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Abstract

Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes
involved in biological methane production (methanogenesis). A crosslinking-mass spectrometry (XL-MS) strategy was
employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr), an essential
enzyme in all methane-producing archaea (methanogens). In Methanosarcina acetivorans, Hdr forms a multienzyme
complex with acetyl-CoA decarbonylase synthase (ACDS), and F420-dependent methylene-H4MPT reductase (Mer). ACDS is
essential for production of acetyl-CoA during growth on methanol, or for methanogenesis from acetate, whereas Mer is
essential for methanogenesis from all substrates. Existence of a Hdr:ACDS:Mer complex is consistent with growth
phenotypes of ACDS and Mer mutant strains in which the complex samples the redox status of electron carriers and directs
carbon flux to acetyl-CoA or methanogenesis. We propose the Hdr:ACDS:Mer complex comprises a special class of
multienzyme redox complex which functions as a ‘‘biological router’’ that physically links methanogenesis and acetyl-CoA
biosynthesis pathways.

Citation: Lieber DJ, Catlett J, Madayiputhiya N, Nandakumar R, Lopez MM, et al. (2014) A Multienzyme Complex Channels Substrates and Electrons through
Acetyl-CoA and Methane Biosynthesis Pathways in Methanosarcina. PLoS ONE 9(9): e107563. doi:10.1371/journal.pone.0107563

Editor: Vasu D. Appanna, Laurentian University, Canada

Received April 15, 2013; Accepted August 20, 2014; Published September 18, 2014

Copyright: � 2014 Lieber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This material is based upon work supported by the National Science Foundation under Grant No. IOS-1449525 to NRB; by the National Institute of
General Medical Sciences of the National Institutes of Health under award numbers F32 GM078796 to NRB, P20 RR-17675, and P30GM103335; a Pepsi UCARE
Fellowship to DJL; by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-FG02-02ER15296 to WWM; and by
the Nebraska Tobacco Settlement Biomedical Research Development Funds. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the National Institutes of Health, the Department
of Energy, or Pepsi. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: nbuan@unl.edu

Introduction

Multienzyme complexes catalyze important reactions in central

metabolic processes such as photosynthesis, respiration, and amino

acid synthesis. We wanted to determine whether multienzyme

complexes are also involved in the central metabolic process of

biological methane production (methanogenesis) in methane-

producing archaea (methanogens). Methanogens are obligately

anaerobic archaea that derive all their energy for growth by

reducing carbon sources such as acetate, formate, CO2, methanol,

methylamines and methyl-sulfides to methane gas. Metabolic

engineering of methanogens is an attractive prospect for increasing

the yield and rate of renewable methane production from biomass

in anaerobic digesters. However, successful metabolic engineering

requires not only an in-depth understanding of methanogen

physiology, but also a knowledge of which reactions are physically

linked by multienzyme complexes. A detailed, three-dimensional

spatial model of methanogenesis proteins would be useful in these

efforts.

Metabolic reactions that are linked by multienzyme complexes

have clear advantages over reactions that are catalyzed by

individual, unlinked enzymes [1]. Complexes channel substrates

to prevent diffusion of intermediates into bulk cytoplasm,

effectively increasing the relative local concentration of reactants

in subsequent pathway steps, speeding the overall rate of

production of the final product, and preventing diffusion of toxic

intermediates that can damage cell constituents. Complexes can

also provide a means of co-regulating pathway enzymes or

ensuring proper enzyme dosage (Figure 1). Methanogens obtain

up to 1 mole ATP per mole substrate consumed and live near the

thermodynamic lower limit of life [2]. Substrate channeling via

multienzyme complexes would provide a kinetic advantage by

ensuring maximal efficiency for converting substrate to ATP

generation. We used in vivo crosslinking, tandem affinity purifi-

cation, and peptide mass spectrometry (XL-MS) to look for

complex formation among methanogenesis enzymes. XL-MS is a

reliable technique for identifying protein:protein interactions by

identifying crosslinked partners which elute together after affinity

column purification. A recent effort in Saccharomyces cerevisiae
has successfully demonstrated the ability to use XL-MS to

reproduce 30 years of protein:protein interaction data and to

predict new interactions which were subsequently verified
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genetically [3]. Though commonly applied to the study of cell

signaling networks, we surmised that XL-MS is a valuable

technique for identifying protein:protein interactions between

methanogenesis enzymes and electron transfer proteins in the

methanogen, Methanosarcina acetivorans.
The majority of cultivated methanogen strains are restricted to

