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Abstract: This article aims to review all currently known interactions between animal and human
coronaviruses and their cellular receptors. Over the past 20 years, three novel coronaviruses have
emerged that have caused severe disease in humans, including SARS-CoV-2 (severe acute respiratory
syndrome virus 2); therefore, a deeper understanding of coronavirus host–cell interactions is essential.
Receptor-binding is the first stage in coronavirus entry prior to replication and can be altered by
minor changes within the spike protein—the coronavirus surface glycoprotein responsible for the
recognition of cell-surface receptors. The recognition of receptors by coronaviruses is also a major
determinant in infection, tropism, and pathogenesis and acts as a key target for host-immune
surveillance and other potential intervention strategies. We aim to highlight the need for a continued
in-depth understanding of this subject area following on from the SARS-CoV-2 pandemic, with
the possibility for more zoonotic transmission events. We also acknowledge the need for more
targeted research towards glycan–coronavirus interactions as zoonotic spillover events from animals
to humans, following an alteration in glycan-binding capability, have been well-documented for
other viruses such as Influenza A.

Keywords: coronavirus; receptor-binding; glycan; SARS-CoV-2; sialic acid; omicron; spike protein;
haemagglutinin-esterase; cleavage; host interaction

1. Background

Coronaviruses are a large family of enveloped, positive sense, single stranded RNA
viruses [1], which as classified by the International Committee on Taxonomy of Viruses
(ICTV) are part of the Nidovirales order, sub-order Coronavirinae, family Coronaviridae. The
family is further subdivided into the orthocoronavirinae which consists of four genres, al-
phacoronavirus, betacoronavirus, gammacoronavirus and deltacoronavirus [2,3] (Figure 1). The
first coronavirus, identified in 1937, was the avian gammacoronavirus Infectious Bronchitis
Virus (IBV); the aetiological agent of Infectious Bronchitis. It is an acute, highly conta-
gious, economically important respiratory disease of domestic fowl [4]. Transmissible
Gastroenteritis Virus (TGEV), which infects swine, was identified over a decade later in
the 1940s [5]. Up until the emergence of severe acute respiratory syndrome coronavirus
(SARS-CoV) in 2002–2003 [6,7], the coronavirus research field predominantly centred on
those of veterinary concern. Interest in the coronavirus family grew exponentially in the
aftermath the emergence of SARS-CoV, where the resulting epidemic highlighted that
coronavirus infection of humans could result in serious and fatal disease. This led to the
identification of many new coronavirus family members, including the human coronavirus
hCoV-NL63 [8,9], Beluga Whale coronavirus [10] and several bat coronaviruses, which are
reported to cause zoonotic spillover events [11,12].

The outbreaks of SARS-CoV and MERS-CoV in 2012 highlighted the ability of coron-
aviruses to jump the species barrier causing implications for human health [13,14]. Coron-
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aviruses are currently a hot topic due to the emergence in 2019 of the pandemic betacoron-
avirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can cause
severe and sometimes fatal respiratory disease in humans [15]. The recent zoonotic emer-
gence of the alphacoronavirus Swine Acute Diarrhoea Syndrome Coronavirus (SADS-CoV),
causing outbreaks of severe diarrhoea in suckling piglets [16,17], demonstrates that emerg-
ing coronaviruses do not just present a public health concern but also a veterinary health
and welfare concern. A major determinant of inter-species transmission, and therefore
emerging coronaviruses is receptor-binding capability. This has been comprehensively
studied with regard to Influenza A viruses (IAVs) but to a much lesser extent with coron-
aviruses [18–20]. The first coronavirus receptor identified in 1991 was the murine hepatitis
virus (MHV) receptor CEACAM1 [21]. Since then, multiple other coronavirus receptors
have been identified; however, some remain unknown, with the primary receptor for
several coronaviruses including IBV and SADS-CoV yet to be identified.

Figure 1. A midpoint rooted circular cladogram of representative coronavirus spike glycoprotein
sequences across the alpha-, beta-, gamma- and delta-genera. Representative strains from Genbank were
used (Accession Numbers outline in Table 1). MUSCLE [22] was used to align the sequences in MEGA
X [23]. A Neighbour-Joining cladogram was generated, which highlights the specific coronavirus
genera and is coloured accordingly. The genera are also annotated in bold font denoted by Greek
symbol (alpha-α, beta-β, delta-δ, gamma-γ).
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Receptor identification contributes significantly to our understanding of host, tissue,
and cell tropism, and helps explain aspects of virus pathogenesis. This is crucial in under-
standing zoonotic potential, viral and host adaptation and clinical disease. Furthermore,
receptor identification can inform the development of antivirals, vaccines, and diagnos-
tic tests, which have a considerable impact towards both human and animal health [24].
Receptor-binding is a complicated process, with a number of stages involved. Whilst
viruses utilise primary receptors for entry, additional molecules can be used for attach-
ment to the cell surface membrane or alternative methods of entry at a later stage. This
is elegantly demonstrated with human immunodeficiency virus (HIV) which binds the
cellular receptor CD4 [25,26], and then subsequently either the chemokine co-receptor
CCR5 or CXCR4 (reviewed by Wilen et al. [27]). Host-cell molecules, such as CD4, that bind
virus-attachment proteins and are required for entry are regarded as primary receptors [28].
There are then some molecules that bind specifically to viral proteins and are also required
for entry (in addition to just the primary receptor) typically ensuring continuation of the en-
try process after binding; these are denoted as entry co-factors or attachment factors [28,29];
an example being SARS-CoV-2 and its dependence on heparan sulfate for entry [30]. Some
viruses can also utilise receptors in the absence of the primary receptor, typically with a
much lower efficiency for entry, these are referred to as alternative virus receptors.

Whilst some aspects of coronavirus receptor interactions have previously been re-
viewed (Guruprasad et al. [31], Reguera et al. [32], Holmes et al. [33] and others); this
review aims to give a more comprehensive and updated overview of all known animal
and human coronavirus receptor and cellular interactions as a whole. It covers receptor
recognition and entry mechanisms, the spike and haemagglutinin-esterase glycoproteins,
receptor-binding domains and primary receptors and attachment factors.

2. Receptor Recognition and Entry Mechanisms of Coronaviruses

Coronavirus entry is a multistep process (Figure 2) initiated by the Spike (S) glycopro-
tein, a large, highly glycosylated type I transmembrane protein, class I fusion protein of
~180 kDa. The S glycoprotein binds to cell surface receptors, attaching the virion to the host
cell membrane ([34,35]. Lineage A betacoronaviruses also have a Haemagglutinin-Esterase
(HE) glycoprotein, which acts as a receptor destroying enzyme (RDE) [36].

Figure 2. Annotated diagrams of the coronavirus virion—the presence of the HE surface protein
differentiates the betacoronavirus lineage A viruses (right) from other coronaviruses (left). The
surface proteins are also denoted by colour S glycoprotein (purple) and HE glycoprotein (green).
Figure Adapted from “Human Coronavirus Structure”, by BioRender.com (2021). Available online:
https://app.biorender.com/biorender-templates (accessed on 2 February 2022).

https://app.biorender.com/biorender-templates
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From this point there are then two recognised entry pathways including internalisation
via endocytosis with virus to cell fusion taking place in the endosomal compartment [37,38],
and internalisation via direct fusion at the plasma membrane [39–42] (Figure 3).

Figure 3. The cellular entry mechanisms of coronaviruses. Route (A) = internalisation via endocytosis,
Route (B) = internalisation via membrane fusion. Figure adapted from the “Coronavirus Replication
Cycle” by BioRender.com (2021). Available online: https://app.biorender.com/biorender-templates
(accessed on 2 February 2022).

3. The Spike Glycoprotein

For a comprehensive understanding of coronavirus receptor-binding, it is necessary
to understand the role and function of the S glycoprotein, which is categorised into three
segments (Figure 4A); an ectodomain, a single-pass transmembrane anchor and a short
intracellular tail [43,44]. The ectodomain can be further divided into two subunits—the S1
subunit, which mediates receptor-binding, and the S2 subunit, which mediates virus-to-cell
and cell-to-cell fusion [45,46]. Two structurally distinct conformations are recognised; pre-
and post-fusion [47–49]. The pre-fusion conformation protrudes outwards from the virion
and consists of the S1 globular head sat upon the S2 stalk. Upon receptor-binding by the S1
subunit, an irreversible conformational switch occurs from the pre-fusion to post-fusion
state, allowing the S2 subunit to fuse viral and cellular membranes [43,48,50,51]. The S2
subunit contains two heptad repeats (HR), HR1 and HR2, which are in the form of extended
α helices, as well as the fusion peptide [45,52,53]. It is the HR1 and HR2 sections of S2 that
fuse the viral membranes and carry out this irreversible conformational change [48,54,55].
The resulting series of conformational changes enables the fusion peptide to insert into
the host membrane, forming a pre-hairpin intermediate state [56]. Although receptor-
binding initiates the conformational changes which drives virus-cell membrane fusion [48],
additional factors in the entry pathway include pH acidification, temperature changes
or proteolytic activation. IBV [57] and SARS-CoV [58], have been shown to utilise the
pH-dependent endocytic pathway. SARS-CoV has also been shown to rely on the activity of
host cell proteases, which cleave and activate the S glycoprotein [59]. SARS-CoV-2 research
has also identified that temperature may influence the affinity of S glycoprotein–receptor

https://app.biorender.com/biorender-templates


Viruses 2022, 14, 351 5 of 37

interactions with SARS-CoV-2 binding affinity to ACE2 (angiotensin converting enzyme II)
decreasing at higher than optimal temperatures [60].

