli and is not significantly 
modulated by the strength of attentional input.
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Experimental values of C
a
 and C

p
 exhibit inconsistent mean val-

ues due to the different underlying methods. Therefore, we consider 
how the actual connection probability may depend on the distance 
between pre- and post-synaptic neurons using a gaussian model:

C r C
r

( ) exp .= −



0

2

22σ
 

(4)

With r being the lateral distance and the parameters C
0
 and σ give 

the peak connection probability (at zero lateral distance) and the lateral 
spread of connections, respectively. We may assume that the anatomi-
cal and electrophysiological data correspond to random samplings 
of connections within cylinders of different sampling radii (r

a
 > r

p
):

corresponds to first-order Taylor series approximation (in  
1/(NpreNpost)), and is valid for K/(NpreNpost) << 1.

For the electrophysiological data (Thomson et al., 2002) we 
use the hit ratio R as a direct measure of connection probabilities 
between populations. When multiple experimental estimates are 
available for the same connection type, we calculate a weighted 
sum of the independently measured hit ratios:

C

R Q

Q

p

i i
i

j
j

=







∑

∑
,

 

(3)

where Q
i
 is the number of tested pairs in the ith experiment.

Table A1 | Model description after Nordlie et al. (2009).

A: MoDeL SuMMAry

Populations 19; 16 cortical populations and three input populations

Topology –

Connectivity Random connections

Neuron model Cortex: leaky integrate and fire, fixed voltage threshold, 

 fixed absolute refractory period (voltage clamp), 

 input: fixed rate Poisson populations

Synapse model Exponential-shaped postsynaptic currents

Plasticity –

Input Cortex: independent fixed-rate Poisson 

 spike trains to all neurons

Measurements Spiking activity

B: PoPuLATioNS

Type elements Number of populations

Cortical network iaf neurons 16, eight per column, 

  two per layer

Sensory input Poisson population Two, one per column

Attentional input Poisson population One

C: CoNNeCTiViTy

Type Random connections with independently chosen 

 pre- and post-synaptic neurons; see Table 2 for 

 connection probabilities

Weights Fixed, drawn from Gaussian distribution

Delays Fixed, drawn from Gaussian distribution, 

 multiples of simulation stepsize

D: NeuroN AND SyNAPSe MoDeL

Name iaf neuron

Type Leaky integrate-and-fire, exponential 

 shaped synaptic current inputs

Subthreshold dV/dt = -V/τm + Isyn(t)/Cm  if (t > t* + τref)  

dynamics V(t) = Vreset  else  

 I t we t
syn

syn( ) /= − τ

Spiking if V(t-) < θ V(t +) ≥ θ
 1. Set t* = t, 2. Emit spike with time stamp t*

e: iNPuT

Type Target Size

Background input iaf neurons Independent Poissonian 

  spikes (see Table A2)

F: MeASureMeNTS

Spiking activity of a subset of iaf neurons

Figure A2 | A microcircuit model for bottom-up attention mechanism in 
the lower visual areas. Spatial attention increases the activity of LGN 
(McAlonan et al., 2008; Baluch and Itti, 2011) and the contrast gain in early 
vision (Lee et al., 1999; Carrasco et al., 2004; Peters et al., 2005). We 
modeled the bottom-up attention as a slight increase (5 Hz) of firing rate of 
attended stimulus. Top-down modulatory input to L4 was not included in the 
bottom-up model. These manipulations implement the contrast gain model 
for bottom-up attention in V2 (Reynolds et al., 2000; Reynolds and Desimone, 
2003; Buia and Tiesinga, 2008). Asterisks indicate the responses that are 
significantly different from those to two oriented bars presented 
simultaneously in the absence of attention (gray-edged graphs, p < 0.05). The 
present results reveal that the responses of L2/3 and L5 of the bottom-up 
model can replicate the observed pattern of attentional modulations 
(Reynolds et al., 1999). Unlike the top-down model, however, L4 little exhibits 
attentional modulations.
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Since 2πC
0
σ2 is the same in both equations, we obtain
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where C C ra r a aa
= →∞lim π 2  is the anatomical area-corrected 

 connection probability and C C rp p p= π 2 its physiological counter-

part. For r
a
 » σ, we further obtain

σ = − −
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The zero-distance connection probability is then given as