using formate or CO2 as the sole carbon source, and these

methanogens use the hydrogenotrophic methanogenic pathway,

which relies on reducing equivalents from hydrogen gas to reduce

formate or CO2 to methane (Figure 2) [4]. Methanogens which

solely utilize the hydrogenotrophic pathway have electron

transport systems that are different from the electron transport

systems of generalist methanogen species like Methanosarcina
acetivorans. The generalist organism M. acetivorans is capable of

using the methylotrophic (methanol, methylamines, methylsul-

fides), carboxidotrophic (CO), and the acetoclastic pathways, but

cannot use the hydrogenotrophic or methyl respiration pathways

due to the lack of expression of suitable hydrogenases [5,6,7,8].

We wanted to identify proteins that form complexes with

coenzyme M-coenzyme B (CoM-S-S-CoB) heterodisulfide reduc-

tase (HdrED) in M. acetivorans. HdrED is essential for methylo-

trophic and aceticlastic growth and is likely to participate in

protein:protein interactions with other enzymes of the methano-

genesis pathway in Methanosarcina. Previous reports showed that

CO oxidation can be coupled to CoM-S-S-CoB reduction in cell

extracts in Methanosarcina barkeri MS. The system was then

reconstituted using pure Hdr and CO dehydrogenase (a sub-

complex of ACDS enzyme) components from Methanosarcina
thermophila [9,10]. The CO:Hdr activity in both reports required

the addition of ferredoxin and membranes. XL-MS would seem to

be a suitable technique to address whether the CO:Hdr complex

occurs in vivo. In this work we have identified proteins that co-

purify with the HdrD1 subunit, which contains the CoM-S-S-CoB

Figure 1. Organization of cellular metabolism. Metabolic reactions in a cell can be catalyzed by A, individual enzymes, or B, multienzyme
complexes that channel substrates and/or sequester intermediates in a pathway. Pathways in the cell can be connected in series, C, or in parallel by D,
metabolic ‘‘routers’’ that channel electrons and substrates to either of two metabolic pathways.
doi:10.1371/journal.pone.0107563.g001

Figure 2. Comparison of methanogenesis pathways. A, Hydrogenotrophic methanogenesis in Methanococcus maripaludis. B, Methylotrophic
methanogenesis in Methanosarcina acetivorans. Green ovals: energy-conserving reactions. Red ovals: energy-consuming reaction. Please see text for
abbreviations.
doi:10.1371/journal.pone.0107563.g002
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reductase active site. We report that the proteins with the highest

confidence for interacting with HdrD1 are the b subunit of acetyl-

CoA decarbonylase/synthase (ACDS), and methylene-tetrahydro-

methanopterin reductase (Mer).

Results

Strep-tagged HdrD1 protein forms high molecular-
weight complexes in vivo

The HdrD1 protein was chosen for XL-MS experiments

because it contains the CoM-S-S-CoB heterodisulfide reductase

active site and the gene has been shown to be essential for growth

on trimethylamine, methanol, methanol + acetate, and acetate

[11]. Plasmids expressing N- or C-terminal strep-tagged HdrD1

protein (pNB636 and pNB637, respectively) were recombined

onto the M. acetivorans chromosome (Table 1). A StrepTagII

peptide affinity tag (WSHPQFEK) was chosen instead of a

6XHistidine tag because His tags have the potential to interfere

with assembly of metal clusters. The covalent crosslinker,

dimethylsuberimidate (DMS), was added to cells before protein

purification to stabilize high molecular weight complexes. DMS is

an 11 Å amide crosslinker that crosses cell membranes and is

unaffected by residual sulfide present in methanogen cell

preparations. N-terminally tagged HdrD1 protein (strepHdrD1)

was stably expressed as judged by Western blot (Figure 3a).

strepHdrD1 appeared to form two high-molecular weight

complexes, observed as bands of approximately 75 kDa and

150 kDa in addition to a band corresponding to strepHdrD1

monomer (45 kDa). C-terminally tagged HdrD1strep protein was

not stably expressed and was therefore not used for further

experiments (Figure 3a). Instability of C-terminally tagged

HdrD1strep protein suggests the 8-amino acid strep tag interferes

with correct protein folding.

