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Abstract

Myocardial ischemic postconditioning (PosC) describes an acquired resistance to lethal ischemia-reperfusion (I/R)
injury afforded by brief episodes of I/R applied immediately after the ischemic insult. Cardioprotection is conveyed by
parallel signaling pathways converging to prevent mitochondria permeability transition. Recent observations indicated
that PostC is associated with free radicals generation, including nitric oxide (NO.) and superoxide (O2

.-), and that
cardioprotection is abrogated by antioxidants. Since NO. And O2

. - react to form peroxynitrite, we hypothesized that
postC might trigger the formation of peroxyntrite to promote cardioprotection in vivo. Rats were exposed to 45 min of
myocardial ischemia followed by 3h reperfusion. PostC (3 cycles of 30 seconds ischemia/30 seconds reperfusion)
was applied at the end of index ischemia. In a subgroup of rats, the peroxynitrite decomposition catalyst 5,10,15,20-
tetrakis(4-sulphonatophenyl) porphyrinato iron (FeTPPS) was given intravenously (10 mg/kg-1) 5 minutes before
PostC. Myocardial nitrotyrosine was determined as an index of peroxynitrite formation. Infarct size (colorimetric
technique and plasma creatine kinase-CK-levels) and left ventricle (LV) function (micro-tip pressure transducer),
were determined. A significant generation of 3-nitrotyrosine was detected just after the PostC manoeuvre. PostC
resulted in a marked reduction of infarct size, CK release and LV systolic dysfunction. Treatment with FeTPPS before
PostC abrogated the beneficial effects of PostC on myocardial infarct size and LV function. Thus, peroxynitrite
formed in the myocardium during PostC induces cardioprotective mechanisms improving both structural and
functional integrity of the left ventricle exposed to ischemia and reperfusion in vivo.
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Introduction

Acute myocardial infarction due to coronary artery occlusion
is the major cause of chronic heart failure in developed
countries. Although timely reperfusion is mandatory to rescue
the ischemic tissue, it may result by itself in additional
myocardial injury and dysfunction, a concept termed
reperfusion injury [1]. The most powerful strategies known so
far to limit ischemia-reperfusion injury involve various
techniques of myocardial conditioning [2], which describes an
acquired resistance to lethal ischemia/reperfusion provided by
brief episodes of ischemia applied either before ischemia
(preconditioning, IPC) or just before reperfusion
(postconditioning, PostC) [2,3]. On a clinical viewpoint, the
concept of PostC is particularly attractive, as it might be applied

as a simple measure at the onset of therapeutic reperfusion, as
reviewed recently [4,5]. The mechanisms underlying
cardioprotection by PostC are only partially elucidated, and
there seems to be many similarities with those involved in IPC
[5]. The PostC manoeuvre induces the release of various
autacoids, such as bradykinin, adenosine and opioids,
triggering receptor-dependent activation of several parallel
intracellular signalling cascades. These include the
Reperfusion Injury Salvage Kinase (RISK) pathway, the
Survival Activating Factor Enhancement (SAFE) pathway,
protein kinase G and protein kinase C, which ultimately confer
cadioprotection by inhibiting the opening of the mitochondrial
permeablity transition pore thereby preventing subsequent cell
death [6–8].
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Recent evidence has been obtained that redox-dependent
mechanisms play an important contribution to the activation of
these cardioprotective signals. Both IPC and PostC are indeed
associated with the generation of free radicals, including nitric
oxide (NO.) and the superoxide radical (O2

.-), and treatment
with antioxidant compounds prior to the conditioning stimulus
abrogate cardioprotection [9,10]. Importantly, NO and O2

. -

spontaneously react, in a diffusion-controlled process, to yield
the potent oxidant and nitrating species peroxynitrite [11],
whose formation during IPC has been shown to be involved in
its protective actions [12–14]. With respect to PostC, one study
reported on an increased formation of peroxynitrite during a
PostC procedure performed in an ex vivo rat heart preparation
[15], but the potential role of peroxynitrite during in vivo PostC
is presently unknown. Such information is critical, as it would
indicate that peroxynitrite may act as a protective mediator
under certain conditions, contrasting with its established
cytotoxic role in the reperfused myocardium [14,16]. We
therefore conducted the present study in an in vivo model of
myocardial ischemia and reperfusion, in order to test the
hypotheses that PostC fosters the generation of peroxynitrite in
the heart to promote cardioprotection in this setting.

