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Abstract
Background: Mathematical models of cancer relevant processes are being developed at an
increasing rate. Conceptual frameworks are needed to support new treatment designs based on
such models.

Methods: A modern control perspective is used to formulate two therapeutic gain strategies.

Results: Two conceptually distinct therapeutic gain strategies are provided. The first is direct in
that its goal is to kill cancer cells more so than normal cells, the second is indirect in that its goal is
to achieve implicit therapeutic gains by transferring states of cancer cells of non-curable cases to a
target state defined by the cancer cells of curable cases. The direct strategy requires models that
connect anti-cancer agents to an endpoint that is modulated by the cause of the cancer and that
correlates with cell death. It is an abstraction of a strategy for treating mismatch repair (MMR)
deficient cancers with iodinated uridine (IUdR); IU-DNA correlates with radiation induced cell
killing and MMR modulates the relationship between IUdR and IU-DNA because loss of MMR
decreases the removal of IU from the DNA. The second strategy is indirect. It assumes that non-
curable patient outcomes will improve if the states of their malignant cells are first transferred
toward a state that is similar to that of a curable patient. This strategy is difficult to employ because
it requires a model that relates drugs to determinants of differences in patient survival times. It is
an abstraction of a strategy for treating BCR-ABL pro-B cell childhood leukemia patients using
curable cases as the guides.

Conclusion: Cancer therapeutic gain problem formulations define the purpose, and thus the
scope, of cancer process modeling. Their abstractions facilitate considerations of alternative
treatment strategies and support syntheses of learning experiences across different cancers.

Background
Recent scientific research trends toward systems biology
have brought new life to theoretical cancer research [1].

Mathematical models of cancer relevant processes, rare in
the past [2,3], have now become common [4-7], and
some appear to have predictive capabilities [8,9]. The ulti-
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mate goal is to use such models to design new cancer treat-
ments.

In this paper we formulate two systems and control ori-
ented abstractions of two conceptually distinct instances
of therapeutic gain strategies, a direct one for mismatch
repair deficient cancers, and an indirect one for BCR-ABL
leukemias. The abstractions facilitate considerations of
alternative treatment strategies and form the basis of a
conceptual framework that supports syntheses of learning
experiences across different cancers. The systems and con-
trol perspective that underlies these abstractions is
reviewed briefly in this section.

Simulation
Systems of first order nonlinear ordinary differential
equations (ODEs) [10] are commonly used to model and
simulate biochemical networks. The models have bound-
ary condition nodes that decouple them from their envi-
ronment, and state variable nodes that are responsive to
environmental changes. The models are typically built
and validated using 4 types of data:

1. Configuration data – These data specify how various sys-
tem components are interconnected. Wiring diagrams are
an excellent example of this form of data.

2. Isolated component data – These data describe how sys-
tem components behave in complete isolation, e.g.
enzyme mechanisms and estimates of binding constants.

3. Operating point data – These data describe the state of
the interconnected system in steady state, e.g. metabolite
concentrations in whole cell extracts of unperturbed cells.

4. Dynamic response data – These data specify how the
interconnected system reacts to perturbations, e.g. metab-
olite concentration time course responses to drugs.

In general, configuration data, isolated component data
and operating point data are used to build models, and
dynamic response data are then used to validate them, e.g.
see [3]. Once built, the models can be represented using
Systems Biology Markup Language (SBML) [11] and ana-
lyzed using various software packages [12], such as R [13]
and Matlab [14].