HdrD1 interacts with an ACDS:Mer complex
In order to identify constituents of the crosslinked strepHdrD1

complex, we used affinity purification and peptide mass spec-

trometry. Peptide masses from biological duplicate samples were

compared to predicted mass database of M. acetivorans C2A to

identify proteins contained in the eluate (Tables S1–S4 in File S1).

Protein samples from mock co-purifications conducted with cells

expressing b-glucoronidase were used as a control to screen for

nonspecific binding to the resin. Sixteen proteins with significant

scores were detected from duplicate control samples (Figure S1).

After subtracting these nonspecific proteins from the list of proteins

that co-purified with strepHdrD1, 29 proteins with significant

scores (.100) remained. Of these 29 proteins, the highest score

was for HdrD1, as would be expected (Table 2). The second-

highest corresponded to the CdhC subunit of acetyl-CoA

decarbonylase synthase (ACDS enzyme). CdhC protein is the b
subunit of ACDS enzyme and houses a NiFeS ‘‘A site’’ responsible

for cleaving acetyl-CoA during growth on acetate or for creating

acetyl-CoA from CO2 and CH3-H4MPT during growth on

methanol [12,13,14]. Mer was also detected in the co-purified

samples (Table 2). During growth on methanol, Mer catalyzes the

F420-dependent oxidation of CH3-H4MPT to CH2-H4MPT in the

oxidative branch of the methylotrophic methanogenesis pathway

[15,16]. The chaperones DnaK and Hsp20 also co-purified with

strepHdrD1, suggesting that overexpression may have taxed the

protein folding machinery of the cell, an unsurprising result

considering that strepHdrD1 expression is driven by the PmcrB

promoter, which has the highest expression level in methanogens

[17,18,19]. The remaining 23 proteins had scores less than 100,

suggesting that they are minor constituents of an HdrD1 complex

(Figure 3b).

While ACDS, Mer, and molecular chaperones are proteins one

would expect are present in high abundance, not all high-

abundance proteins co-purified with strepHdrD1. For instance,

Methyl-CoM reductase, Mcr, the protein of highest abundance in

methanogen cells, was not detected in strep HdrD1 eluates, and

none of the other methanogenesis proteins were detected. The

highest peptide hits in the control samples were elongation factor

EF-2, MtaC1 (methanol-5-hydroxybenzimidazolylcobamide co-

methyltransferase, isozyme 1), glutamate-ammonia ligase, and

Hsp60. The high peptide hit scores of ACDS and Mer in

biological replicates indicates that the co-purification procedure

and control screen was sufficiently stringent.

We anticipated that HdrE should be identified. HdrE is an

integral membrane b-type cytochrome that delivers electrons to

HdrD1. HdrE was identified by purification of CoM-S-S-CoB

reductase activity from the membrane fraction of Methanosarcina
barkeri. Therefore HdrED interaction was expected to be robust

during purification. Batch resin binding with whole cell lysate was

used to improve the probability of capturing membrane protein

partners, and the main HMW complex band visible in the

Western blot corresponds to the expected size of the HdrE:s-

trepHdrD1 crosslinked species (,75 kDa), suggesting that the

HdrE:strepHdrD1 complex should have been detected. It is

possible that despite utilization of crosslinker and batch binding of

whole lysate to the streptactin resin, HdrE may not have been

detectable by mass spectrometry due to problems with complete

digestion of membrane proteins or the solubility of hydrophobic

peptides. Therefore it is possible that HdrE, along with other

highly hydrophobic proteins, may have been missed.

HdrD2 does not form high-molecular-weight complexes
M. acetivorans has a close homolog of HdrD1, HdrD2, which is

encoded by gene MA0526. HdrD2 is 31% identical, 47% similar

to HdrD1 by primary amino acid sequence. Unlike HdrD1,

expression of HdrD2 is not essential for growth [11]. However, we

hypothesized that HdrD1 and HdrD2 may share overlapping

cellular functions because of their similar sequences. When strep-

tagged HdrD2 is expressed in M. acetivorans, we could not detect

a high-molecular-weight complex after crosslinking (data not

shown). We also did not detect interacting proteins with a

MASCOT score above 100 (Table S5 in File S1). These results

indicate that although HdrD1 and HdrD2 share significant amino

acid sequence similarity, they do not crosslink with the same

proteins, and likely have non-overlapping physiological functions.