Figure 4. Structure and schematic of IBV S glycoprotein in pre-fusion conformation with 2P sta-
bilisation. (A) IBV trimeric structure modelled in PyMol [61] using the Cryo-EM structure of IBV
strain M41 [53] (RCSB PDB: 6CVO). (A) single monomer is highlighted with each region of the
S glycoprotein annotated. (B) The M41 IBV structure modelled in PyMol with the substitution of
two proline amino acid residues allowing for pre-fusion 2P stabilisation. The proline insertions are
indicated. (C) Linear schematic diagram of IBV spike ectodomain. Question mark indicates that the
exact amino acid residue location of the FP is unidentified.

Advancements in the structural understanding of the S glycoprotein came through
the determination of the pre-fusion trimeric structure by Cryo-EM of both mouse hepatitis
virus (MHV) and the human coronavirus HKU1 (hCoV-HKU1) [47–49,62]. Both structures
highlighted the critical role of the interaction between the S1 and S2 trimers in the stabilisa-
tion of the S glycoprotein in its pre-fusion conformation [48,49,62]. Since then, numerous
other pre-fusion coronavirus cryo-EM structures have been generated, including IBV [53],
MERS-CoV (Middle Eastern Respiratory Syndrome Virus) [63], SARS-CoV [63] and SARS-
CoV-2 [64]. To obtain cryo-EM structures in pre-fusion format, di-proline (2P) mutations,
have been utilised to increase the stability of the constructs (Figure 4B). Pallesen et al. [65]
have shown that 2P substitutions in the loop between the HR1 and the central helix inhibits
early triggering of the fusion protein and often increases expression yields of pre-fusion
conformation ectodomains [65]. Subsequently, the introduction of two consecutive proline
residues at the beginning of the central helix appears to be a generalisable method for
retaining prototypical prefusion conformation of coronavirus S proteins. This approach
has recently been utilised in the generation of COVID-19 vaccines produced by both
Pfizer/BioNTech (BNT162b2) and Moderna (mRNA-1273). The transitional bend between
HR1 and the central helix is fixed with 2P substitutions which stabilises the S protein at the
prefusion state, which is key for vaccine development [47,64–66]. Whilst obtaining cryo-EM
structures stabilised in pre-fusion conformation produces a higher yield, it is possible to
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obtain structures in post-fusion conformations with the structures for both MHV [48] and
SARS-CoV [51] being solved and more recently that of SARS-CoV-2 [51].

4. The Spike Glycoprotein: Receptor-Binding Domains

The S1 subunit contains two prospective receptor-binding domains (RBD), one located
at the N terminus denoted S1-NTD and the other located at the C terminus, S1-CTD
(Figures 5 and 6). It is believed that the S1-NTD is responsible for sugar and carbohydrate
compound binding, whereas the S1-CTD primarily binds proteinaceous receptors [67].
Previous research has highlighted that the S glycoprotein contributes towards both tissue
and cellular tropism as well as virulence and host range [68–72]. This has been extensively
documented throughout all the coronavirus genres (reviewed by Hulswit et al. [73] and
Belouzard et al. [46]). Variance in tissue or host tropism can be the consequence of small
or large changes within both the NTD and CTD regions [73,74]. For example, a large
deletion in the S glycoprotein of Transmissible Gastroenteritis Virus (TGEV) resulted in the
emergence of Porcine Respiratory Coronavirus (PRCV) [75–77], and two mutations, K479N
and S487T within the S1-CTD resulted in interspecies transmission of SARS-CoV from
palm civets to humans [78,79]. Another example is the G142D S1-NTD mutation observed
in SARS-CoV-2 Delta variant, which is linked with increased transmissibility and immune
evasion [80,81].

Figure 5. A midpoint rooted cladogram of representative coronavirus S glycoprotein sequences
across the alpha-, beta-, gamma- and delta-genres. Representative strains from Genbank were used
(Accesion Numbers outlined in Table 1). MUSCLE [22] was used to align the sequences in MEGA
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X [23]. A Neighbour-Joining cladogram was generated and the coronavirus genera denoted by Greek
symbol (alpha-α, beta-β, delta-δ, gamma-γ). A linear schematic of the S glycoprotein S1 domain is
also indicated for each virus (NTD in pink and CTD in blue—additional binding domain A of FCoV
indicated in green). The receptor bound by the relevant domain is annotated accordingly.

Figure 6. Spike glycoprotein schematic diagrams with putative receptor-binding domains indicated
(as per Figure 5, NTD in pink and CTD in blue—additional binding domain A of FCoV indicated in
green). (A) = alphacoronavirus, (B) = betacoronavirus, (C) = deltacoronavirus, (D) = gammacoronavirus
genres. The Genbank accession numbers for the representative sequences used for modelling in
PyMol [61], and the RCSB PDB ID used as a SWISS-MODEL [82] backbone are denoted in Table 1.
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Table 1. All viruses included in Phylogenetic trees (Figures 1 and 5) with Accession Number indicated
for the representative sequence used in the alignments. NTD amino acid residue regions, CTD amino
acid residue regions are also denoted. N/A denotes that this domain is not present for that virus. “?”
denotes that the information is unknown/unavailable in the current literature. Any other relevant
binding domain information and the RCSB PDB ID used as a SWISS-MODEL [82] backbone to
generate the spike glycoprotein schematic models in PyMol [61] for Figures 4–6 are denoted.

Virus Representative Strain Accession NTD CTD
Additional

Information
RCSB

PDB ID
Reference

CCoV CCoV-A76 AY436637.1 ? → 286 328→ 721 D3 = RBD: 526→ 676 6JX7 [83,84]

FCoV FIPV-UU4 MH292846.1 276→ 540 541→ 695
Domain 0: 1→ 275;
Domain A = NTD,
Domain B = CTD

6JX7 [85]

229E 229E/HK20-42 MT797634.1 48→ 268 297→ 434 6U7H [86,87]

NL63 NL63/RPTEC/2004 JX504050.1 210→ 480 481→ 616
Domain 0: 1→ 178;
Domain A = NTD,
Domain B = CTD

5S7S [49,88]

PEDV PEDV-CV777 AF353511.1 20→ 324 253→ 638
Domain 0: 1→ 219;
Domain A = NTD,
Domain B = CTD

6U7K [89]

PRCV PRCV/ISU-1 DQ811787.1 N/A 283→ 426 6JX7 [90]
SADS-
CoV

SADS-CoV/CN/GDWT/2017 AVM41569.1 17→ 252 273→ 400 6M39 [91]

TGEV TGEV-Purdue P115 DQ811788.1 17→ 245 506→ 655 6JX7 [74]
BCoV BCoV-ENT (98TXSF-110-ENT) AF391541.1 15→ 294 326→ 540 6OHW [92]

CRCoV CRCoV-BJ232 KX432213.1 ? ? 6OHW [93]

HKU-1
HKU1/human/USA/HKU1-

12/2010
KF686346.1 14→ 294 310→ 673 5I08 [92]

OC43 OC43/LRTI_238 KX344031.1 15→ 298 ? 6OHW [92]
MERS-
CoV

HCoV-EMC/2012 NC_019843.3 18→ 351 367→ 588 RBM: 484→ 567 5X5F [94]

MHV MHV-JHM.IA FJ647226.1 15→ 296 326→ 567 3JCL [95]
PHEV PHEV-CC14 MF083115.1 15→ 300 311→ 608 6NZK [92]
SARS-
CoV

SARS-CoV/Tor2 NC_004718.3 13→ 318 323→ 502 5X5B [96]

SARS-
CoV-2

SARS-CoV-2/Wuhan-Hu-1 NC_045512.2 27→ 300 336→ 516 6VXX [97]

PDCoV PDCoV/USA/Ohio137/2014 KJ601780.1 52→ 277 302→ 422 6B7N [98]
IBV IBV/M41-CK MK728875.1 21→ 237 269→ 414 6CV0 [53]

5. The Spike Glycoprotein: Cleavage

A significant distinction between the S glycoproteins of coronaviruses is whether they
are cleaved or not during viral assembly and virion exocytosis [46]. Cleavage is a crucial
factor in the final step of viral entry. With some exceptions, in most alphacoronaviruses and
the betacoronaviruses SARS-CoV and SARS-CoV-2, the virions harbour a S glycoprotein
that is uncleaved, whereas in some betacoronavirus including hCoV-OC43 [99] and all
gammacoronaviruses including IBV, the protein is found cleaved. Cleavage typically occurs
between the between the S1 and S2 subunits at what is referred to as the S1/S2 site, typically
by furin, a Golgi-resident host protease; note that the subunits remain non-covalently
linked [46,100]. Haan et al. [99] have shown that some alphacoronavirus S glycoproteins
carry a furin enzyme recognition motif (RXXR) responsible for this cleavage. Interestingly,
this furin enzyme recognition motif can be lost during cell culture adaptation by a single
mutation within the cleavage motif; this, however, then preserves a heparan sulfate binding
motif and renders infection by the virus heparan sulfate dependent [99]. This has been
demonstrated for both FCoV and hCoV-OC43 [99].