Control
The inverse of simulation is control. The goal in control is
to identify system inputs (boundary condition time
courses in this paper) that will drive the system toward an
objective, such as a target steady-state (a regulation prob-
lem) or a desired time course trajectory (a tracking prob-
lem). Various types of control methods can potentially be
applied to problems of interest in cancer research, e.g.
classical techniques such as proportional, integral and
derivative (PID) control, or model-based methods which
involve state estimation as a component of the feedback
system. In model-based methods, the first step is to
develop a validated process model, and the second step is
to use the model and the overall problem objective to
design a control strategy. In the future, as cancer treatment
protocols are eventually developed based on models and
control system design methodologies (Fig. 1), and as
model parameters and initial states become individual-
ized through patient specific laboratory measurements,
treatment dose time course schedules will become indi-
vidualized as a direct consequence of using model-based
control system designs. Further, since successful control
systems in nature and in industry are generally imple-
mented using closed-loop feedback strategies, where cur-
rent state estimates derived from available observations
are used to determine the most suitable input values in
the next time interval, as science advances and as measure-
ment costs decrease, it is extremely likely that state feed-
back based cancer treatments will eventually become the
standard of care. This suggests that systems cancer biology
should perhaps focus first where it is most likely to per-
form the best, namely, on problems where control system
techniques can most readily be applied. In this regard,
leukemias are attractive to study because leukemic cells
can be sampled to measure relevant molecular activities
[15-22] in real time (i.e. daily), as needed to implement
feedback control strategies. Leukemias are also attractive
to study because they seem to be simpler than solid
tumors, perhaps because white blood cells naturally leave
and enter tissues and thus require fewer steps to become
malignant, a notion supported by shorter latency times
for radiation induced leukemias [23-25] versus solid
tumors [26]. Since increased process understanding favors

Treatment design via two interacting cycles, one in which models are developed iteratively through predictions fol-lowed by experimental validations, and a second in which control systems are developed iteratively through compari-sons of new design performances in controller-model com-bined simulationsFigure 1
Treatment design via two interacting cycles, one in which 
models are developed iteratively through predictions fol-
lowed by experimental validations, and a second in which 
control systems are developed iteratively through compari-
sons of new design performances in controller-model com-
bined simulations. As these cycles evolve, the current best 
control law will be the current best proposal for a state feed-
back based clinical trial. The trials will be individualized via 
polymorphism-based model parameter perturbations and dif-
ferences in initial states.
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process controllability, leukemia simplicity relative to
solid tumors should favor its curability.

In the past, control system design methods have been
developed primarily for linear [27] rather than nonlinear
systems [28], and most often for systems with rich rather
than sparse time course data. New design methods and/or
ad hoc solutions will therefore be needed to successfully
apply control system approaches to cancer therapy.

Previous attempts to apply control theory [29,30] to can-
cer therapy [31,32] lacked sufficient data, and the process
models that were used were not molecularly based. As our
understanding of cancer relevant biological processes
increases, our knowledge of the dynamic behavior of
these processes will improve, and thus so too will the like-
lihood of successfully applying control system design
approaches to cancer therapy. The purpose of this paper is
to formulate (but not solve) two systems and control ori-
ented, biochemical system model-based therapeutic gain
strategies as abstractions of two conceptually distinct, spe-
cific cancer treatment strategies.

Methods
SBMLR [33-35] was used with a folate model [3] to map
the childhood leukemia diagnostic bone marrow microar-
ray data of Yeoh et al [36] into predicted steady state fluxes
of de novo purine synthesis (DNPS) and de novo thymi-
dylate synthesis (DNTS), see [37]. Briefly, genes with mul-
tiple probe sets were represented by the set with the
highest average value. These were then normalized within
genes by dividing by the mean of the leukemia subtype
medians. The normalization constants were then equated
to the steady state of the folate model, and proportionality
between mRNA and protein levels was then assumed to
compute individualized steady states, i.e. as described in
[37]. For additional details, R scripts used to produce Figs.
4 and 5 are available as supplementary material [38].