Methods

Ethic statement
The investigation conformed to the Guide for the Care and

Use of Laboratory Animals published by U.S. National
Institutes of Health. All animal work was conducted according
to relevant national and international guidelines and was
performed with the approval of the Local Institutional Animal
Care and Use Committee (Service of Veterinary Affairs, State
of Vaud, Switzerland, authorization Nr 1502.2).

Animal experimental procedures
Male Wistar rats (10 weeks old, weight 250–300 g, total

number = 70) were used in this study. Anesthesia was induced
by intraperitoneal pentobarbital (60 mg kg-1.) and was
maintained by subsequent doses of intraperitoneal
pentobarbital (10 mg kg-1) according to monitoring of the depth
of the anesthesia using the plantar reflex response.
Anesthetized animals were then intubated, and mechanically
ventilated (FiO2 0.3; 65 strokes min-1, 8 mL kg-1) with a Harvard
683 rodent respirator (Holliston, MA, USA). A polyethylene
(PE50) catheter was inserted into the right jugular vein for drug
administration (see below). In a subset of animals, a Millar
micro-tip pressure transducer was inserted into the right carotid
artery for hemodynamic studies, as detailed below. Core
temperature was maintained at 37±0.5°C with a heating pad. At
the end of the experimental procedures, animals were
euthanized with an intravenous overdose of pentobarbital (100
mg kg-1).

Myocardial ischemia reperfusion
Myocardial ischemia-reperfusion (MIR) was performed

according to our previously published procedure [16,17].
Briefly, the heart was exposed via a left thoracotomy and the

left anterior descending coronary artery (LAD) was occluded by
a small piece of PE tubing applied against the LAD by a 6-0 silk
suture passed underneath the artery. After 45 minutes
ischemia, reperfusion was allowed for 3 hours by relieving the
PE tubing. For sham experiments, the animals underwent the
same procedures with the exception that the LAD was not
occluded.

Measurements

Left ventricular hemodynamics
Hemodynamic studies were performed in n=5 rats per group,

using a micro-tip pressure catheter (SPR-671, 1.4 Fr; Millar
Instruments Inc., Houston, TX), inserted into the left ventricle
(LV) via the right carotid artery. Heart rate, LV end-diastolic
(LVEDP) and end-systolic (LVESP) pressures were recorded,
and the maximal and minimal rates of change of LV pressure
(dP/dt max and dP/dt min) were calculated as load-dependent
indices of LV contractility and relaxation, using a
PowerLab/4SP AD converter (A D Instruments, Oxfordshire,
UK).

Determination of Myocardial Infarct Size and plasma
creatine kinase activity

Area at risk (AAR) and infarct size were determined in n=7
rats/group (except from the sham group, without infarction),
using the triphenyl tetrazolium chloride (TTC)-Evans blue
technique, as previously described [16–18]. At the end of the
experiments, heparinized whole blood was drawn from the
inferior vena cava, centrifuged at 3000 rpm, and plasma was
stored at -80°C. Plasma creatine kinase activity (CK) and its
myocardial MB fraction (CKMB) were measured as an indicator
of myocardial necrosis, using a commercial kit (Sigma
Chemicals, St Louis, MO, USA).