Study of the SARS-CoV S glycoprotein has showed that cleavage at the S1/S2 site
enhances fusogenicity of S glycoprotein, and therefore also increases the level of infectiv-
ity [45]. Surprisingly, SARS-CoV-2 unlike other betacoronavirus lineage B viruses, harbours
a unique S1/S2 furin-recognition site, indicating that its S glycoprotein might possess some
unique infectious properties [97,101,102]. The presence of a polybasic cleavage site (PBCS)
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in the SARS-CoV-2 S glycoprotein at the S1/S2 site has been proposed to act as factor in
increased transmissibility of SARS-CoV-2 compared to SARS-CoV [103]. It is thought to do
this by facilitating S glycoprotein precursor maturation by furin-like proteases in the pro-
ducer cells rather than by endosomal cathepsins in target cells. In avian influenza viruses
(AIVs), the polybasic cleavage site is a proteolytic excision site used by cellular proteases to
activate a wide range of precursor proteins [104]. Multiple other proteases are reported to
be responsible for cleavage, including TMPRSS2 [105,106]; cathepsin CTSL [107,108], and
trypsin [109,110]. The acquisition of a polybasic cleavage site in the AIV surface glycopro-
tein haemagglutinin (HA), is a key feature of high pathogenesis [19,111,112] and virulence.
However, although the SARS-CoV-2 S contains a polybasic cleavage site at the S1/S2 bound-
ary, it was reported that furin cleavage of the S glycoprotein did not enhance SARS-CoV-2
entry into cells and in fact attenuates SARS-CoV-2 pathogenesis [97,113], challenging the
well-established concept on the role of a polybasic cleavage site motif [97,113].

A second cleavage site at the S2′ (fusion peptide and the C-terminal region of S2)
was also identified [109]. The S2′ site is in close proximity to the S1/S2 site, and cleavage
of either one or both of them can yield the separation of the two S glycoprotein sub-
units [114]. This exists for some coronaviruses, including the Beaudette strain of IBV [100]
and SARS-CoV 2 [113]. The S2′ site has been linked to an increase in vitro tropism for the
Beaudette strain of IBV [100]. The S glycoprotein of the MERS-CoV was also found to be
effectively cleaved by furin [115] with both the S1/S2 and S2′ sites having the RXXR furin
recognition motif.

6. The Spike Glycoprotein: Glycosylation

The S glycoprotein is decorated with N-linked glycans, as demonstrated in studies
using viruses belonging to the Alpha-, Beta- and Gammacoronavirus families [53,86,116].
The number of N-linked glycosylation sites varies between coronaviruses, with most IBV
strains exhibiting 30–35 sites, compared to 60 in the S glycoprotein of SARS-CoV-2 [117,118].
Betacoronavirus S glycoproteins have also been shown to exhibit O- as well as N-linked
glycosylation [119]. The interaction of glycans and host receptors has been studied in IBV,
where a link was presented between glycosylation and lectin-mediated virus entry [120].
Glycosylation has also been shown to impact binding to sialic acids, where specific muta-
tions to glycosylation sites in the IBV S glycoprotein abolished binding to sialic acids [121].
Recent studies using S glycoproteins expressed in insect and mammalian cells have revealed
differences in the composition of the glycan profile, which has, in turn, been shown to
impact interactions with host receptors. For example, differences in expression of different
glycan types (complex vs. oligomannose) between SARS-CoV-2 variants was shown to
alter the strength of S glycoprotein binding to ACE2 [122]. As well as affecting receptor
interactions, mutations in S glycoprotein glycosylation sites have also been demonstrated
to reduce infectivity and alter antigenicity in SARS-CoV-2 [123], highlighting the range of
viral processes affected by these post-translational modifications.

7. The Haemagglutinin-Esterase Glycoprotein

Lineage A betacoronaviruses, including mouse hepatitis virus (MHV) and bovine
coronavirus (BCoV), differ from other coronaviruses as their virions possess two types
of surface proteins (Figure 2), both of which play key roles in attachment and receptor-
binding [92]. In addition to the S glycoprotein, they also encompass 8-nm protrusions,
unique to this clade of viruses, comprised of the homodimer hemagglutinin-esterase (HE).
The HE protein is multi-functional, with orthologs embedded in the envelope of several
viruses, not just coronaviruses, including both toroviruses and Influenza C viruses [36,124].
HE monomers have a bimodular structure with a carbohydrate-binding (lectin—R) domain
attached to an enzymatically active sialate-O-acetylesterase (esterase—E) domain and a
membrane-proximal domain (MP) [124–126] (Figure 7). HE, acts as a receptor-destroying
enzyme (RDE) due to the presence of an appended 9-O-acetylated sialic acid-specific lectin
domain (Figures 8 and 9) [127]. The esterase region of the HE protein is responsible for the
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destruction of the receptor, the same action that is displayed by the neuraminidase protein
in influenza A and B viruses [126]. Zeng et al. [126] have shown that the CoV HE arose from
an influenza C-like HE fusion protein (HEF). The HE was transformed from a trimer into a
dimer, with remnants of the fusion domain adapted to establish novel monomer–monomer
contacts [126].

Figure 7. Structure and linear schematic of HKU-1 HE glycoprotein structure modelled in PyMol [61]
using the Cryo-EM structure of HKU-1 [128] (RCSB PDB: 6Y3Y). (A) A single monomer is high-
lighted with each region of the HE glycoprotein annotated. (B) Linear schematic diagram of HKU-1
HE ectodomain.

During pre-attachment, the RDE activity of HE prevents irreversible binding of virions
to the decoy receptors that are universally found in the extracellular environment. At
the end of the replication cycle, HE-mediated breakdown of cell-surface and intracellular
receptors enables the release of viral progeny from the infected cell [129]. This has been
observed in the viral replication of several lineage A betacoronaviruses including BCoV
and MHV as well as Influenza C [126]. Interestingly, the HEs of two different human
coronavirus strains, hCoV-OC43 [92,129] and hCoV-HKU-1 [92], which typically cause
mild upper respiratory disease with symptoms of the common cold, have lost the ability to
bind 9-O-acetylated sialic acids—the lectin domain has been rendered inactive for reason
that still remain unknown; yet it remains functional in all other HEs studied so far [130].
Bakkers et al. [130] have demonstrated that the loss of the lectin affinity of the hCoV-OC43
lectin domain is due to a combination of four mutations—T114N, R177P, E178Q and
F247L [130].
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Figure 8. A midpoint rooted cladogram of betacoronavirus Lineage A viruses. Representative strains
from Genbank were used (Accession Numbers outlined in Table 2). MUSCLE [22] was used to align
the sequences in MEGA X [23]. A Neighbour-Joining cladogram was generated. A linear schematic
of the HE glycoprotein lectin and esterase domains is also indicated for each virus (Esterase in orange
and Lectin in purple). The receptor bound by the relevant domain is annotated accordingly.

Figure 9. HE glycoprotein schematic diagrams with putative lectin binding domains indicated (as per
Figure 8, Lectin domain in purple). The Genbank accession numbers for the representative sequences
used for modelling in PyMol [61], and the RCSB PDB ID used as a SWISS-MODEL [82] backbone
are denoted in Table 2.
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Table 2. All viruses included in the Phylogenetic tree (Figure 8) with Accession Number indicated
for the representative sequence used in the alignments. Lectin Binding Domain (LBD) amino acid
residue regions are also denoted. “?” denotes that the information is unknown/unavailable in the
current literature. Any other relevant binding domain information, and the RCSB PDB ID used as a
SWISS-MODEL [82] backbone to generate the HE glycoprotein schematic models in PyMol [61] for
Figure 9 are denoted.

Abbreviation Representative Strain Accession LBD RCSB PDB ID Reference

BCoV BCoV-ENT (98TXSF-110-ENT) AAK83355.1 141→ 283 3CL4 [131]
CRCoV CRCoV-BJ232 AQT26497.1 ? 3CL4 [132]
HKU-1 HKU1/human/USA/HKU1-12/2010 AGW27880.1 248→ ? 6Y3Y [128]
OC43 OC43/LRTI_238 AOL02452.1 112→ 281 5N11 [129]
MHV MHV-JHM.IA AOL02452.1 146→ 298 4C7W [131]
PHEV PHEV-CC14 AVV64334.1 ? 3I1L [133]

8. Entry Receptors, Attachment Factors, and Cofactors: Protein Receptors
8.1. Angiotensin-Converting Enzyme 2 (ACE-2)

Angiotensin-converting enzyme 2 (ACE-2) (Figure 10A1), is a zinc metalloenzyme and
carboxypeptidase [134] which is found attached to the cell membranes of cells located in the
lungs, arteries, heart, kidney, and intestines of multiple different species including swine,
cattle and humans [135,136]. It was first discovered as a homologue of ACE (Angiotensin-
converting enzyme) and acts as its physiological counterbalance providing homeostatic
regulation of circulating angiotensin II (Ang II) levels [134]. ACE-2 has many functions
and though its primary substrate appears to be Ang II, it can hydrolyse a number of other
physiological substrates [134,136].

Human ACE 2 (hACE 2) receptor-binding has perhaps been most extensively studied
with regards to SARS-CoV [67,79,137]. Less than a year after the emergence of SARS-CoV,
it was reported that ACE-2 was the cellular receptor [137,138]. Proteomic analysis revealed
ACE-2 to be a high-affinity binding partner of SARS-CoV S1 and furthermore, inhibition
of SARS-CoV infection of susceptible cells using antibodies against ACE-2, indicated
that the protein facilitated SARS-CoV infection [138]. A second group independently
identified ACE-2 as the receptor [139] by expression cloning of S glycoprotein fragments,
and found that N-terminus 14–502 residues were sufficient to bind Vero E6 cells and act as
the SARS-CoV RBD [138]. The RBD constantly switches between a standing-up position
for receptor-binding and a lying-down position for immune evasion [63,140]. The binding
affinity of the SARS RBD to different species of ACE-2 can be altered by altering specific
residues (specifically K479N and S487T) which allowed cross-species transmission from
palm civets to humans in a naturally occurring transmission event [78].