Results
Direct approach to therapeutic gain
Iododeoxyuridine (IUdR) sensitization of cells to radia-
tion induced cell killing [39,40] is proportional to its
incorporation into DNA [41,42], and IU-DNA has a
longer half-life in mismatch repair deficient (MMR-) cells
than in MMR+ cells [43,44]. Thus, IU-DNA levels at the
time of irradiation correlate with the probability of clono-
genic cell death and are modulated by the cause of the
cancer. Suppose we have a model of IUdR metabolism
that includes IU-DNA and MMR. If the MMR parameters
of this model are set to MMR deficient values, the model
represents MMR- malignant cells, otherwise, with wild
type MMR parameters, the model represents MMR+ nor-
mal cells. Such a model, or pair of models, could be used
to develop novel multi-drug approaches to the treatment
of MMR- cancers. Specifically, the models could be used to
predict how IUdR metabolism should be manipulated by
drugs over time to maximize IU-DNA differences between
MMR- and MMR+ cells at some time point. The timing of
the maximum difference would then determine the best
timing of acute irradiation to exploit the IU-DNA differ-
ences for a therapeutic gain. This treatment scenario is
depicted in Figure 2.

The problem statement outlined above is direct to the
extent that its goal is selective killing of malignant versus
normal cells. It requires a model that relates anti-cancer
agents to an endpoint that is modulated by the cancer
causing event and that correlates with cell death (Fig. 3A).
These requirements define a class of cancer therapy prob-
lem statements with a common abstraction. The abstrac-
tion involves a pair of tissue specific dynamical system
models of the same biological process, both manipulated
synchronously through a set of common input functions.
Subject to normal tissue toxicity constraints, the overall
objective is to maximize the expectation of differential cell
killing, defined as the probability of killing a malignant
cell relative to the probability of killing a normal cell (i.e.
the odds), or the log thereof. This defines a class of opti-
mal control problems and a systems and control approach
to therapeutic gain referred to hereafter as the direct
approach.

To begin to formalize the direct approach mathematically,

consider the pair of system models + (t) = f(x+(t), u(t),

p+, ) and - (t) = f(x-(t), u(t), p-, ) for normal and

malignant cells, respectively, where x(t) is a vector of state
variables (e.g. metabolite and protein concentrations),
u(t) is a vector of input time courses applied synchro-
nously to both systems (e.g. extracellular drug concentra-
tions), p is the set of model parameters that differ between
the two cell types (parameters with identical values in

x

x0
+ x x0

−

IUdR treatment of MMR defective cancersFigure 2
IUdR treatment of MMR defective cancers.
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both cell types are embedded in f), and the initial states of

the normal and malignant cells are  and , respec-

tively. Here, normal cells may be dose-limiting marrow or
gut cells, or they may be normal tissue counterparts of
malignant cells. Since the two models are of the same bio-
chemical system, they represent the same chemical species
and thus have identical state space dimensions. Some of
these dimensions will be more controllable than others,
some will correlate with the probability of cell death more
than others, and some, particularly those associated with
major parameter differences, will separate values set ini-
tially to identical values in the two models more than oth-
ers. For direct approach success, cancers of focus should
be selected such that controllability, observability and
separability are aligned within the same dimension(s) as
much as possible.

Indirect approach to therapeutic gain
Pro-B cell childhood acute lymphoblastic leukemia (ALL)
[45] has event-free five year survival probabilities of 85–
90% for the TEL-AML subtype and 20–40% for the BCR-
ABL subtype [46]. Thus, TEL-AML1 ALL is essentially cur-
able, BCR-ABL ALL is essentially non-curable, and both
have pro-B cell origins. Suppose a biochemical system
model existed that connected drug targets to a critical (see
below) determinant of BCR-ABL treatment failure. Given
such a model, a treatment failure risk state transfer strat-
egy can be envisioned where the goal is to identify drug
concentration time course schedules that transfer non-
curable BCR-ABL initial states toward a target state region
defined by the collection of curable TEL-AML1 states. In
this scenario, if poor prognosis BCR-ABL patients could be
brought to a state in the neighborhood of curable TEL-

AML1 states, they might then be treated effectively from
such a region by a standard TEL-AML1 therapeutic regi-
men.

