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A B S T R A C T

Multilayered bacterial cellulose (MBC)/reduced graphene oxide (rGO) composite films were fabricated using
dyeing method. First, MBC films were constructed by the static culturing of kombucha SCOBY bacterial cellulose
in a rectangular plastic mold for 15 days. The MBC formed on the air-liquid interface was collected and employed
as the matrix for the preparation of MBC/rGO composite films using dyeing method. As found, the color strength
increased with an increase in dyeing cycle due to MBC and GO (rGO precursor) affinity. However, the surface
hydrophilicity was found in the opposite direction due to the restacking of hydrophobic rGO nanosheets onto
MBC surface after reduction step. SEM images confirmed that MBC/rGO composite films obtained by the dyeing
method exhibited the intact multilayer structure. The electrochemical behavior of free-standing and binder-free
MBC/rGO electrodes was evaluated. It was found that MBC-1 exhibited the highest specific capacitance value
of 192.23 F/g at the current density of 1 A/g (calculated from GCD plots) due to good diffusion of electrolyte
arising from surface wettability with current density performance of 66 %. An increase in dyeing cycle (MBC-2,
MBC-3, and MBC-4) led to a gradual decrease in the corresponding specific capacitance value due to a gradual
increase in the electrolyte resistance derived from an increasing surface hydrophobicity of the composite films.
Finally, in all cases, long-term cycle stability of more than 90 % up to 10000 cycles was achievable.
1. Introduction

Bacterial cellulose (BC) belongs to biomass produced by bacteria such
as Gluconacetobacter xylinus, Acetobacter xylinum, Komagataeibacter
swingsii, Komagataeibacterrhaeticus and Komagataeibacter medellinensis [1].
BC is a bio-nonwoven material which exhibits high purity, strength,
moldability, and water-holding ability. Symbiotic culture of bacteria and
yeast (SCOBY) BC is a type of BC materials that has gained scientific
attention [2, 3, 4, 5]. SCOBY BC is formed on the liquid-air interface
during kombucha tea fermentation in a medium containing sugar, acetic
acid bacteria, and yeast. The fermentation products are mainly composed
of cellulose hydrogel on air-liquid interface and acetic acid solution [6].
The unique characteristic of SCOBY BCwhen compared to other bacterial
celluloses is that it can be cultured or constructed in the form of multi-
layer structure (MBC). The MBC hydrogel itself exhibits higher surface
area obtained by freeze-drying or freeze-thawing techniques to prevent
hornification. The SCOBY BC is easily purified by boiling in ethano-
l/alkali water mixture. One of interesting applications is BC composites.
Graphene is an interesting material which exhibits reinforcement of soft
it).
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matrixes such as BC and imparts new properties including biomedical
[7], absorbents for organic pollutants [8, 9], drug delivery [10],
conductive films [11, 12, 13, 14] and supercapacitors [15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27]. Several fabrication techniques of gra-
phene/BC composite films including the vacuum-assisted self-assembly
technique, an in-situ membrane-liquid-interface method, an in-situ cel-
lulose bacterial culturing, direct mixing, and layer-by-layer GO/BC
nanocomposite hydrogel were revealed. The particular attention was
focused on conductive films and supercapacitor application. For
example, a flexible, binder-free high-performance fiber-based super-
capacitors was constructed by the in-situ synthesis of hierarchical
polypyrrole inside the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEM-
PO)-oxidized bacterial cellulose/reduced graphene oxide composite fiber
[15]. Ti-doped FeOOH quantum dots/graphene was successfully
dispersed within BC substrate as a bendable anode with large loading
mass for flexible supercapacitor [16]. The fabrication of 3D porous
graphene-containing nanocomposites with highly dispersed graphene
nanosheets in a 3D matrix of BC by a novel layer-by-layer in situ culture
method was reported [17]. The flexible nanocomposites were employed
2022
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Figure 1. The assembly of free-standing and binder-free MBC/rGO electrode.
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as electrodes directly without any nickel foam or stainless steel wire. The
flexible holey graphene oxide/BC with a three-dimensional honeycomb
structure in the presence of polyvinylpyrrolidone was prepared by
bio-assembly synthesis. The composite films could be bended and
twisted. The composite film was employed as free-standing electrodes
[18]. The self-standing BC derived carbon/reduced graphene oxide aer-
ogels were prepared by freeze-drying and carbonization, resulting porous
carbon aerogel which exhibited excellent absorption capability and
supercapacitance performance. However, both techniques are time and
energy consuming methods. Several techniques of self-standing BC/rGO
nanocomposite films doped with conductive polymers (polypyrrole,
polythiophene or polyaniline) and a metal oxide were reported. Those
techniques achieved free-standing 3D structure with excellent electro-
chemical performance. At present, free-standing 3D multilayered
BC/rGO structure has not been reported. Therefore, in this work,
self-standing multilayer BC (MBC)/reduced graphene oxide (rGO) com-
posite films using a dyeing method were proposed.