Unsurprisingly considering the 77% amino acid similarly of the S glycoprotein with
SARS-CoV, SARS-CoV-2, also recognises hACE2 as its receptor [141–143]. The SARS-CoV-
2 S glycoprotein has been shown to have broad tropism for other mammalian ACE-2
proteins including bovine, feline and canine [144]. The recently determined the crystal
structure of SARS-CoV-2 RBD complexed with hACE2, revealed slight but functionally
crucial differences between SARS-CoV-2 and SARS-CoV S glycoprotein in receptor recogni-
tion [29]. These differences allow for significantly higher hACE2 binding affinity for the
SARS-CoV-2 RBD than the SARS-CoV RBD [29]. However, the cryo-electron microscopy
(cryo-EM) structure of SARS-CoV-2 spike revealed that its RBD is mostly in the lying-
down state [64,97], a state linked with ineffective receptor-binding and immune evasion.
There have been conflicting reports on the hACE2-binding affinities of SARS-CoV-2 and
SARS-CoV spikes [64,105,108]. A review by Harvey et al. [145] has identified key S gly-
coprotein mutations which affect virus neutralisation and variance in binding affinity to
ACE-2 proteins.
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Figure 10. Receptor schematic diagrams with putative binding regions (where known) highlighted
in orange, with amino acid residue locations noted. (A) = Protein Receptors, (B) = Sugar Receptors,
(C) = Other Binding Factors. The RCSB PDB for the representative models made in PyMol [61] are
denoted below the relevant model.
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Perhaps the most interesting research on hACE-2 binding is that it is also utilised
by Human coronavirus NL63 (HCoV-NL63), an alphacoronavirus that was first identified
in 2004 in a 7-month-old patient with a respiratory tract infection in the nasopharyngeal
aspirate [8,146]. HCoV-NL63, unlike SARS-CoV and SARS-CoV 2, typically causes mild or
subclinical infection. Infection of young children and immunocompromised adults can in
some cases result in acute respiratory disease [147]. A minimal receptor-binding domain
(RBD) that consisted of 141 residues (amino acids 476–616) was identified on the S1-CTD.
The data suggests that the S1-CTD binding domain bound hACE-2 more efficiently than
the full-length S glycoprotein and had a binding efficiency comparable to SARS-CoV. The
crystal structure of NL63 S glycoprotein receptor-binding domain (RBD) complexed with
human ACE-2 was generated [88] and identified three discontinuous receptor-binding
motifs (RBMs) for ACE-2 binding [88]. Directed expression of the ACE-2 renders cells
permissive to HCoV-NL63 infection, however, the presence of the receptor protein does not
appear to directly correlate with the adhesion of virions to the cell surface, suggesting that
another attachment factor is required [146].

8.2. Aminopeptidase N (APN, CD13)

Aminopeptidase N (APN) (Figure 10A2) is a type II metalloprotease belonging to
the M1 family of the MA clan of peptidases [148]. It consists of 967 amino acids with a
short N-terminal cytoplasmic domain, a single transmembrane region, and a large cellular
ectodomain which contains the active site [149]. APN exists in two forms, membrane
APN and soluble APN. It is present in a wide variety of human organs, tissues and cell
types and is multifunctional with numerous roles in several physiological processes. It
is a zinc-dependent aminopeptidase which cleaves one residue from the N terminus of
many physiological peptides [150,151]. Furthermore, it also serves as an entry receptor
for coronaviruses and other human viruses [150]. Sequence comparisons with known
enzymes of this class showed that CD13 (cluster of differentiation 13) and aminopeptidase
N are identical [149]. The crystal structure for both porcine and human APN has been
determined [150,152].

APN is the most widely studied protein receptor in the veterinary field of coronavirus
research, with the receptor, specifically porcine APN (pAPN) first identified for TGEV [153].
TGEV is an enteropathogenic alphacoronavirus that causes diarrhoea in pigs [154]. Binding
activity to APN is required for TGEV to initiate cellular infection [153] and the binding
region of pAPN is believed to be AA residues 522–744 of the S glycoprotein [155–157].
Interestingly PRCV, an S gene deletion mutant of TGEV which displays altered in vivo
tropism [90,158,159] binds pAPN comparably to TGEV [74]. The altered in vivo tropism
exhibited by PRCV is therefore likely not the result of differences in pAPN binding.

Two further porcine coronavirus are reported to utilise pAPN including Porcine
epidemic diarrhoea virus (PEDV), first isolated in 1977 [160] and Porcine Deltacoron-
avirus (PDCoV), initially detected in 2009, but its etiologic role was not identified until
2014 [98,161,162]. Several studies have shown that pAPN acts as the primary PEDV re-
ceptor [163–165] with the minimal binding region identified to be located within residues
25–88 [166]. To date, however, there is no conclusive data concerning the exact location of
the PEDV RBD and the key amino acids that participate in receptor-binding. It has how-
ever been demonstrated that a recombinant PEDV fragment (S1-NTD-CTD—the domains
overlap) can bind both pAPN and hAPN efficiently (≥75% sequence identity) [164].

Interestingly PDCoV, which belongs to the Deltacoronavirus genus that comprises
predominantly avian coronaviruses, utilises a conserved region of APN and is able to infect
cell lines derived from multiple species, including humans, pigs, and chickens [89,167].
Transient expression of porcine, feline, human, and chicken APN renders previously non
permissive cells susceptible [89,168] and phylogenetic analysis suggests PDCoV evolved
relatively recently from a host-switching event between birds and mammals [162,167].
Binding of PDCoV to an interspecies conserved site on APN may have facilitated this
species barrier jump [89]. It has been reported that PDCoV interacts with APN via domain B
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(S1-CTD) of its S glycoprotein. Wang et al. [169] found that the soluble S1 protein of PDCoV
bound to the surface of target porcine cell lines known to express pAPN and that the PDCoV-
S1 interacted with pAPN by coimmunoprecipitation in pAPN cDNA-transfected cells and
by dot blot hybridisation assay [169]. PDCoV-S1 appeared to have a lower pAPN-binding
affinity and likely consequent lower infection efficiency in pAPN-expressing refractory
cells than TGEV-S1, which binds pAPN on the same domain, suggesting that there may be
differences between these two viruses in the virus-binding regions on pAPN [169].

Canine coronavirus (CCoV) and feline coronavirus (FCoV) have also been shown to
utilise APN as a receptor [170]; canine APN (cAPN) and feline APN (fAPN) respectively.
Reassortant FCoVs gave rise to mutant viruses which lead to the development of feline infec-
tious peritonitis (FIP). Both CCoV and FIPV are divided into two genotypes: I and II. These
genotypes are then further divided into two subtypes, IIa and IIb [171]. In type IIb CCoV, the
5′-terminal region of the S gene is similar to that of TGEV, and it is thought to have emerged
through recombination of both type IIa CCoV and TGEV [171,172]. Type II FIPVs also dis-
play close antigenic links to TGEV [173]. Though serotype I CCoV/FIPV have an ill-defined
receptor, both Serotype II CCoV/FIPVs utilise APN as a receptor [84,174]. Within the
serotype II viruses, variant CoVs have also been identified where the N-terminal domain of
the S glycoprotein is highly homologous to either TGEV or to serotype I CCoV/FIPVs [170].
These variant viruses are suggested to have major antigenic differences when compared to
prototype serotype II CoVs [172]. Genomic analysis of several CCoV strains shows that
variant CCoV-A76 possesses a distinct spike; the result of recombination between type I
and type II CCoV, that occurred between the S1-NTD and CTD [84]. This data suggests
that CCoV-A76 represents a recombinant coronavirus form, with distinct host cell tropism
and potentially novel receptor recognition [84].

To date, only one human coronavirus has been shown to use APN as a receptor [87,175].
HCoV-229E was first isolated in the mid-1960s from a person with a common cold [176,177].
The hAPN RBD lies between amino acids 417 and 547 in the S1-NTD [178]. HCoV-229E can
utilise either hAPN or feline APN (fAPN) as a receptor [179,180], but there is no detectable
binding with pAPN [153,181]. Kolb et al. [181] identified a region of the hAPN from amino
acid residues 288 to 295 to be essential for HCoV-229E infection [181]. Recent studies have
shown that that the 229E receptor activity with hAPN can be abolished by the addition of a
single N-linked glycosylation site at amino acid 291 of hAPN, corresponding to a naturally
occurring N-glycosylation site on pAPN [182].

IBV is the aetiological agent of infectious bronchitis (IB); an economically important
and highly transmissible respiratory disease of poultry [183–187]. Although the primary
receptor for IBV cellular entry remains elusive, APN has been suggested. Transient trans-
fection with fAPN plasmids, enabled infection into previously non permissive BHK-21
cells [188]. However, later research has indicated that fAPN is actually not a functional
receptor with low entry efficiency detected in BHK-21 cells following fAPN transient trans-
fection and constitutive expression [189]. Due to variance between different species of APN
and non-relevant cell types, these results make the role of APN in IBV infection unclear.
IBV has however been shown to proliferate in non-permissive HeLa cells transfected with
recombinant Galliforme APN (gAPN) plasmids [190], suggesting that IBV could bind to
both the native form and prokaryotic expressed versions of gAPN proteins.