Because effective combination TEL-AML1 therapies
include methotrexate (MTX), it was hypothesized that dif-
ferences in folate system states may exist between TEL-
AML1 and BCR-ABL patients. To explore this hypothesis,
the diagnostic bone marrow data of Yeoh et al [36] was
used in conjunction with the folate model of Morrison
and Allegra [3] to develop model-based steady state flux
predictions of de novo purine synthesis (DNPS) versus de
novo thymidylate synthesis (DNTS) as shown in Figure 4.
In this plot, if the center of the TEL-AML1 patient states
serves as the target of BCR-ABL patient state space trajec-
tories, at first sight, it appears that BCR-ABL patients
might benefit by replacements of MTX with ALIMTA, since
ALIMTA inhibits glycinamide ribonucleotide formyltrans-
ferase and thus DNPS more so than DNTS [47]. This illus-
tration of the concept of the indirect approach (Figure 3B)
must, however, be carefully scrutinized before it is used to
suggest new treatments. For example, if the one cured
BCR-ABL patient (B in Fig. 4) serves as the guide, the other

x0
+ x0

− Folate model [3] DNPS vs. DNTS flux predictions based on the gene expression data of Yeoh et al [36] (see Methods and [18])Figure 4
Folate model [3] DNPS vs. DNTS flux predictions based on 
the gene expression   data of Yeoh et al [36] (see Methods 
and [18]). Shown are TEL-AML1 patients   who had either a 
hematological relapse (HR) (green T), a continuous complete   
remission (CCR) (blue t), or other outcome (gray t), and 
BCR-ABL patients   who had either a HR (red b), CCR 
(green B), or a censored, missing, or other   outcome 
(jointly, gray b).
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BCR-ABL patients should then be driven toward higher
DNPS and higher DNTS (upper right in Fig. 4), rather
than lower DNPS and higher DNTS (lower right in Fig. 4).
Further, the TEL-AML1 patients with hematological
relapses (T in Fig. 4) do not fall within the BCR-ABL clus-
ter, and several TEL-AML1 patients who do fall within the

BCR-ABL cluster were cured. Thus, closing differences in
this plot may have no impact on treatment outcome. This
suggests that the critical determinants of differences in
treatment outcome lie downstream of the folate system,
or are associated with other drugs in the TEL-AML1 regi-
men.

MAS5 U95av2 probeset summaries for ABL expression [36]Figure 5
MAS5 U95av2 probeset summaries for ABL expression [36]. Symbols are as in Fig. 4. P values were obtained using the Rank 
Sum Test for differences between leukemias.
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BCR-ABL is a prognostic determinant of treatment out-
come because it defines the poor prognosis group. BCR-
ABL is also likely to be the cause of BCR-ABL leukemias.
However, this does not imply that successfully closing
BCR-ABL activity differences cures patients. Above and
beyond being prognostic, a critical determinant of treat-
ment outcome can be defined as one which leads to
improved treatment outcomes after difference closure. For
example, because Gleevec does not cure BCR-ABL ALL,
BCR-ABL is not a critical determinant of BCR-ABL ALL.
However, since ABL expression (which is equivalent to
BCR-ABL expression because probe sets are taken from the
3' end) is minimal for the cured BCR-ABL patient in 3 out
of 4 probesets with P < .0.06 differences between leuke-
mia subtypes, Fig. 5 does suggest (very mildly) that
Gleevec combined with standard therapy could be benefi-
cial, i.e. that BCR-ABL may be conditionally or partially crit-
ical. Thus, efforts to model successful drugs such as MTX
in TEL-AML1 ALL might be productively complemented
by parallel efforts to model candidate critical determi-
nants of outcome.