C
C r

x a px x
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Once C(r) is given, we may use a columnar microcircuit model 
of radius r

m
 with a laterally homogeneous connection profile. Thus, 

the constant connection probability C
m
 of the model is determined 

by the following equation:

π φ
π

r C C r rdrd C C Cm m a

r

p a

r r
m

m p2

0

2

0

1 1
2 2

= = − −
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(9)

We use the above expression of C
m
 in deriving the values of 

connectivity listed in Table 2.
Furthermore, we correct for shortcomings of the individual 

experimental connectivity maps by consistent modifications of 
the target specificity of connections. According to the results of 

Thomson et al. (2002), Dantzker and Callaway (2000), Zarrinpar 
and Callaway (2006) and McGuire et al. (1984), the projections from 
L2/3e to L4, from L5e to L2/3, from L2/3e to L6 and from L6e to 
L4, respectively, show a preferential selection of inhibitory targets.

We quantify the specificity of connections by the target specificity

T
C C

C C

e i

e i
= −

+

= =

= =

post post

post post
 

(10)

For the above listed projections, the target specificity is pre-
defined and the connection probabilities have to be estimated 
constrained by the previous estimates potentially ignoring the 
specificity. For the anatomical data, these underlying measures are 
the numbers of synapses that participate in a projection. For the 
physiological data, it is the determined connection probability of 
one of the two connections forming the projection (typically the 
second connection has not been quantified).

Modifying the connection probabilities while conserving the 
total number of synapses of a projection represents a redistribution 
of the synapses to the targets neurons. Thereto, we determine the 
fraction of synapses that target excitatory neurons ∆ as a function of 
the requested target specificity and constrained by the total number 
of synapses and the sizes of the presynaptic and the two postsynap-
tic populations. Using Eq. 2 we find, with C K N Ne epost pre post= == ∆ /
and C K N Ni ipost pre post= == −( ) / ,1 ∆

δ = +( )
−( ) + +( )

=

= =

1

1 1

T N

T N T N

e

i e

post

post post
.

The modification of the physiological data is straightforward 
because in all cases considered here only one connection probability 
is experimentally given so that we can estimate the unknown value 
based on Eq. 10:

C
T

T
Ci e e ipost post=

+ −
== −

+






( )

( )

( ).
1

1

1

The derived excitatory map is consistent with the map recently 
reported by Lefort et al. (2009).
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Table A2 | Neuronal and synaptic model parameters and spike rates of 

excitatory background inputs.

C: CoNNeCTiViTy

Parameter Value

Excitatory synaptic weights w (mean, SD) 175.6, 17.6 pA

Inhibitory synaptic weights -gw (mean, SD) -702.5, -70.3 pA

Excitatory synaptic delays (mean, SD) 1.5, 0.75 ms

Inhibitory synaptic delays (mean, SD) 0.75, 0.375 ms

D: NeuroN AND SyNAPSe MoDeL

Membrane time constant τm 10 ms

Postsynaptic current time constant τsyn 0.5 ms

Absolute refractory period τref 2 ms

Membrane capacity Cm 250 pF

Reset potential Vreset -65 mV

Fixed firing threshold θ -50 mV

i: iNPuTS

Background input Layer 2/3 Layer 4 Layer 5 Layer 6

Exc. neurons (no of fibers) 2000 2000 2000 2000

Inh. neurons (no of fibers) 1600 1600 1600 1600

Background rate 8 Hz

Wagatsuma et al. Layer-dependent attentional modulation in VCM

Frontiers in Computational Neuroscience www.frontiersin.org July 2011 | Volume 5 | Article 31 | 15

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Layer-dependent attentional processing by top-down signals in a visual cortical microcircuit model
	Introduction
	Materials and Methods
	Microcircuit model of visual cortical columns
	Numerical experiments

	Results
	Responses of the multicolumnar microcircuit model to bottom-up and top-down inputs
	Role of L2/3-to-L4 projections in attentional processing by cortical microcircuits
	Rapid switching of attention by top-down signals in the cortical microcircuit model
	Effects of various intra-laminar connections on the microcircuit output

	Discussion
	Mechanism and implications of the attention-induced response suppression in layer 4
	Influences of various intra- and inter-laminar connections on inter-columnar competition
	Limitation of the present model
	Usefulness of large-scale simulation models
	Comparison to previous models

	Conclusion
	Acknowledgments
	References
	Appendix
	Outline of the microcircuit model
	Connectivity map

	References