SDS-PAGE and western immunoblot detection of 3-
nitrotyrosine in the myocardium

Groups of n=5 animals were killed after 45 minutes ischemia
(or sham ischemia), just before reperfusion or immediately
following PostC, and the activity of 3-nitrotyrosine (3-NT) was
determined in myocardial samples from the ischemic LV as a
marker of peroxynitrite generation, according to our previously
published procedure [16]. Briefly, myocardial tissue was
homogeneized (TrisHCl 10 mM, NP40 0.5%, NaCl 0.15 M, Na
3VO4 1 mM, NaF 10 mM, PMSF 1 mM, EDTA 1 mM, aprotinin
10 µg/ml, leupeptin 10 µg/ml, and pepstatin 1 µg/ml), and
proteins (30 µg) were separated by SDS-PAGE, transferred to
nitrocellulose membrane, and blocked for 1 h at room
temperature with 5% nonfat dry milk in Tris-buffered saline with
0.1% Tween 20. The membrane was incubated overnight at
4°C with a 1:1000 dilution of a mouse monoclonal anti-
nitrotyrosine antibody (Upstate Biotechnology, Lake Placid,
NY), followed by incubation with a horseradish peroxidase–
conjugated secondary antibody at a 1:5,000 dilution for 1h. The
immunoblot signal was visualized using enhanced
chemiluminescence (ECL, Amersham Biosciences, Otelfingen,
Switzerland) and quantified by densitometric analysis. The

Peroxynitrite in Ischemic Postconditioning

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e70331



levels of tubulin were determined in parallel as a loading
control.

Statistical analysis

All values are expressed as mean ± SD. Data were analyzed
by one-way analysis of variance followed by the Dunnett’s test
for multiple comparisons. A p<0.05 was considered to be
statistically significant.

Results

Ischemic postconditioning induces 3-NT formation in
the myocardium

As illustrated in Figure 2, there was no increased signal for
3-NT following 45 minutes of ischemia. In contrast, a marked
increase of the 3-NT was detected immediately after the end of
the 3 cycles of PostC, indicating that the postC manoeuvre
promoted the formation of significant amounts of peroxynitrite
within the ischemic LV.

The reduction of myocardial infarct size by PostC is
blunted by FeTPPS

The area at risk (AAR, the ischemic area, Figure 3A) was
comparable among the three groups of animals. Infarct size,
whether expressed as a percentage of the AAR (Figure 3B), or
as a percentage of the total LV (Figure 3C), was markedly and
significantly reduced by PostC, an effect significantly
attenuated by FeTPPS. Figure 3D shows representative
images of Evans blue-TTC staining of LV from the the three
groups of rats. Furthermore, the large increase of plasma CK

(Figure 4A) and CKMB (Figure 4B) following MIR was
significantly reduced by PostC, but this effect was abolished by
FeTPPS.

FeTPPS abolishes the benefit of PostC on post-
ischemic myocardial systolic dysfunction, but not
diastolic dysfunction

As shown in Figure 5A, no significant alteration of heart rate
was noted across the different experimental groups. When
compared to sham animals, rats exposed to MIR disclosed a
significant reduction of LVESP together with a significant drop
of dp/dt max (Figure 5B and 5C), pointing to a marked
decrease of LV contractility. The reduced contractility was
significantly less pronounced following PostC, but this benefit
was lost upon treatment with FeTPPS. Furthermore, ischemia-
reperfusion also resulted in a significant impairment of diastolic
relaxation, as indicated by an increased LVEDP and a reduced
dp/dt min (Figure 5D and 5E). PostC suppressed the increase
of LVEDP and tended to attenuate the decrease of dp/dt min,
albeit nonsignificantly (p= 0.08, t test). These effects were not
significantly influenced by FeTPPS.

Discussion

The present investigation brings two important novel
conclusions with respect to the mechanism of cardioprotection
afforded by postconditioning in vivo. First, we report that a brief
protocol of postconditioning is sufficient to foster the generation
of significant amounts of peroxynitrite in the myocardium.
Secondly, we show that the beneficial effects of
postconditioning, both in terms of myocardial infarct size and
cardiac systolic function, disappear when a peroxynitrite

Figure 1.  Experimental protocol (Figure 1).  Four groups of rats were investigated, including Sham group, MIR group (45 minutes
ischemia and 3h reperfusion), PostC group (3 cycles of 30 seconds ischemia/reperfusion applied at the end of the 45 minutes
ischemia, and preceding the 3h reperfusion), and FeTPPS group (treatment with the peroxynitrite decomposition catalyst
5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrinato iron (FeTPPS), 10 mg/kg intravenously 5 minutes before PostC [18]).
doi: 10.1371/journal.pone.0070331.g001
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decomposition catalyst is given prior to postconditioning. Thus,
our data demonstrate that peroxynitrite formation during
postconditioning is a key mechanism underlying its
cardioprotective actions in vivo.