The indirect approach is a generalization/abstraction of
the BCR-ABL example given above. It can be characterized
as an initial state/target state control problem, formulated
within the framework of a dynamical system model. This
is reminiscent of the problem of ballistic controllability
that forms the foundation of the notions of controllability
and reachability in modern systems theory. The ballistic
control problem is one in which the objective is to find an
input signal (i.e. control) that transfers a given initial state
of the system to a specified final state in a given period of
time. The basic idea of ballistic controllability is best
understood for the simple system defined by the linear

system model:  = B(t)u(t) where x(t) is the state of

the system (x ∈ Rn), u(t) is the input (u ∈ Rm, with m < n)
and B(t) is a time varying system input matrix. The objec-
tive is to transfer the given initial state x(t0) = x0 to the

specified final state x(tf) = xf over the time interval [t0, tf],

i.e. the problem is to determine the m time courses in u

such that . For this prob-

lem, we introduce the controllability gramian

. If W(t0, tf) is full rank, then

there exists an input signal vector u(t) that transfers x(t0)

= x0 to x(tf) = xf . In fact, u(t) = B'(t)η where η = W(t0, tf)-

1(xf-x0), i.e. the desired state transfer input signal is deter-

mined uniquely by the parameters of the problem. This
simple problem can be easily extended to the class of lin-

ear systems: (t) = A(t)x(t) + B(t)u(t)[27] and to the gen-
eral class of nonlinear systems that are linear in the

control effort u(t): (t) = f (x(t)) + g(x(t))u(t) [28]. Impor-
tant questions remain. For example, should the system
state be clamped to lie within the target state region while
applying standard therapy? Or should it be released to
avoid interference between clamp control efforts and
standard therapy control efforts? Or should a compromise
between these two extremes be sought?

Discussion
In the direct approach, the model includes the cause of
cancer, and depending on the state of the modeled cancer
cause, the model represents either a malignant or normal
tissue cell. Here, the "cause of cancer" is the event that the
therapy is being designed to exploit for a differential cell
killing effect. Although secondary events essential to life-
limiting malignant subpopulations are of interest, partic-
ularly with respect to drug resistance, the earlier the piv-
otal modeled event is in the cancer progression process
the better, as the risk of cancer recurrence is greater if only
a subpopulation of the malignancy is therapeutically
eliminated.

The direct approach can also be applied to tumors with
defective checkpoint function due to inactivation or dele-
tion of the RB protein. After DNA damage, cells of these
tumors progress into S phase and complete DNA replica-
tion without delays. If patients with such tumors are
treated with an inhibitor of cdk2 to trigger a G1 check-
point response, even in the absence of DNA damage, nor-
mal RB+ cells will arrest at the G1 checkpoint and
transformed RB- cells will progress into S phase. Therefore,
transformed cells become potentially susceptible to selec-
tive killing by S phase-selective cytotoxic agents. Thus, the
cause of the cancer (in this instance a checkpoint defect)
can be selectively exploited to cause differential cell kill-
ing. Although it is unlikely that the resulting selectivity of
this approach will be complete, since, at the time of treat-
ment with the second drug, some normal cells will be in S
phase and will be killed while other tumor cells will be in
other phases of the cell cycle and will escape, the relative
timing of the two drugs could be optimized to maximize
therapeutic gain. Mechanistically accurate models of the
cell cycle [4] could facilitate such optimizations.

If the direct approach were applied to the treatment of
BCR-ABL leukemias instead of the indirect approach, our
goal would be to re-channel the anti-apoptotic BCR-ABL
signal [48] into a pro-apoptotic signal, rather than merely

dx t
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block it as might be accomplished by a drug like Gleevec.
Indeed, for the direct approach, one can argue that it is
advantageous to exaggerate (rather than annihilate) dif-
ferences between malignant and normal cells. For exam-
ple, in the case of RB inactivated tumors, a larger S-phase
fraction is expected in malignant versus normal cells due
to some background G1 delays in normal cells, and this
difference is exaggerated by a cdk2 inhibitor. Similarly,
methoxyamine (MX) can be used to exaggerate DNA
repair system competency differences between MMR-

malignant versus normal cells by further inhibiting base
excision repair (BER) [49]. How BCR-ABL tyrosine kinase
activity might be increased, and how it might be re-chan-
neled to actively kill rather than protect cells, remain two
unanswered and difficult questions. The direct approach
was useful to us here to the extent that it led us to realize
that these two questions are important.