In this research, MBC hydrogel was cultured for 15 days in a culturing
medium containing sugar, peptone, yeast extract, and raw vinegar in the
presence of kombucha SCOBY pellicle. Then, MBC hydrogel was
Figure 2. Physical appearance and wettability (observed after 10 s) of (a) MBC-1, a
disappeared by time.

Figure 3. LED circuit connection of (a) MBC-
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collected and purified. Then, graphene oxide dispersion synthesized by
Hummer's method was dyed onto dried MBC films by an exhaust dyeing
method. Following that, the reduction reaction was carried out to obtain
a flexible conductive MBC/rGO films. Finally, The MBC/rGO films were
employed as a self-standing organic electrode to investigate electro-
chemical performance.

2. Experimental

2.1. Materials

SCOBY MBC hydrogel with dimension of 20” (L) x 15” (W) x 0.5”
(thickness) was cultured using kombucha SCOBY starter according to our
previous work [6]. Reduced graphene oxide (rGO) was synthesized from
graphite by Hummer's method as described elsewhere [28].
2.2. Preparation of MBC/rGO composite films by dyeing method

MBC/GO composite films were obtained by exhaust dyeing using the
MBC (weight):GO aqueous dispersion (volume) liquor ratio of 1:50. Four
replicas were dyed separately. Each dyeing batch was continuously
stirred at room temperature around 30 �C for 10 min interval. After that,
the sample was taken-out and dried in open air prior to the next dyeing
cycle. In this experiment, four dyed MBC/GO composite films (MBC/GO-
1, MBC/GO-2, MBC/GO-3, and MBC/GO-4 which represented 5 dyeing
cycles, 10 dyeing cycles, 15 dyeing cycles, and 20 dyeing cycles,
respectively) were prepared. Subsequently, the films were then reduced
with hydrazine hydrate for 24 h at room temperature to obtain MBC/rGO
films followed by rinsing. Then, the films were dried in an oven at 60 �C
for 1 h.
2.3. Characterizations and testings

The morphology of the MBC film and MBC/rGO films were observed
through a scanning electron microscopy (JSM-6480LV, Jeol Ltd., Japan).
The cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD)
were evaluated by potentiostat/galvanostat instrument (Metrohm Auto-
lab PGSTAT204). The binder-free electrode was prepared as follows
(Figure 1): The sample film was sandwiched with nickel foam and
compressed using a hydraulic press to maintain the dimensional stability
when immersed in the alkaline electrolyte. Then, the sandwiched sample
nd (b) MBC-2, (c) MBC-3, and (d) MBC-4. Note that the water droplets slowly

1, (b) MBC-2, (c) MBC-3 and (d) MBC-4.



Figure 4. SEM images (cross-sectional view) of (a) MBC, (b) MBC-1, (c) MBC-2 and (d) MBC-4.

Figure 5. CV plots of MBC/rGO composite films (MBC-1, MBC-2, MBC-3 and MBC-4).

Scheme 1. The oxidation/reduction of BC.
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Table 1. Specific capacitance values of MBC/rGO composite films (MBC-1, MBC-
2, MBC-3, and MBC-4).