8.3. Basigin (BSG/CD147/EMMPRIN)

Basigin (Figure 10A3), also known as CD147 or EMMPRIN, is a transmembrane gly-
coprotein belonging to the Ig superfamily [191]. It is involved in tumour development,
plasmodium invasion and viral infection [192,193]. Basigin plays a functional role in facili-
tating SARS-CoV invasion in host cells, and CD147-antagonistic peptide-9 has an inhibitory
effect on SARS-CoV [192], reaffirming the importance of CD147 in virus invasion for host
cells. Additionally, Meplazumab, a humanised anti-CD147 antibody, could effectively
inhibit the viruses from invading host cells by blocking CD147 [191].
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8.4. Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (CEACAM1)

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) (Figure 10A4)
is a human, biliary glycoprotein, also known as CD66a (Cluster of Differentiation 66a) and is
a member of the carcinoembryonic antigen (CEA) gene family. CEACAM1 is expressed on
various epithelial cells, endothelial cells, and hemopoietic cells [194,195]. It functions as a
cell adhesion molecule [195–198], a signalling molecule [199], and an angiogenic factor [200]
and is classified in the immunoglobulin (Ig) superfamily. It has two different functions for
viral entry into cells: binding the S glycoprotein and activating the S glycoprotein to execute
virus-cell membrane fusion. CEACAM1 is composed of four Ig-like ectodomains (in the
order N, A1, B, and A2 or D1, D2, D3, and D4 from the N terminus), a transmembrane
domain (TM), and a cytoplasmic tail [21,198]. CEACAM1 is also found in other animal
species including mice [196].

Mouse hepatitis coronavirus (MHV) was first discovered in 1949 and is the most
studied coronavirus in animals [201], acting as a model organism for studying coron-
aviruses [202]. MHV uses the N-terminal domain (NTD) of its S glycoprotein as its receptor-
binding domain [203]. The host cell receptor used by murine coronaviruses is generally
CEACAM1 (mCEACAM1), which is unusual in that the S1-NTD usually binds to sugar
molecules rather than exclusively protein-protein interactions [203]. Although receptor-
binding is usually vital in cellular entry, a phenomenon described as ‘receptor-independent
spread’, was shown by the MHV-JHM strain, meaning it can spread from infected mouse
cells to cells lacking mCEACAM1a [204]. The MHV-JHM strain could potentially use
an alternative, less effective, unknown receptor to initiate infection [205]. Once primary
infection is established in the murine host glial cells, the JHM strain was shown to rapidly
spread via cell–cell fusion and syncytia formation in a receptor-independent manner [206].

8.5. Dipeptidyl-Peptidase 4 (DPP4)

Dipeptidyl-peptidase 4 (DPP4) (Figure 10A5), also known as CD26 (cluster of differen-
tiation 26) is a protein that, in humans, is encoded by the DPP4 gene [207]. It is found on
the surface of cells in the airways, including the lungs as well as in the kidneys. DPP4 is a
serine exoprotease that cleaves two residues from the N terminus of many physiological
peptides [208–210]. DPP4 is also known to cleave a broad range of substrates which in the
majority of cases lose their biological activity often leading to a shift in the receptor subtype
binding [211]. MERS-CoV which causes severe pulmonary disease in humans [212,213]
utilises DPP4 as an entry receptor [214]. Receptor-binding was attributed to the S1-CTD
AA residues 367–606, which was consequently denoted the RBD [215].

8.6. Human Leukocyte Antigen I (HLA-I)

The human leukocyte antigen (HLA) (Figure 10A6) system is a complex of genes on
chromosome 6 in humans which encode cell-surface proteins responsible for the regulation
of the immune system [216]. The HLA system is also referred to as the human equivalent
of the major histocompatibility complex (MHC) found in many animal species [217]. MHC
class I proteins form a functional receptor on most nucleated cells [217].

HLA molecule have been identified as a potential receptor for both BCoV and Ca-
nine Respiratory Coronavirus (CRCoV). The interaction between the BCoV and HLA-I
molecules in vitro using HRT-18G cells was blocked using polyclonal antibodies, prevent-
ing subsequent infection by BCoV [218]. Additionally, saturation with HLA-I was shown
to block HRT-18G cellular infection of CRCoV [218]. HLA-1 was also previously reported
to facilitate entry of both OC43 and HKU-1 into cells, however when investigated, HLA-1
did not affect replication of OC43 in HRT-18G, suggesting that it is not an entry receptor
for this virus [218].

8.7. Heat Shock Proteins (HSPs)

Heat shock proteins (HSP) (Figure 10A7) are a family of proteins that are produced by
cells in response to exposure to stressful conditions [219,220]. They are found in virtually
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all living organisms, from bacteria to humans and are named according to their molecular
weight; for example, HSP60 in 60 kilodaltons (kDa) in size, HSP70 is 70kDa and Hsp90
is 90 kDa respectively [221]. Many HSPs perform chaperone functions by stabilising new
proteins to ensure correct folding or helping to refold proteins that were damaged by the cell
stress [222]. HSP70 has been shown to localize at or near the surface of plasma membranes
of cells [223]. Whilst the role of HSPs as entry and/or binding have not been widely studied,
certain coronaviruses including IBV, MERS-CoV, SARS-CoV and SARS-CoV 2 can utilise
HSPs in this way.

Infectious bronchitis virus (IBV) has been reported to use HSPs as attachment factors.
Specifically, HSP Member 8 (HSPA8) [224], HSP47 [225] and HSP70 [226]. HSP47 was found
to interact specifically with the IBV S1 protein [225], after a chicken kidney cDNA library
was screened using a yeast two-hybrid system assay. Expression of the S1 subunit and
recombinant HSP47 in HeLa cells demonstrated colocalization. Amino acids 340–470 in the
S1 subunit were critical for the interaction [225]. For HSPA8, in vitro assays showed that
recombinant protein HSPA8 and anti-HSPA8 antibody could inhibit IBV M41 infection of
chicken embryonic kidney cells [224]. HSPA8 was shown to interact with the S1-NTD of IBV
strains, M41, Beaudette, H120 and QX [224]. HSPA8 is a member of HSP70 family and is
also referred to as HSP71. HSPA1, also known as HSP72, is also reported to interact with the
IBV-S1 RBD [226]. Recombinant S1-NTD proteins of M41 and SCZJ3 were expressed, and
the binding capacities to chicken tissues investigated. Protein histochemistry showed that
both proteins could bind to lung and kidney tissue, and that SCZJ3 displayed a distinctive
staining pattern in the proventriculus [226]. Affinity chromatography assay detected a
70 kDa band corresponding to HSP70. Infection of chicken embryo kidney cells by SCZJ3
was found to be inhibited by anti-HSP70, indicating that HSP70 is part of the receptor
complex of IBV [226]. The inhibitory data towards M41 was not reported [226].

HSP90 has been observed as a host dependency factor for several human coronaviruses
including MERS-CoV, SARS-CoV and SARS-CoV-2 [15]. In mammalian cells, there are
two cytosolic isoforms of HSP90, the stress-inducible HSP90α and constitutively expressed
HSP90β [227]. Li et al. inspected the role of HSP90 for coronavirus propagation. They
found that the HSP90 inhibitor, 17-AAG, significantly reduced MERS-CoV propagation
in physiologically-relevant human intestinal organoids and cell lines. They also found
that, siRNA depletion of HSP90β, but not HSP90α, significantly restricted MERS-CoV
replication. Additionally, they demonstrated that 17-AAG substantially inhibited the
replication of SARS-CoV and SARS-CoV-2, indicating that HSP90 interacts with multiple
human coronaviruses [227]. They also proposed that HSP90 inhibitors can be repurposed
as a potent and broad-spectrum antiviral against human coronaviruses [227].

8.8. Neural Cell Adhesion Molecule (NCAM)

Neural cell adhesion molecule (NCAM) (Figure 10A8), also known as CD56, is a
homophilic binding glycoprotein expressed on the surface of neurons. It is part of the Ig
superfamily. NCAM has been implicated as having a role in cell–cell adhesion [228].

Porcine hemagglutinating encephalomyelitis virus (PHEV), a Betacoronavirus that
causes encephalomyelitis in piglets younger than 3 weeks [229,230]. PHEV is a highly
neurovirulent virus that spreads to the central nervous system via peripheral nerves [231],
where nerve cells are a target for viral replication; however, the mechanism by which PHEV
enters nerve cells is not known. The neural cell adhesion molecule (NCAM, also known
as CD56) is a homophilic glycoprotein expressed on the surface of nerve cells. It has been
demonstrated that NCAM participates in the process by which PHEV infects neurons
and can act as a receptor [232]. To identify the crucial domain of the S1 that interacts
with NCAM three truncated fusion proteins spanning the entire S1 subunit were screened
using a GST pull-down experiment; the interactions were further confirmed by a yeast
two-hybrid system assay. The results showed that the S fragment (amino acid residues
277–794) could interact with NCAM, and a smaller fragment (258-amino-acid fragment,
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residues 291–548) located within the S277-794 fragment may be the RBD of the PHEV S
glycoprotein [229].

9. Entry Receptors, Attachment Factors and Co-Factors: Sugar Receptors
9.1. Dendritic Cell-Specific Intercellular Adhesion Molecule Grabbing Non-Integrin (DC-SIGN)

DC-SIGN (dendritic cell-Specific intercellular adhesion molecule grabbing non-integrin)
(Figure 10B1) also known as CD209 (Cluster of Differentiation 209) is a protein encoded
by the CD209 gene. DC-SIGN is a C-type lectin receptor present on the cell surface which
recognises and binds with high affinity to high-mannose type N-glycans [233]. Besides
functioning as an adhesion molecule, recent studies have indicated that DC-SIGN can
initiate innate immune responses by modulating toll-like receptors, though the detailed
mechanism is not yet known [234]. An additional receptor has also been identified to
play a role in coronavirus receptor-binding, CD209L (also called L-SIGN, DC-SIGNR, and
DC-SIGN2) [235].