Our protocol of postconditioning, established according to
Zhao et al [3], allowed a significant reduction of myocardial
infarct size, in agreement with previous investigators in a
similar rat model [19]. Another important finding was the
marked improvement of left ventricular systolic function, as
shown by better preservation of LV systolic pressure and dp/dt
max. Furthermore, PostC also improved diastolic function,
indicated by reduced LV end-diastolic pressure and a blunted
reduction of dp/dt min, although the latter effect was only
marginally significant (p=0.08). While such functional
improvement from postC has been previously reported in ex
vivo models of myocardial ischemia [20] [21], our results
indicate that PostC also ameliorates systolic and diastolic
dysfunction in a relevant in vivo model of myocardial infarction.

Multiple identified mechanisms convey the cardioprotection
of postC. Physiological mechanisms include maintenance of
tissue acidosis and improved coronary endothelial function

[22]. Molecular mechanisms rely on the activation of several
parallel signalling pathways -protein kinase G, the RISK and
SAFE pathways, protein kinase C-, conferring cardioprotection
through the inhibition of mitochondrial permeability transition
pore (MPTP) opening, and the activation of mitochondrial
KATP channel [7,9,23]. Limited evidence has also emerged
that redox-based mechanisms might be involved in
posconditioning [8]. Penna et al. showed that the antioxidant N-
acetylcysteine suppressed the benefit of PostC in an ex vivo rat
model [24], whereas Tsutsumi et al. reported that the ROS
scavenger 2-mercaptopropionyl glycine (MPG) suppressed the
effects of PostC in an in vivo mouse model [25]. Furthermore,
Lemoine et al. also showed that MPG abolished the effects of
PostC on functional recovery of human cardiac muscle after
hypoxia and reoxygenation in vitro [26]. Overall, these findings
support the concept that the generation of oxidants during
postC can represent an essential trigger of its cardioprotective
effects. It has been proposed that such effects might depend
on redox-mediated activation of protein kinase C and
subsequent stimulation of adenosine-dependent signaling [6].

Figure 2.  Postconditioning triggers 3-nitrotyrosine formation in the left ventricle.  Nitrotyrosine was determined in the
ischemic left ventricle obtained after 45 minutes sham ischemia, 45 minutes ischemia, or 45 minutes ischemia + PostC with 3 cycles
of 30 seconds ischemia/reperfusion. Means ± SD of n=5 rats/condition. * p < 0.05.
doi: 10.1371/journal.pone.0070331.g002
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Our present findings provide additional support for a role of
redox-based mechanisms in postC. First, we found that the
postC manoeuvre elicited a significant generation of
peroxynitrite in the myocardium, as evidenced by increased
tyrosine nitration, and secondly, we found that treatment with
FeTPPS just before PostC abolished the beneficial effects of
the latter on infarct size and LV systolic dysfunction.
Interestingly, FeTPPS did not alter the effect of PostC on
diastolic dysfunction, suggesting that postC improves cardiac
contractility and relaxation via distinct mechanisms, a
hypothesis that should be explored in future investigations.
With respect to tyrosine nitration, it is noteworthy that this post-
translational modification may occur independently from
peroxynitrite, via myeloperoxydase-dependent catalysis in the
presence of nitrite [11]. This mechanism is however highly
unlikely in the conditions of our study, since the postC
manoeuvre was too brief to elicit significant leukocyte
accumulation within the myocardium. We speculate that the
formation of peroxynitrite during PostC was promoted owing to
the simultaneous generation of its 2 precursors in the post-
ischemic and immediate reperfusion phase [14]. The primary
source of O2

. - in this setting is the mitochondrion, which
produces a burst of O2

. - upon reoxygenation via the
autooxidation of unstable semiquinones in the respiratory chain
[27,28]. Regarding NO, its formation increases during
ischemia, both through NOS-dependent synthesis and through
the non enzymatic reduction of tissue nitrite in acidic pH [29].