Discussion

We propose that the Hdr:ACDS:Mer complex is a multienzyme

‘‘router’’ that directs substrates and electrons through either the

acetyl-CoA or methanogenesis pathways by connecting the CoM-

S-S-CoB, acetyl-CoA, and CH3-H4MPT metabolic nodes (Fig-

ure 3c). Despite the importance of several multienzyme complexes

in biology (tryptophan synthase, pyruvate carboxylase, polyketide

synthases, etc.) it is unusual that acetyl-CoA, a major node

involved in carbon fixation, is physically linked with the electron

transport system in Methanosarcina by the Hdr:ACDS:Mer

multienzyme complex [20,21,22].

These studies suggest reduction of CoM-S-S-CoB and oxidation

of CH3-H4MPT is physically linked to acetyl-CoA in M.
acetivorans by a HdrD:ACDS:Mer complex. The HdrD:ACDS:-

Mer complex we identified, though detected in cells grown on

methanol, likely exists in cells grown on acetate because all three

Multienzyme Complexes in Methanosarcina
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enzymes are essential for both the methylotrophic and aceticlastic

methanogenesis pathways (Figure 4). Our findings are consistent

and complementary to previous reports of CO:Hdr activity in

acetate-grown cell extracts from M. barkeri and in a reconstituted

system using purified components from acetate-grown M.
thermophila [9,10]. During methylotrophic growth, ACDS is the

enzyme responsible for acetyl-CoA synthesis from CO2, CH3-

H4MPT and reduced ferredoxin. During acetoclastic growth,

ACDS functions in the opposite direction to cleave acetyl-CoA

with the production of CO2, reduced ferredoxin, and CH3-

H4MPT, which is reduced to methane [14,23]. The CdhC b
subunit of ACDS houses the NiFe ‘‘A site’’ and catalyzes acetyl-

CoA formation from enzyme-bound CO (CO2 reduced by

ferredoxin) and enzyme-bound methyl-corrin (derived from

CH3-H4MPT) [24]. HdrED, ACDS, and Mer are all essential

for methylotrophic and acetoclastic growth, and therefore the

Table 1. Plasmids and strains used in this study.

Plasmids and E. coli strains

NB # Genotype Purpose Plasmid name Reference

pJK026A derivatives [18,36]

139 PmcrBstrephdrD1 Constitutive production of strepHdrD1
protein in Methanosarcina

pNB636 This study

140 PmcrBhdrD1strep Constitutive production of HdrD1strep
protein in Methanosarcina

pNB637 This study

145 PmcrBstrephdrD2 Constitutive production of strepHdrD2
protein in Methanosarcina

pNB661 This study

146 PmcrBhdrD2strep Constitutive production of HdrD2strep
protein in Methanosarcina

pNB662 This study

Methanosarcina acetivorans C2A strains

NB # Genotype Purpose Reference

95 Dhpt::PmcrBtetR/wC31
int/attP

Parental strain same as WWM74 [18]

75 Dhpt::PmcrBtetR/wC31
int/att pJK026A

control for protein overexpression and
non-specific binding to streptavidin
agarose resin

This study

79 Dhpt::PmcrBtetR/wC31
int/att pNB636

strephdrD1 constitutive overexpression
from hpt locus under PmcrB promoter

This study

80 Dhpt::PmcrBtetR/wC31
int/att pNB637

hdrD1strep constitutive overexpression
from hpt locus under PmcrB promoter

This study

41 Dhpt::PmcrBtetR/wC31
int/att pNB661

strephdrD2 constitutive overexpression
from hpt locus under PmcrB promoter

This study

42 Dhpt::PmcrBtetR/wC31
int/att pNB662

hdrD2strep constitutive overexpression
from hpt locus under PmcrB promoter

This study

doi:10.1371/journal.pone.0107563.t001

Figure 3. XL-MS identification of a multienzyme complex in Methanosarcina. A, Detection of HdrD complexes. 2 mg crosslinked cell lysates
from controls or strains expressing strep-tagged HdrD1 protein were analyzed by Western blot. Arrows indicate the position of strep-tagged HdrD1
monomer and crosslinked high molecular weight (HMW) complexes. * = degraded HdrD1strep protein. B, HdrD co-purified proteins detected by mass
spectrometry. Node sizes, line opacity and line widths are proportional to the average peptide hit score of the protein detected in biological
duplicates. Dotted lines denote an average score below 100, solid lines denote an average score of 100 and above. Image created with Cytoscape
[36]. C, Putative model of the Hdr:ACDS:Mer complex. During methylotrophic growth, both ACDS and Mer use methyl-H4MPT as a substrate. Black
dotted lines = electron flow between active sites. HdrE (blue) or HdrD (red), Mer is a tetramer (orange), and ACDS is composed of 5 subunits in a
(a2e2)4b8(cd)8 configuration (green) [13,16,37].
doi:10.1371/journal.pone.0107563.g003
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HdrD:ACDS:Mer complex likely participates in both methano-

genesis pathways.