Sample Specific Capacitance (F/g)

10 mV/s 20 mV/s 40 mV/s 60 mV/s 80 mV/s 100 mV/s

Nickel Foam 5.04 - - - - -

MBC 32.18 24.40 21.09 19.82 19.27 18.93

MBC-1 234.90 226.88 215.50 209.33 204.19 199.25

MBC-2 175.45 158.00 147.44 142.42 138.75 135.93

MBC-3 170.28 157.00 152.19 149.58 146.97 144.13

MBC-4 138.85 124.10 112.63 106.17 101.41 97.20
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electrode was immersed in 3M KOH electrolyte for 12 h prior to the
electrochemical investigation. For cyclic voltammograms, the response
current densities were recorded with the potential range from 0.1 to 0.5
V (versus Ag/AgCl) at different scan rates (10, 20, 40, 60, 80 and 100
mV/s) and the specific capacitance were calculated by integrating the
area under the CV curves. The galvanostatic charge-discharge was
recorded at current density range of 1–10 A/g) from 0.2 to 0.45 V. The
specific capacitance of the as-prepared electrode was calculated. The
electrochemical impedance spectroscopy of the as-prepared electrode
samples was performed with open circuit potential using HIOKI IM3590
chemical impedance analyzer from 0.01 Hz to 100 kHz with alternate
current amplitude of 10mV. The cycle stability was investigated by
potentiostat/galvanostat instrument (Metrohm Autolab, PGSTAT204,
Netherlands). The free-standing and binder-free MBC/rGO electrode was
fabricated for the GCD cycle stability which was tested at 1 A g�1 from 1
to 10 000 cycles in 3 M KOH electrolyte.

3. Results and discussion

3.1. Physical appearance, wettability, and electrical conductivity

The physical appearance of MBC-1, MBC-2, MBC-3, and MBC-4
samples and their corresponding water wettability are represented in
Figure 6. Nyquist plots at frequency range 0.01–100 kHz for the as-pr
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Figure 2. As seen, the color strength of the composite films increases with
an increase in a dyeing cycle, indicating that each and every dyeing shifts
the dyeing equilibrium towards the MBC The rGOweight gain is found in
the following order; MBC-1 (17.95% � 0.12) < MBC-2 (23.53% � 0.10)
<MBC-3 (27.88%� 0.15)<MBC-4 (33.89%� 0.15). The finding results
are found consistent with the surface wettability which gradually de-
creases with an increase in a dyeing cycle due to the precipitation of
restacking hydrophobic rGO nanosheets (the graphitic structure) onto
MBC surface, resulting in hydrophobic surface as shown in Figure 2. To
evaluate the electrical conductivity of MBC/rGO composite films, LED
circuit was connected as shown in Figure 3. The results indicate that
MBC/rGO composite films are electrically conductive, implying that rGO
nanosheets are evenly absorbed into MBC as well as precipitated onto
MBC surface.

3.2. SEM analysis

SEM cross-sectional images of MBC, MBC-1, MBC-2, and MBC-4
samples are compared as shown in Figure 4. As seen, MBC (which
is the cell wall of bacterial) exhibits the non-woven structure
composed of multilayers. In case of the MBC/rGO composite films,
filaments were covered with rGO due to the intermolecular hydrogen
bonding interaction at the interface of rGO hydroxyl groups and
cellulose hydroxyl groups as reported in our previous work [6]. As a
result, MBC/rGO composite films exhibited an increase in Young's
modulus values with an increase in dyeing cycle as the following
order; MBC < MBC-1 < MBC-2 < MBC-3 < MBC-4 due to the rein-
forcement effect of rGO nanosheets. The achievable MBC/rGO com-
posite films are foldable which are suitable for flexible supercapacitor
electrode.

3.3. Electrochemical performance of self-standing and binder-free MBC/
rGO composite films

The self-standing and binder-free MBC/rGO electrodes were fabri-
cated as explained in Section 2.3. The cyclic voltammetry (CV) and
epared composite electrodes (MBC-1, MBC-2, MBC-3, and MBC-4).



Figure 7. GCD plots of MBC/rGO composite films at different current densities (a) 1 A/g, (b) 3 A/g, (c) 5 A/g, (d) 7 A/g and (e) 10 A/g.

Table 2. Specific capacitance values of MBC/rGO composite films (MBC-1, MBC-2, MBC-3, and MBC-4) and their corresponding current density performance calculated
from GCD plots.