The main difficulty with the indirect approach is that the
critical determinants of treatment failure must be known
and included in the model. If they are not (because the
scope of the model is not extensive enough), treatments
may end up targeting closures of non-critical state space
differences. To find critical state space dimensions, a rea-
sonable strategy is to start with models of the targets of
drugs which cure patients in the good prognosis group
and move modeling efforts inwards toward apoptosis,
since somewhere along this path, as seen in patients, crit-
ical differences are likely to exist. Thus, for the BCR-ABL/
TEL-AML1-folate model example given above, since the
MTX target system is already in the model, the next logical
modeling extensions might be to include DNA damage
repair and the activation of apoptosis. Alternatively, or in
parallel to such efforts, models of the target systems of
other drugs present in the standard TEL-AML1 therapeutic
regimens should also be developed.

At one extreme, attempts to use TEL-AML1 patients as
guides for say lung cancer patients would likely fail, either
because the dimensionality of the difference space is too
high to find the critical subspaces, or because the dimen-
sionality of the critical subspace is too high to make the
needed difference closures. At the opposite extreme,
hypothetically, there could be a single dimension differ-
ence space, and thus too, a single critical dimension. The
closer we can come to this ideal, and the greater the differ-
ences in treatment outcomes, the greater the likelihood of
indirect approach success. In addition to the BCR-ABL/
TEL-AML example, diffuse large B-cell lymphoma patients
are a candidate for this approach since they can be frac-
tionated into good and poor prognosis groups using DNA
microarray data [50-52] or 6 genes [53]. The idea of using
DNA microarrays both to fractionate patients into poor
and good prognosis groups, and to define the poor prog-
nosis patient initial and target states, is potentially quite

powerful. Additional indirect approach research therefore
seems warranted.

In an abstract sense, normal tissues can be viewed as can-
cers that are cured without therapy 100% of the time, i.e.
as solved cancer counterparts for non-curable cancers of
the same tissue origin. Using such guides in the indirect
approach, the goal is to make cancer cells like normal
cells, namely, cured but not killed; e.g. Gleevec usage is an
instance of this form of the indirect approach, and it
appears that Gleevec does not kill BCR-ABL leukemic stem
cells [54]. When using normal tissue counterpart guides in
the indirect approach, an infinite clamp is called for once
the target state region has been reached, since there are no
risks of treatment interactions given that the standard reg-
imen is null in this case. Thus, for the indirect approach,
normal tissue guides yield lifelong cancer treatment solu-
tions. In contrast, since cured cancer guides are killed by
standard therapies, the cancer cells of the non-curable
patients should follow suit, i.e. using cured cancer guides
in the indirect approach should yield finite treatment
solutions. This is an expected advantage of using bona fide
solved cancer counterparts rather than normal tissues as
indirect approach guides.

A logical research sequence in systems cancer biology is to:
a) select a relatively well-understood cancer and a treat-
ment strategy (preferably the direct approach); b) build an
initial model of processes that are most pertinent to the
selected cancer; c) iteratively improve the model through
experimental validations and model expansions; and d)
develop model-based optimal control solutions to the
corresponding optimal control problems. Currently, we
are focusing on steps a) and b) for MMR- cancers, though
we are also interested in BCR-ABL leukemias.

Conclusion
Because the scope of a model is determined by its
intended uses, models should be developed with their
ultimate uses in mind. As biological knowledge, the
number of anti-cancer agents, and the number of possible
measurements, continues to grow, mathematical models
of cancer relevant processes will find uses in the design of
state feedback-based clinical trials. Such model-based,
systems and control oriented therapies will be individual-
ized via polymorphism-based model parameter perturba-
tions and patient differences in initial states (see Figure 1).
Conceptual frameworks such as those presented here are
needed to accomplish these goals.
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