Redox potentials suggest it is possible that electrons can directly

flow from CdhC (2540 mV midpoint potential of the A site of

Clostridia thermoaceticum ACDS enzyme) to HdrD1 (2142 mV)

during acetoclastic growth [25,26]. However, direct reduction of

CoM-S-S-CoB via ACDS:HdrD would bypass Rnf, the proposed

sodium-pumping ferredoxin:methanophenazine oxidoreductase,

thus preventing formation of a transmembrane ion potential that

is necessary for ATP synthesis. During methylotrophic growth

ACDS accepts electrons from ferredoxin, and it is possible that

HdrD could also compete for electrons from ferredoxin due to its

close proximity to CdhC. Such an arrangement would shift flux

away from acetyl-CoA biosynthesis towards reduction of CoM-S-

S-CoB, albeit at the expense of the ion transmembrane gradient.

Genetic and biochemical evidence demonstrates that electrons

from ferredoxin are more likely to be oxidized by Rnf and

HdrABC. Both HdrABC and Rnf are thought to account for most,

but not all, ferredoxin oxidation during methylotrophic methan-

ogenesis (Buan, Kulkarni, Guss, and Metcalf, unpublished data). If

HdrD can directly accept electrons from CdhC, or if it competes

with CdhC for electrons from ferredoxin, this is expected to be a

low-flux pathway that the cell may use to maintain redox balance

between ferredoxin, coenzyme A, and CoM-S-S-CoB pools.

If ACDS and Mer conformations are altered as a result of

forming a complex in vivo, disruption of the ACDS:Mer

interaction is expected to have a negative effect on biosynthesis

and oxidative methylotrophic pathways. A recent report by

Matschiavelli et al. supports the idea that ACDS and Mer are

linked in vivo. The authors showed that deletion of both copies of

ACDS results in an increase in the doubling time of M. acetivorans
by 14 hours during growth on methanol + acetate [14]. The

authors hypothesize that the rate of acetyl-CoA production from

acetate via Ack and Pta are limiting in the MCD21 (Dcdh2 Dcdh1
double mutant) and MCD213 (Dcdh2 Dcdh1 DcdhA3 triple

mutant) strains. However, deletion of ACDS should not show an

effect during growth on methanol + acetate because in wild-type

cells, methanol is converted to CO2 and methane, while acetate is

activated to acetyl-CoA by Ack and Pta, bypassing the need for

ACDS. We propose an alternate hypothesis: that flux through the

oxidative branch of the methylotrophic pathway is affected due to

disruption of the ACDS:Mer complex and a resulting conforma-

tional effect on Mer decreases catalytic efficiency of conversion of

methyl-H4MPT to methylene-H4MPT.

Reports of CO:Hdr activity in extracts and a reconstituted

system, combined with the observation of unexpected methylo-

trophic growth phenotypes resulting from ACDS mutations, and

of methyl oxidation mutations demonstrating a need for acetate

supplementation, supports our hypothesis that the HdrD:ACDS:-

Mer complex we observed has a physiological role in methano-

gens. Direct interaction between ACDS and Mer may explain why

some methyl-H4MPT is oxidized to CO2 during growth on acetate

[27], and why attempts to delete the oxidative genes in M.
acetivorans have been unsuccessful. Previous reports suggest the

Table 2. HdrD1 protein:protein interactions detected by Mass Spectrometrya.