Sample Specific Capacitance (F/g) Current Density Performance (%)

1 A/g 3 A/g 5 A/g 7 A/g 10 A/g 1 A/g 3 A/g 5 A/g 7 A/g 10 A/g

MBC 14.54 11.04 10.62 9.09 6.24 100 75.91 73.02 62.53 42.93

MBC-1 192.23 166.27 150.91 138.14 127.37 100 86.50 78.51 71.86 66.26

MBC-2 122.12 107.19 95.22 85.01 77.77 100 87.77 77.97 69.61 63.69

MBC-3 121.98 106.08 95.25 85.27 78.03 100 86.97 78.09 69.90 63.97

MBC-4 86.34 64.03 55.34 49.12 40.97 100 74.16 64.09 56.89 47.46
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galvanostatic charge-discharge (GCD) were measured. Cyclic voltam-
mograms are plotted between the current at working electrode and
applied voltage. Figure 5 illustrates the CV plots of nickel foam, MBC,
MBC-1, MBC-2, MBC-3, and MBC-4 using voltage ranging from 0.1-0.5 V
at a scan rate of 10 mV/s. Note that the specific capacitance value (5 F/g)
of bare nickel foam under the same condition is negligible, implying that
nickel hydroxide is not formed at this condition. All CV plots represent
pseudocapacitance behavior judged by distorted shapes which show the
5

redox peaks corresponding to the oxidation/reduction of cellulose as
shown in Scheme 1 [29].

The specific capacitance values are calculated as shown in Table 1. At
a scan rate of 10 mV/s, MBC, MBC-1, MBC-2, MBC-3, and MBC-4 exhibit
the specific capacitance value of 32.18, 234.90, 175.45, 170.28, and
138.85 F/g, respectively. The specific capacitance values decrease with
an increase dyeing cycle due to the reduction of surface hydrophilicity
and surface area, resulting in an increase in the electrolyte resistance.



Figure 8. Long-term cycle stability of the as-prepared electrodes (MBC-1, MBC-2, and MBC-4) after 10000 cycles.

N. Kiangkitiwan et al. Heliyon 8 (2022) e10327
During the reduction step, GO hydrophilic groups (hydroxyl, epoxide,
and carboxylic groups) are converted back to sp2 double bonds, resulting
in the irreversible restacking of nanosheets with decreasing surface area
combined with increasing hydrophobicity. As a result, the electrolyte
resistance builds up at electrolyte-electrode interface, resulting in poor
diffusion ability of the electrolyte. Generally, at a low scan rate the
electrolyte diffusion rate to the electrode is high which results in fast
diffusion of ions from the solution to deposit on the electrode surface,
leading to high surface adsorption/desorption of ions. An increase in a
scan rate results in poorer adsorption/desorption performance. Conse-
quently, the capacitance value decreases with an increase in a scan rate,
implying the hydrophobic characteristic of the electrode material.

To further confirm the electrolyte resistance, the electrochemical
impedance spectroscopy (EIS) at open circuit potenal in the frequency
range 0.01–100 kHz was carried out [34, 35]. The Nyquist plots are
shown in Figure 6. The uncompensated solution resistance (RS) including
Table 3. The comparative electrochemical performance of the MBC/rGO electrode w

Electrode materials Electrolyte Current or Scan rate

MBC/rGO 3 M KOH/3 electrodes 1 (A/g)

HRGO/BC PVA-H3PO4/2 electrodes 0.4 (A/g)

BC/GO 1 M H2SO4/3 electrodes 0.4 (A/g)

PPY/RGO/BC 1.0 M NaNO3/3 electrodes 2 (mA/cm2)

PANI/BC/GN 1 M H2SO4/3 electrodes 1 (mA/cm2)

PPY/BC/RGO 1.0 M NaNO3/3 electrodes 1 (mA/cm2)

Co3O4/GN/BC 2 M KOH/3 electrodes 3 (mA/cm2)

PPy@TOBC/rGO 1 M H2SO4/3 electrodes 0.5 (A/g)

PPY/BC 2.0 M LiCl/3 electrodes 2 (mA/cm2)

BC-MWCNTs-PANI 1 M H2SO4/3 electrodes 1 (A/g)

PPy/CuO/BC 2 M NaCl/2 electrodes 0.8 (mA/cm2)

N,P-CNWs from BC 6 M KOH/3 electrodes 1 (A/g)

Ni(OH)2–H/RGO/BC 2 M KOH/3 electrodes 5 (mA/cm2)

PPy/rGH-PSS 1 M H2SO4/3 electrodes 1 (A/g)

PPy/CoS/BC 2 M NaCl/2 electrodes 0.7 (A/g)
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of electrolytic resistance, the internal resistance, and the contact resis-
tance at the electrolyte-film interface was determined at the x-axis
interception. The RS values of MBC-1, MBC-2, MBC-3, and MBC-4 are
found to be 2.32, 2.37,2.48, and 2.50 Ω, respectively which correspond
well with the explanation of adsorption/desorption performance.