Both serotype I and serotype II FIPVs use feline dendritic cell-specific intercellular
adhesion molecule 3-grabbing nonintegrin (fDC-SIGN) as a coreceptor to recognise high-
mannose glycans [236]. Domain A of FIPV S glycoprotein is densely decorated with
high-mannose-type glycans, which could be involved in interacting with fDC-SIGN [85].
In vitro infection was strongly reduced by mannan, a competitive inhibitor of DC-SIGN
binding; with this action circumvented through the addition of human DC-SIGN [237].

L-SIGN has also been identified as an alternative receptor for SARS-CoV; when trans-
fected into Chinese hamster ovary cells, cells became susceptible to infection (Jeffers et al.,
2004). Immunohistochemistry showed that L-SIGN is expressed in human lung in type II
alveolar cells and endothelial cells, both potential targets for SARS-CoV [238]. Interestingly
both DC-SIGN and L-SIGN can enhance infection of cells that co-express the receptor, ACE-
2 [58,236,238]. SARS-CoV interaction with DC-SIGN was demonstrated using a soluble
S-based binding assay in which DC-SIGN was transiently overexpressed in 293T cells.
The S1 domain of SARS-CoV was found to be sufficient to mediate the interaction with
DC-SIGN lectins [236]. It has been shown that DC-SIGN, can augment NL63 infection
alongside its reliance on ACE-2 for viral entry [239]. Though the spike of both NL63 and
229E are highly conserved, DC-SIGN does not enhance viral infection of 229E, however
L-SIGN expressed in non-susceptible cells can bind HCoV-229E, despite not utilising ACE2
as a receptor [240].

9.2. Heparan Sulfate (HS, HSPG)

Heparan sulfate proteoglycans (HSPGs) (Figure 10B2) encompass a diverse class
of proteins defined by the inclusion of HS glycosaminoglycan (GAG) polysaccharide
chains [241]. HS is a polymer of repeating N-acetyl glucosamine (GlcNAc)-d-glucuronic
acid (GlcA) disaccharide units which is found in all animal tissues and cells [242]. It occurs
as a proteoglycan (HSPG) in which two or three HS chains are attached in close proximity
to extra cellular matrix or cell surface proteins [243,244] where they interact with numerous
ligands [245]. HSPGs are highly conserved among both vertebrates and invertebrates and
have multiple functions. They contribute to basal membrane organisation and mediate cell
adhesion and motility. Specifically at the cell surface, HSPGs serve as endocytosis receptors
and are also involved in the endocytosis of cellular receptors [246].

For both SARS-CoV and SARS-CoV-2, ACE-2-mediated entry requires the cell surface
heparan sulfate (HS) as an assisting cofactor [143]. Entry of SARS-CoV pseudovirus can
be inhibited by the removal of HSPGs via heparinase treatment [247]. SARS-CoV-2 infec-
tion has also been shown to be dependent on HS with in vitro treatment the competitive
inhibitor heparin dose-dependently reducing SARS-CoV-2 pseudovirus infection [30]. Ad-
ditionally, pulldown assays demonstrated that the purified S ectodomain readily bound
to heparin-conjugated beads. Unsurprisingly given the shared use of ACE-2 receptor,
HSPGs have been demonstrated to enhance HCoV NL63 infection [146]. HS binding has
been clearly demonstrated for MHV, where infection by MHV-A59 strain (which is solely
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dependent on mCEACAM1a binding for entry), led to the emergence of variant strains with
mutations and a short 7 amino acid insertion in the S1 subunit; 492TQTTRTKKVPKPKS505
that introduces multibasic sites at different locations within the S glycoprotein [248,249].
These modifications allow HS mediated entry into cells. The 7 amino acid insertion identi-
fied in mutant viruses is located in the CTD, and yet allows for dual-binding competency
to HS and mCEACAM1a as well as dependency on both factors for host cell entry [250].
Additionally, the added mutations introducing a multibasic HS-binding site within in the
S2 subunit were found to remove the need for mCEACAM1a binding allowing for virus
entry to be solely dependent on HS [205]. These mutations are specifically located at the
S2′ cleavage site.

HS has also been identified as a selective attachment factor for IBV strain Beaudette
(Mass serotype) [100,251]. Beaudette is an embryo-adapted virus strain with extended
species tropism in cell culture [251,252] and was found to contain a recognised HS-binding
site (between amino acid residues 686 and 691 of the S2 subunit of the Beaudette S glyco-
protein), indicating that the Beaudette virus may use HS as a selective receptor [251]. While
the S1 subunit of IBV contains the receptor-binding domain (S1-NTD) and is responsible for
binding to host cells [253,254], it was determined that infectivity for Vero cells is mediated
by the Beaudette S2 subunit, in particular, the Beaudette-specific motif 686SRRKRSLIE694
surrounding the S2′ cleavage site [100]. An additional furin cleavage motif within the
putative HS binding site was identified with a role in viral entry and syncytium formation
in vitro [255]. Cleavage was mapped to arginine residue 690 [255].

9.3. Sialic Acid (SA)

Sialic acids (SA) (Figure 10B3) are a class of alpha-keto acid sugars with a nine-
carbon backbone [256]. Sialic acids are commonly part of glycoproteins, glycolipids, or
gangliosides, where they decorate the end of sugar chains at the surface of cells or sol-
uble proteins [257]. The most frequently occurring member of the sialic acid family is
N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated deriva-
tives, and up to now over about 80 neuraminic acid derivatives have been described [167].
The most common member of this group is N-acetylneuraminic acid (Neu5Ac or NANA)
found in most animals and widely distributed in animal tissues [167,258–260].

SAs act as the primary receptor for several other viruses including Influenza viruses,
adenoviruses and rotaviruses [261]. Sialic acid interactions are particularly well docu-
mented within the Influenza A virus field of research, with Neu5Ac documented as their
primary receptor [262]. Among coronaviruses, several members have known interactions
with sialic acids, including IBV and TGEV [157,263,264]. Human coronaviruses such as
MERS-CoV have been shown to have interactions with SA. Cryo-EM structures of the
MERS-CoV S in complex with 5-N-acetyl neuraminic acid, 5-N-glycolyl neuraminic acid,
sialyl-LewisX (also known as CD15s), α2,3-sialyl-N-acetyl-lactosamine and α2,6-sialyl-N-
acetyl-lactosamine were generated [265]. This data demonstrates that receptor recognition
occurs via a conserved region that is essential for MERS-CoV S-mediated attachment to
sialosides and subsequent entry into human airway epithelial cells [265]. The data also
highlights that the MERS-CoV S glycoprotein sialoside specificity suggests preference for
α2,3-linked over α2,6-linked receptors [265]–this is unusual for human respiratory viruses
as α2,3-linked sialic acids are avian-like receptors, but are found in abundance in the lower
respiratory tract [18], which would account for the receptor usage of DPP4 in the lung
epithelial cells.

Whilst PEDV uses pAPN as a primary receptor, data generated by Pen et al. [266],
using a dot blot hybridisation assay, demonstrated that the PEDV S1-NTD-CTD fragments
also are capable of binding both bovine and porcine mucins, which contain a mixture of
varying sugar types. Treatment of mucins with neuraminidase (to remove parts of the
surface sugars), reduced the binding by PEDV S1-NTD-CTD, suggesting that sugar serves
as a co-receptor for PEDV. Glycan screening identified Neu5Ac as the preferential sugar
type for PEDV entry [164].
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Data produced by Yang et al. [85] has defined 5 distinct domains on the FCoV S glyco-
protein (within the S1 subunit): domain 0 (residues 1 to 275), domain A (residues 276 to 540),
domain B (residues 541 to 695), domain C (residues 696 to 754), and domain D (residues
755 to 791). They employed a glycan array to test the lectin activities of the full-length S
glycoprotein and 3 truncated variants, domain 0 only, domains 0 and A, and domains 0,
A, and B [85]. Three groups of glycan structures were found to be recognised by all 4 vari-
ants; sialylated Galβ(1→ 4)Glcβ-core structures, sialylated Galβ(1→ 3)GalNAcβ-core
structures, and oligo-glucose (Glc) structures [85]. The data suggests that positive recog-
nition and binding by domain 0 prefer a minimum Galβ(1→ 3)GalNAcβ-core structure
sialylated at the 6 position of GalNAc [85].

The JHM strain of MHV has also been shown to bind sialosides [267], with the JHM
strain found to bind to SA. The sialic acid binding activity was mapped to the NTD (S1A)
domain of MHV-JHM, which still retains its proteinaceous mCEACAM1a receptor-binding
capability [205]. This illustrates the flexible nature of coronavirus S glycoproteins with an
NTD capable of dual-binding modalities enabling attachment to both carbohydrate (sialic
acids) and protein (mCEACAM1a) receptors [205]. The study suggests that MHV-JHM
attachment likely occurs in a two-step fashion with low affinity binding to sialic acids
followed by higher affinity binding to mCEACAM1a protein receptor [205]. MHV also
harbours a HE protein [126]. It functions both as a lectin and a receptor destroying enzyme
(RDE), thanks to its sialate-9-O-acetylesterase activity [126]. Notably, for MHV, binding to
O-acetylated sialic acids was shown to be mediated solely by its HE protein and not S [131].