Protein gi# Gene MA# Function Average scoreb

20089573 MA0688 HdrD1, heterodisulfide reductase, subunit D 432

20089889 MA1014 CdhC, acetyl-CoA decarbonylase/synthase complex subunit beta 383

20092658 MA3862 CdhC, acetyl-CoA decarbonylase/synthase complex subunit beta 383

20090337 MA1478 molecular chaperone DnaK 220

20092530 MA3733 Mer, methylenetetrahydromethanopterin reductase 153

20093358 MA4574 hsp20/alpha crystallin family protein 151

aProteins also detected in the control samples have been omitted.
bProteins were identified in duplicate biological samples.
doi:10.1371/journal.pone.0107563.t002

Figure 4. Enzymes used by M. acetivorans. Current pathway models for growth of M. acetivorans on A, methanol + acetate or B, acetate as carbon
and energy sources. Enzymes in red are essential despite no defined purpose in the pathway. Green ovals = energy conserving step. Red
ovals = energy-consuming step. Please see text for abbreviations.
doi:10.1371/journal.pone.0107563.g004
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oxidative branch is essential during acetoclastic growth due to the

need to generate reduced F420 for biosynthetic reactions. In the

closely related organism, M. barkeri, a Dmer mutant is viable but

can only grow by the methyl respiration pathway, which M.
acetivorans cannot use, or mixotrophically on methanol + acetate,

albeit very slowly by an unknown Mer/Mtr bypass pathway [28].

Wild-type M. barkeri does not grow mixotrophically on methanol

+ acetate, but uses methanol for methylotrophic methanogenesis,

and acetate for biosynthesis. Therefore, in both M. acetivorans
and M. barkeri a Dmer mutant cannot use the acetoclastic

methanogenesis pathway despite the fact that M. barkeri can use

hydrogen as an energy source and M. acetivorans cannot.

Physical linkage of ACDS and Mer in M. acetivorans has

intriguing implications as to how carbon flux through the oxidative

branch of methanogenesis and biosynthesis pathways in this

organism is controlled. ACDS and Mer both use CH3-H4MPT as

substrate, and physically linking these two enzymes means their

active sites are in direct competition for substrate. Therefore, as

CH3-H4MPT is produced by Mtr, whether or not it is funneled

through the oxidative branch of the methylotrophic methanogen-

esis pathway is dependent on the rate at which it enters the Mer

active site. If Mer is not in a favorable conformation to accept

substrate, methyl-H4MPT will be available for ACDS to convert

into acetyl-CoA for biosynthesis. Furthermore, all the major

electron carriers (F420, CoM-S-S-CoB, methanophenazine, ferre-

doxin) converge on the Hdr:ACDS:Mer complex, and phenotypic

behavior of ACDS and Mer mutant strains indicates the

Hdr:ACDS:Mer complex acts as an integrated switch that samples

the redox status of electron carrier pools. The order of substrate

and electron donor/acceptor binding determines whether CH3-

H4MPT is fixed as acetyl-CoA by ACDS or is directed to the

oxidative branch of the methanogenesis pathway via Mer. By

forming a Hdr:ACDS:Mer complex, the cell samples availability of

substrates and electron carriers in a minimal spatial location with

no need for diffusion of metabolites across cytoplasm. Our data

suggests the CH3-H4MPT metabolite is channeled to one of two

metabolic fates (acetyl-CoA production or the oxidative branch of

methylotrophic methanogenesis) by a single Hdr:ACDS:Mer

protein complex, in contrast to enzyme channeling models that

propose an ‘‘assembly-line’’ arrangement of enzyme functions

[29,30].

The 3-dimensional spatial organization of metabolism in

methanogens may have evolved as a result of the thermodynamic

pressure methanogens face. Methanogens obtain very little ATP/

mol substrate consumed (approximately 0.5 ATP/acetate or 1

ATP/MeOH), with only acetogens and syntrophs known to

survive under even less thermodynamically favorable conditions.

The ability to thrive on so little energy could very well result from

exquisitely tight control of substrate and electron channeling that

is not necessary in, for instance, a facultative aerobic bacteria like

E. coli which obtains more energy per mole substrate. Perhaps a

fitting analogy would be to describe E. coli as a mechanical

machine with metabolic ‘‘units’’ that can be interchanged, whereas

Methanosarcina is a solid-state computer, with a hard-wired

multienzyme ‘‘biological router’’ that controls flux through acetyl-

CoA as well as through methanogenesis (Figure 1). If multienzyme

redox routers exist in other organisms, one would predict they may

be found in organisms that also live near the thermodynamic limit

of life.

Materials and Methods

Growth of E. coli
E. coli strains were grown in LB medium [31] with the

appropriate antibiotics or additions in the following concentra-

tions: rhamnose 5 mM, chloramphenicol 35 or 5 mg/ml.