Galvanostatic charge-discharge (GCD) measurement was carried out
to investigate the intrinsic capacitance capability at current densities of 1
A/g, 3 A/g, 5 A/g, 7 A/g, and 10 A/g (Figure 7). All GCD curves exhibit
slightly distorted triangular shapes, resembling the shape of electrical
double-layer capacitance from rGO and pseudocapacitance from MBC. It
is observed that the discharging time decreases in the following order:
MBC-1 > MBC-2 > MBC-3 > MBC-4 > MBC, indicating that capacitance
retention decreases with an increase in dyeing cycle as summarized in
Table 2. It is found that specific capacitance values decrease in the similar
manner to those calculated from CV curves. For an example, at current
density of 1 A/g, MBC-1, MBC-2, MBC-3, MBC-4, and MBC exhibit
ith other reports.

Specific capacitance (F/g) Long term cycles Reference

192.23 94.1%/10000 This work

65.9 88.0%/2000 [18]

160 90.3%/2000 [27]

235.2 64.7%/5000 [25]

477 56.3%/8000 [26]

271 73.5%/8000 [22]

1274.2 96.4%/20000 [21]

391 79.0%/5000 [15]

216.4 94.5%/5000 [30]

656 99.8%/1000 [31]

601 64.1%/300 [32]

258 98.0%/30000 [33]

877.1 93.6%/15000 [23]

640.8 90.0%/2000 [34]

614 62.4%/300 [36]
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specific capacitance values of 192.23, 122.12, 121.98, 86.34, and 14.54
F/g, respectively. These results indicate that MBC-1 performs the highest
capacitance performance due to its lowest solution resistance against
electrolyte adsorption. The solution resistance is inversely proportional
to surface area and hydrophobicity; the lower the surface area the higher
the solution resistance and the higher the hydrophobicity the higher the
solution resistance. The current density performance at least 47.46 % and
more is achieved which are indicative of supercapacitor efficiency. It is
recommended that an anti-restacking agent should be added during
dyeing to prevent the problem of rGO nanosheet restacking. The long-
term cycle stability of the as-prepared electrodes are shown in
Figure 8, demonstrating that the capacitive retention of MBC-1, MBC-2,
andMBC-4 can be preservedmore than 90% after 10000 cycles at current
density of 1 A/g.

Finally, the electrochemical performance including specific capaci-
tance value and long-term stability is compared with other works as
presented in Table 3.

4. Conclusions

In this experiment, the multilayered BC (MBC) obtained from SCOBY
kombucha tea fermentationwas employed as a matrix for the preparation
of MBC/rGO composite films using dyeing method. GO (rGO precursor)
exhibited excellent affinity to MBC arising from intermolecular hydrogen
bonding force. After reduction reaction, reduced graphene oxide (rGO)
was achieved, resulting in the flexible conductive MBC/rGO films
confirmed by LED circuit illumination. The surface wettability of MBC/
rGO composite films notably decreased in the following order; (MBC-4<

MBC-3 < MBC-2 < MBC-1) due to the restacking of hydrophobic rGO
nanosheets onto the MBC surface. The electrochemical behavior of free-
standing and binder-free MBC/rGO electrodes was evaluated. It was
found that MBC-1 exhibited the highest specific capacitance value of
192.23 F/g at the current density of 1 A/g (calculated from GCD plots)
due to good diffusion of electrolyte arising from surface wettability. An
increase in dyeing cycle (MBC-2, MBC-3, and MBC-4 led to a gradual
decrease in the corresponding specific capacitance value due to a gradual
increase in an electrolyte resistance derived from an increasing surface
hydrophobicity as confirmed by EIS analysis. Therefore, it is important
that hydrophilicity modification of MBC/rGO composite films is neces-
sary in order to improve the specific capacitance value. Finally, long-term
cycle stability up to 10000 cycles showed that capacitance retention of
90% was achievable.
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