9.3.1. Sialic Interactions with Both the Spike and Haemagglutinin-Esterase Glycoproteins

Whilst there is a SA binding domain on the S glycoprotein (S1-NTD), the interaction
with SA can be mediated not solely by the S glycoprotein but also, in some cases, in those
coronaviruses that encode it—the HE glycoprotein, as demonstrated by MHV [131].

HCoV-HKU1 [268] possesses both a S glycoprotein as well as a surface HE protein.
The HE of HKU-1 has lost its ability to bind 9-O-Ac-Sia as the HE lectin domain has been
rendered inactive [130]. The function of HKU1-HE remains largely undetermined [269].
Whilst it is known that HKU1 employs glycan-based receptors carrying 9-O-acetylated sialic
acid (9-O-Ac-Sia), there is limited structural information on how the S glycoprotein of HKU1
binds ligands. HKU1 S was recently reported to bind to its receptor via a domain other than
S1-NTD [270], and binding to 9-O-Ac-Sia was reportedly not detectable. However, pre-
treatment of cells with neuraminidase and trypsin greatly reduced the binding, suggesting
that the binding was mediated by sialic acids on glycoproteins [269]. HKU-1 is one of seven
hCoVs identified to date and the only one with an unidentified cellular receptor [269], but it
does exploit O-Ac-Sia as a cellular attachment receptor determinant to initiate the infection
of host cells [269].

hCoV-OC43 similarly to HKU-1, also contains an HE protein [271–273]. Again, sim-
ilarly to HKU-1, the HE of OC43 has lost its ability to bind 9-O-Ac-Sias [130]. The S
glycoprotein of OC43 binds to O-acetylated sialic acid through domain A (S1A) on the
S1-NTD, as demonstrated by in vitro binding assays (Peng et al., 2011b). The apo-structure
of the BCoV S1A lectin domain was solved and believed to be highly similar to OC43. How-
ever attempts to solve the holo-structure reportedly failed [266]. Based on the galectin-like
fold of the S1A domain and mutational analysis, the RBS was predicted [266]. Although this
model remains to be confirmed, it has been widely accepted by the field [47,270]. Findings
by Hulswit et al. indicate that the actual S1A RBD in the S glycoprotein could map else-
where than currently believed [92]. They also propose that suggested site is not exclusive
to just OC43, but in fact is also in the S1A domain of HKU1 [92]. Abi and Keha et al. [274]
have identified that the R2-loop in the lectin domain acts in ligand binding, and amino
acid substitutions within this domain could alter receptor-binding. They hypothesise that
HCoV-OC43 may have evolved during adaptation by gradually losing its lectin activity due
to AA mutations in the R2-loop of the lectin-binding domain in the HE protein [130,274].
Additionally, Szczepanski et al. [218] have indicated that the documented receptor interac-
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tions for OC43 may actually differ from the literature; they therefore conducted a series of
experiments examining receptor usage. Haemagglutination assays indicated binding to
mouse erythrocytes which are highly saturated with sialic acids. Neuraminidase treatment
of cells also reduced viral attachment for OC43, however it did not affect the level of viral
replication, suggesting that SAs do not facilitate entry of OC43. The SA could be utilised for
anchoring the virus to the cell surface, or for binding as a decoy receptor. Examination of
the SAs on the cell surface indicated a preference of binding to α2,6-linked, mammalian-like
SA [218].

Although OC43 is an endemic respiratory pathogen, it originated from an independent
zoonotic introduction, it is in fact closely related to bovine coronavirus (BCoV) [92]. The
suggested bovine-to-human spillover of BCoV was proposed to have happened around
the year 1890, based on the S gene sequences of BCoV and HCoV-OC43 [275–278]. BCoV
initiates infection by attachment to cell surface receptors the crucial component of which
is N-acetyl-9-O-acetylneuraminic acid [279]. Data by Schultze et al. [279] suggests that
both glycoproteins and glycolipids can serve as receptors for BCoV provided they contain
9-0-acetylated sialic acid. They also suggest that following initial binding to sialic acid-
containing receptors, the S-protein interacts with a specific protein receptor. This interaction
may result in a conformational change that exposes a fusogenic domain and thus induces
the fusion between the viral and the cellular membrane [279]. When assessing the S-protein
sialic-acid binding capabilities, sialic acid lacking a 9-0-acetyl group was not effectively
bound. The apo-structure of the BCoV S1A lectin binding domain was solved but attempts
to solve the holo-structure reportedly failed [266]. Whilst the HE of both OC43 and HKU-1
have lost their lectin activity [67], BCoV HE can still readily bind lectins, with preference
for 9-O-Ac-Sia [274]. Studies by Abi et al. and Keha et al. [274] have noted that the R3-loop
is composed of 13 aa (aa 207–219) in the BCoV HE, and residues 211–214 are essential for
receptor-ligand interaction [126]; and that AA insertions between AA 211 and 212 could
alter the spatial conformation of the receptor-binding site [280]. Szczepanski et al. [218]
have suggested that similarly to OC43, previous BCoV receptor-binding observations
indicate that the role(s) of these receptors may differ from those previously reported.
Hemagglutination assays identified that BCoV also agglutinated mouse erythrocytes, which
are rich in SAs [218]. To determine the importance of SAs for attachment, they treated cells
with neuraminidase (NA) prior to infection and then examined viral attachment, showing a
reduction in attachment, but similarly to OC43, no reduction in viral replication, suggesting
again that SAs do not facilitate entry for BCoV. When examining the cell surface receptors
they identified that yet again, similarly to OC43, BCoV preferentially binds a2,6-link SAs,
but to a much lesser extent [218].

Canine respiratory coronavirus (CRCoV) was first detected in 2003 in dogs housed
at a UK rehoming centre [281]. It is a betacoronavirus and a close relative of both OC43
and BCoV. Characterised by a dry, hacking cough, the disease is generally mild and self-
limiting. However, it can progress to a potentially fatal bronchopneumonia [132,282].
CRCoV possesses an HE gene. Kienzle et al. [283] have identified the putative active site
for esterase activity, FGDS, at amino acids 37–40 [283]. Due to its similarity with other
coronavirus HE proteins, it is suggested to contribute to CRCoV receptor-binding and to
act as a receptor destroying enzyme [284]. CRCoV was shown to be able to agglutinate
chicken red blood cells indicating interaction of a viral surface protein with sialic acid
residues on the erythrocyte surface by Schultze et al. [285]. Szczepanski et al. [218] also
performed haemagglutination assays to verify whether CRCoV can use sialic acids as
receptor molecules. To determine the importance of SAs for CRCoV attachment, cells were
treated with neuraminidase (NA) prior to infection and then examined viral attachment.
Removing SAs reduced attachment of CRCoV but did not affect viral replication, the same
as demonstrated with both OC43 and BCoV. Contrastingly, CRCoV shows a preference for
α2,3-SA [218]. This shows that sialic acid facilitates viral attachment but not entry. Due to
the similarity of the CRCoV S glycoprotein to those of BCoV and HCoV-OC43, CRCoV is
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likely to bind to the same speculative receptors on the cell surface, namely 9-O acetylated
sialic acid.

As with other betacoronaviruses of Lineage A viruses, PHEV readily interacts with
a variety of red blood cells using it’s HE protein [133,286]. Specifically, PHEV attaches
to N-acetyl-9-O-acetylneuraminic acid-containing receptors on erythrocytes [133].
Schultze et al. [133] produced purified HE protein from PHEV and identified that the
HE protein retained its acetylesterase activity and was able to function as a receptor-
destroying enzyme, rendering blood cells resistant to agglutination, but does recognise
RBC surface receptors [133].

9.3.2. The Effect of Sialic Acid Binding on the Tropism of Coronaviruses

With the extensive studying of Influenza virus interactions with SA, it has been
demonstrated that the SA species that are bound by the virus is a major determinant of the
host range and exhibited tropism [287]. SA binding and the resulting effect on the tropism
of coronaviruses is most elegantly demonstrated by TGEV and PRCV. The S glycoprotein
of TGEV is known to have two different binding activities, pAPN as discussed above
and additionally, to sialic acids; allowing for agglutination of erythrocytes [288]. The two
binding activities are located on different domains of the S glycoprotein with AA residues
145–209 (S1-NTD) important for the recognition of sialic acids and residues 522–744 (S1-
CTD) for pAPN [156,157]. Sialic acid binding activity of TGEV is correlated with its
enteropathogenicity [68,289]. PRCV unlike TGEV has no hemagglutinating activity [288]
suggesting no sialic acid binding capability. The lack of SA binding activity is explained
by a large deletion, ~600 nts, in the S gene that results in a truncated S glycoprotein, with
a loss of almost the entire S1-NTD [68,290]. Research into TGEV identified several point
mutations that result in the loss of SA binding and enteropathogenicity; these are located in
the portion of S glycoprotein that is absent in PRCV. The loss of SA binding and subsequent
loss of enteropathogenicity has resulted in altered tropism, with PRCV replicating with
high efficiency in the respiratory tract but with very low efficiency in the gut [75]. However,
PRCV retains the ability to bind pAPN.