Growth of M. acetivorans
Methanosarcina strains were grown under strictly anaerobic

conditions in HS mineral salts medium [32]. For growth on solid

medium, cells were plated on HS medium containing 1.4% agar

(w/v) with the appropriate carbon source and additions as

previously described [33]. All strains were inoculated into

100 mL of high salt media with a methanol carbon source into

250 mL bottles. The cultures were incubated at 35uC in a Thermo

Scientific MaxQ 6000 Incubated/Refrigerated Stackable Shaker

until exponential phase. The following anaerobic additions were

added when appropriate: MeOH (125 mM), acetate (120 mM),

TMA (50 mM), Puromycin (2 mg/ml).

Strain construction
Genetic methods for M. acetivorans are well-defined [34].

Expression of tagged proteins is achieved by creating oligos to

amplify the genes of interest and cloning the resultant PCR

products into the pJK026A shuttle plasmid at the NdeI and

BamHI (or HindIII) restriction sites (Table S6 in File S1). The

oligos are designed to fuse the strep-tagII peptide (which has been

codon optimized for expression in M. acetivorans) to the 59 or 39

end of the gene coding sequence [35]. The resulting plasmid

(Table 1) is transformed into M. acetivorans to create the strains

listed in Table 1. Puromycin-resistant colonies are single-colony

purified and screened by PCR to ensure the expression plasmid

has integrated at the hpt locus via WC31 integrase [18]. Expression

of the tagged protein is driven by the constitutive PmcrB promoter

on pJK026A.

Strep-tagged affinity co-purification
Protein purification was performed at room temperature under

anaerobic conditions. 100 mL cultures were transferred to 15 mL

conical tubes and centrifuged at 12286g in a Thermo Scientific

IEC Medilite Microcentrifuge for five minutes. The cell pellet was

resuspended in 1 mL of 50 mM NaH2PO4, 0.4 M NaCl, pH 7.2

buffer and transferred into a microfuge tube. 30 mg of DMS cross-

linking agent (Dimethyl suberimidate?2 HCl, ThermoFisher

Pierce, USA), was added to the remaining cells and mixed for

1 hour. The sample was added to 4 mL of 50 mM TrisCl pH 8

(lysis/quenching buffer). 10 mL of DNase and 50 mL of Halt

Protease Inhibitor Cocktail 100X (ThermoFisher Pierce, USA)

were added and the sample was incubated for 5 minutes. 100 mL

of Streptavidin Agarose Resin (Qiagen, USA) was added, and the

sample put on ice for 1 hour with occasional gentle mixing. The

sample was placed into 2 mL centrifuge columns and centrifuged

for 5 minutes at 12286g. The resin was washed four times with

2 mL 50 mM NaH2PO4, pH 7.2. Strep-tagged protein was eluted

twice with 200 mL biotin eluting buffer (50 mM NaH2PO4,

300 mM NaCl, 0.05% tween 20, pH 8.0, 10 mM biotin), and

the resin was stripped with two washes of 200 mL of 8 M guanidine

hydrochloride.

SDS PAGE and Western blot
Protein concentrations were measured using the Coomassie Plus

Bradford Assay (Bio-Rad, USA). Protein samples were mixed with

6X cracking buffer (58 mM Tris pH 6.8, 58 mM SDS, 100 mM

dithiothreitol (DTT), 0.68 mM glycerol, 30 mM bromophenol
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blue) and boiled for 2 minutes. Proteins and Precision Plus Protein

Western Standard ladder were separated on precast 4–20% SDS-

PAGE gels, and blotted onto ImmunoBlot PVDF membrane (Bio-

Rad, USA). Strep-tagged protein was detected with mouse

monoclonal anti-StrepTagII antibody (Qiagen, USA) and sheep

anti-mouse HRP-linked secondary antibody (GE Healthsciences,

USA). HRP signal was detected using the ECL chemiluminescent

detection system (ThermoFisher Pierce, USA). Western blot

performed with extracts from vector-only control cells did not

detect any protein bands.

Mass spectrometry
For in-solution digests, enriched proteins after elution from the

beads were subjected to ‘‘shot gun’’ protein analysis by direct in-

solution trypsin digestion of eluent. Eluted protein samples were

desalted and dialyzed with 100 mM ammonium bicarbonate using

a Millipore Centrifugal Filter Unit (Millipore, USA). Samples were

reduced with DTT (7.5 mg), and alkylated with iodoacetamide

(0.72 mg) in the dark. Proteins were digested with approximately a

1:50 trypsin:protein ratio sequencing-grade trypsin (Roche)

dissolved in 100 mM ammonium bicarbonate at at 37uC
overnight. Tryptic peptides were desalted and concentrated using

PepClean C-18 spin columns according to manufacturer’s

instructions (Thermo Fisher Scientific, USA).