Our results confirm and extend those of a previous study in
an ex vivo model, showing that peroxynitrite played a role in
the cardioprotection of PostC in isolated hearts obtained from
normal, but not hyperlipidemic rats [15]. These findings may
appear counterintuitive at first glance, in view of the numerous
detrimental actions of peroxynitrite reported in the setting of
myocardial ischemia-reperfusion injury and other heart
diseases, and which include lipid peroxidation, DNA oxidative
damage and activation of poly(ADP-ribose) polymerase
(PARP), as well as the activation of matrix metalloproteinases,
to name only a few [30,31]. However, it must be underscored
that peroxynitrite does not only trigger direct cytotoxic effects,
but it also promotes multiple indirect effects related to the
modulation of an array of cell signaling pathways [32]. Such
effects may depend either on an oxidative or a nitrative type of
chemistry elicited by peroxynitrite [11], whose respective roles
were not evaluated in the present study. With respect to PostC,
it is here particularly noticeable that peroxynitrite has been
shown to be a potent activator of ERK [33] and protein kinase
C [34] in the heart, two crucial kinases involved in
cardioprotection by PostC. Therefore, although our study was
not designed to determine the pathways downstream of
peroxynitrite-dependent protection, we may speculate on such
activation of ERK and PKC as a plausible mechanism. A
distinct possibility may be linked with the activation of the
enzyme PARP by peroxynitrite, which has been reported to be
critical for the cardioprotection elicited by preconditioning [35].
Whether a similar scenario applies to the PostC paradigm

Figure 3.  The reduction of infarct size by PostC is attenuated by FeTPPS.  Rats exposed to myocardial ischemia (45 min) and
reperfusion (3h) were left untreated (MIR group) or were exposed to PostC, in the absence (PostC group) or in the presence of a 10
mg/kg treatment with FeTPPS just before PostC (FeTPPS group). Area at risk (A) was comparable among the 3 groups of rats.
Infarct size (B: % AAR; C: % left ventricle) was reduced by PostC, an effect suppressed by FeTPPS. D: Representative pictures of
Evans blue-TTC staining of left ventricles from the the three groups of rats. Means ± SD of n=7 rats/group. * p < 0.05.
doi: 10.1371/journal.pone.0070331.g003
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remains, however, to be established. Finally, a benefit from
peroxynitrite formation during PostC might also partly depend
on some preservation of the coronary endothelium and
reduction of leukocyte-endothelial interactions, as supported
from studies by Lefer and Nossuli et al. [36,37].

A limitation of our study is the lack of direct demonstration of
peroxynitrite scavenging by FeTPPS. Although we [18,38] and
others [39] previously showed that FeTPPS efficiently catalyze
the decomposition of peroxynitrite, this compound may also
partly react with oxidant species distinct from peroxynitrite,
such as hydrogen peroxide [40]. Therefore, we cannot formally
rule out that some of the observed actions of FeTPPS in the

present work might have been related to effects distinct from
peroxynitrite decomposition.

In conclusion, our present results indicate that peroxynitrite is
a proximal mediator of cardioprotection during PostC in vivo.
These beneficial effects contrast with the established
cytotoxicity of peroxynitrite in the reperfused myocardium,
which suggests that anti-oxidant strategies for therapeutic
purposes might produce variable effects on the infarcted heart,
depending on the time of intervention. This should be
considered in future studies evaluating antioxidants for the
treatment of myocardial infarction.

Figure 4.  FeTPPS suppresses the effects of PostC on plasma CK and CKMB activity.  Myocardial ischemia-reperfusion (MIR
group) induced a large increase of plasma CK (A) and CKMB (B) activities. These increases were largely reduced by
postconditioning (PostC group), but this effect was eliminated by FeTPPS treatment before PostC (FeTPPS group). Means ± SD of
n=7-9 rats/group. * p < 0.05.
doi: 10.1371/journal.pone.0070331.g004
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