For in-gel digests, eluted protein was first separated by SDS

PAGE and stained with SimplyBlue Safe Stain (Invitrogen). Bands

were excised, and gel slices were destained in 1:1 100 mM

ammonium bicarbonate: acetonitrile, and washed in 100%

acetonitrile before drying in a speedvac. Tris(2-carboxyethyl)pho-

sphine (TCEP, 100 ml) was added to reduce the protein, and the

sample was incubated at 56uC for 45 minutes. Samples were

alkylated with iodoacetamide (0.72 mg) and gel slices were washed

in 100 mM ammonium bicarbonate. Gel slices were washed twice

with 100% acetonitrile and dried in a speed vac. Trypsin was

added and gel slices were allowed to swell at 4uC. Gel slices were

incubated in 50 mM ammonium bicarbonate at 37uC overnight,

and eluted tryptic peptides were desalted as above. Biological

replicates of the digested peptide samples were submitted to the

University of Nebraska-Lincoln Redox Metabolomics and Pro-

teomics Core Facility.

One dimensional LC-MS/MS was performed with an ultimate

3000 Dionex MDLC system (Dionex Corporation, USA) inte-

grated with a nanospray source and LCQ Fleet Ion Trap mass

spectrometer (ThermoFisher Scientific, USA). LC-MS/MS in-

cluded an on-line sample pre-concentration and desalting using a

monolithic C18 trap column (Pep Map, 300 mm I.D65 mm,

100 Å, 5 mm, Dionex, USA). Desalted peptides were eluted and

separated on a C18 Pico Frit analytical column (75 mm

I.D615 cm, 3 mm, 100 Å, New Objective, USA) by applying an

acetonitrile (ACN) gradient (ACN plus 0.1% formic acid,

90 minute gradient at a flow rate of 300 ml/min) and were

introduced into the mass spectrometer using the nano spray

source. The LCQ Fleet mass spectrometer was operated with the

following optimized parameters: nano spray voltage, 2.0 kV;

heated capillary temperature, 200uC; full scan m/z range, 400–

2,000). The mass spectrometer was operated in data dependent

mode with 4 MS/MS spectra for every full scan, 5 microscans

averaged for full scans and MS/MS scans, a 3 m/z isolation width

for MS/MS isolations, and 35% collision energy for collision-

induced dissociation.

The MS/MS spectra were searched against M. acetivorans
proteome database using MASCOT (Version 2.2 Matrix Science,

London, UK). Database search criteria were as follows: enzyme:

trypsin, missed cleavages: 2; mass: monoisotropic; fixed modifica-

tion: carbamidomethyl (C); variable modification: oxidation (M);

peptide tolerance: 1.5 Da; MS/MS fragment ion tolerance: 1 Da.

Protein identifications were accepted with a statistically significant

MASCOT protein score that corresponds to an error probability

of p,0.05. Datasets from duplicate vector only control mock

purifications were used as a screen. Raw datasets can be found in

Tables S2-S6 in File S1. Protein hits were required to be identified

(score .0) in at least two independent purifications for inclusion in

Table 2.

MASCOT results were loaded into a MySQL database as a list

of identified proteins (nodes) and potential interactions with HdrD

for each purification sample. Queries compared samples with the

control to identify interactions in both independent purification

samples. These results were then visualized using Cytoscape [36].

Supporting Information

Figure S1 Analysis of XL-MS results. Peptide hits from

duplicate biological replicates after crosslinking and strep-tag

affinity purification were compared. A, control protein samples. B,
samples from cells overexpressing strepHdrD1 protein. blue: hits

found only in one control sample, yellow: hits found in both

control samples, orange: hits found in one strepHdrD1 sample,

red: hits found in both strepHdrD1 samples. Data was visualized

using Cytoscape.

(TIF)

File S1 Supporting tables. Table S1, XL-MS data for
control sample 1. Table S2, XL-MS data for control
sample 2. Table S3, XL-MS data for strepHdrD1 sample
1. Table S4, XL-MS data for strepHdrD1 sample 2.
Table S5, XL-MS data for HdrD2strep sample. Table S6,
Oligos used for strain construction.

(XLSX)
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