IBV is the aetiological agent of infectious bronchitis (IB) [183–187]. Whereas the
primary cellular receptors for the majority of coronaviruses is understood, the cellular
receptor for IBV remains unknown but research has identified the possible receptor-binding
domain for M41; a pathogenic IBV strain of the Massachusetts (Mass) serotype [252,291], to
be located within the S1-NTD [254]. IBV is reported to use sialic acid (SA) as an attachment
factor [100,253,264,292] and previous research utilising the S1 subunit of several strains
of IBV suggests that the receptor interaction of the IBV S glycoprotein corresponds with
pathogenicity and in vivo tropism [253]. It has been demonstrated that α2,3-linked sialic
acid serves as a receptor determinant for IBV infection of Vero cells and primary chicken
embryo kidney cells [264,293]. Results also show that α2,3-linked sialic acid also serves as
a receptor determinant on chicken tracheal organ cultures. To date (24 January 2022), there
is no data surrounding IBV binding to other conformations of sialic acid and is likely to be
cell-type dependent.

10. Entry Receptors, Attachment Factors and Co-Factors: Other Binding Factors
Transmembrane Protease Serine Type 2 (TMPRSS2)

The human protein transmembrane protease serine type 2 (TMPRSS2) (Figure 10C1)
plays a crucial role in coronavirus infection, through activation of the S glycoprotein, facili-
tating entry into target cells, including MERS-CoV, SARS-CoV and SARS-CoV-2 [294,295].
It is required to prime the S glycoprotein through cleavage, allowing for endosome-
independent entry into cells [29,105,294]. TMPRSS2 is a member of the type 2 trans-
membrane serine protease (TTSP) family, and is depicted by androgen receptor elements
located beyond its transcription site [296]. As well as the cleavage and activation of the S
glycoprotein TMPRSS2 is subjected to autocleavage, which results in the release of its solu-
ble catalytic domain [297]. The conditions required for autocleavage of TMPRSS2 remains
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elusive [294]. It is expressed in lung and bronchial cells [298], in addition to the colon,
stomach, pancreas, salivary glands and numerous other tissues [299]. It is co-expressed in
bronchial and lung cells with the ACE-2 [298].

In recent studies, the proteolytic activation of the HCoV-229E S glycoprotein is anal-
ysed using trypsin-like serine proteases [300]. It is found that fusion activation is not
dependent on the cleavage of the S1/S2 site, but is highly dependent on the cleavage in the
S2′ region. This is very similar to the fusion activation of the IBV S glycoprotein, which
requires furin-dependent cleavage at the S2′ site. A similar cleavage pattern was noticed
upon co-expression of 229E-S with TMPRSS2 and HAT, indicating that these proteases and
trypsin cleave the S-protein at similar or identical sites. The results suggest that TMPRSS2
and HAT cleave the 229E-S, likely at the same sites that are recognised by trypsin [301].

Shirato et al. [302] have shown that in Vero cells expressing TMPRSS2 (Vero-TMPRSS2)
the susceptibility to MERS-CoV infection was 100-fold higher than that of non-TMPRSS2-
expressing parental Vero cells. The serine protease inhibitor Camostat, which inhibits
TMPRSS2 activity, also completely blocked syncytium formation but only partially blocked
virus entry into Vero-TMPRSS2 cells [302]. MERS-CoV is thought to enter cells via two
distinct pathways, one mediated by TMPRSS2 at the cell surface and the other mediated by
cathepsin L in the endosome. Simultaneous treatment with inhibitors of both cathepsin
L and TMPRSS2 completely blocked virus entry into Vero-TMPRSS2 cells, indicating that
MERS-CoV employs both the cell surface and the endosomal pathway to infect Vero-
TMPRSS2 cells [302].

As previously discussed, for membrane fusion, the SARS-CoV S glycoprotein relies on
proteolytic activation at the S1/S2 boundary, where the S1 dissociates and S2 undergoes a
major structural change [46,303]. These SARS-CoV entry-activating proteases include cell
surface protease TMPRSS2 as well as lysosomal proteases–cathepsins [46,303]. Cleavage at
the S2′ site is either by serine proteases (e.g., TMPRSS2) at the cell surface or by cathepsin
proteases in the late endosome or endolysosome [304,305].

Protease activators for entry have been investigated for SARS-CoV-2 by
Mahoney et al. [295]. Research demonstrates that that TMPRSS2 and lysosomal proteases
are essential for SARS-CoV-2 entry [105,108,294]. TMPRSS2 is also an attractive therapeutic
target for COVID-19 drug discovery [295]. Whether serine or cathepsin proteases are used
for S2′ cleavage is cell-type dependent [105,295,305]. While entry into HAE and Calu-3
cells is cathepsin independent, entry into Vero cells, which do not express the required
serine proteases, relies on cathepsins exclusively [105,295,305].

Contrastingly, towards the end of 2021 a SARS-CoV-2 highly transmissible variant of
concern (VOC) emerged–referred to as the Omicron variant [306,307]. Peacock et al. [306]
have demonstrated that the Omicron S glycoprotein has a reduced ability to induce syncytia
formation when compared to other VOCs including the Delta variant. Additionally, they
have highlighted that Omicron is able to efficiently enter cells via the endosomal route in a
TMPRSS2-independent manner [306]. They suggest that it is this TMPRSS2-independent
entry mechanism that allows Omicron to infect a larger number of cells in the respiratory
epithelium, allowing higher infectivity at lower exposure doses, and therefore resulting in
enhanced transmissibility [306]. Willet et al. [307] also identified the TMPRSS2-independent
entry mechanism with both live virus cultures and viral pseudotypes favouring endosomal
fusion. The data indicates that entry through endosomal fusion rather than the more
traditional cell-surface mechanism could impact not only transmission, but cellular tropism
and pathogenesis [307].

11. Unknowns of Coronavirus Receptor-Binding

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), is a newly discovered,
enveloped, positive-sense, single-stranded RNA virus belonging to the Alphacoronavirus
genus [16,17,91,308]. SADS-CoV is considered to be the causative agent of the fatal swine
acute diarrhoea syndrome (SADS) with clinical symptoms of severe, acute diarrhoea and
rapid weight loss in piglets [16,17,91,308]. The SADS-CoV genome shares ~95% identity to
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that of bat alphacoronavirus HKU2, suggesting that it may have emerged from a natural
reservoir in bats and crossed the species barrier [91]. As it is a newly emerged coronavirus,
research has primarily focused on clinical diagnosis, molecular epidemiology, evolution and
animal models [17,309–311]. The S glycoprotein of SADS-CoV (1130 amino acid residues in
length) and is among the shortest coronavirus S glycoprotein lengths [312] and has an amino
acid homology of less than 28% to other known coronavirus S glycoproteins (excluding
HKU2), indicating that the spike gene of SADS-CoV is unique [16,17,308,309,311,313,314].
Whilst very limited, the receptor analysis indicates that none of the known coronavirus gly-
coprotein receptors including ACE-2, DPP4, or APN are essential for cell entry [17,91,315].
There are also no reports regarding the recognition of glycans by the NTD of SADS-CoV.
It has been demonstrated that SADS-CoV is able to infect cells from a broad range of
species including mouse, chicken, pig, monkey, and human, indicating a high potential for
interspecies transmission [315].

Though the attachment factors and alternative receptors for IBV have been well docu-
mented, the primary receptor remains elusive. The varying tissue tropism and pathogenic-
ity of IBV strains could mean that there is no universal primary receptor for IBV infection,
and similarly to FCoV, the primary receptor could differ by serotype.

Additionally, although it is inferred that HKU-1 binding is mediated by sialic acids [269],
it remains the only human coronavirus with an unidentified cellular receptor [269]. How-
ever, it has a documented attachment factor through the use of O-Ac-Sia to initiate the
infection of host cells [269].

12. Conclusions and Perspectives

With the increasing interest in coronaviruses following on from the COVID-19 pan-
demic and the arrival of numerous variant viruses, it is becoming more and more vital
that the cell entry mechanisms of coronaviruses are comprehensively understood. Several
coronaviruses currently have both global and/or regional endemicity meaning that there
is a very real threat of increased spread of novel coronavirus infections to both avian and
mammalian species including humans. The ability of coronaviruses to be able to cross the
species barrier with as little as two mutations (SARS-CoV from palm civets to humans),
highlights the potential risk of other animal coronaviruses developing zoonotic tendencies.
There is also the risk of spillover events, as demonstrated by BCoV in a bovine-to-human
spillover event creating the seasonal human coronavirus OC43.

Documented research has identified bats as a reservoir for coronaviruses with zoonotic
potential [12,316]. This was demonstrated through the emergence of SARS-CoV in 2003,
with cross species transmission from bats, to palm civets, to humans [317]. It is also inferred
that cross-species transmission from bats may have played a role in the emergence of
SARS-CoV-2 in 2019. In the last decade, a number of additional SARS-like bat-borne
coronaviruses have been identified, including RatG13, novel Bat CoVs identified in Laos
(BANAL-236 and others) and Rs3367, with the latter sharing largely conserved regions
surrounding the RBD [318]. Whilst RatG13 does not share the same degree of conservation,
it remains the closest reported bat coronavirus to SARS-CoV-2 S glycoprotein [318]. A
novel RatG13 strain identified in Laos in 2021 was identified as being the closest in origin
to SARS-CoV-2 to date [319]. BANAL-236 S glycoprotein has a high affinity for hACE2
and pseudoviruses expressing the BANAL-236 S glycoprotein were able to efficiently enter
human cells using an hACE2 dependent pathway [319]. Entry was also blocked using
SARS-CoV-2 neutralising serum [319].

Receptor recognition is an important determinant of coronavirus infection and patho-
genesis. It is also one of the most important targets for host immune surveillance and
human intervention strategies. Receptor-binding preference is also key in the cell and tissue
tropism exhibited by different viruses. The cell entry mechanisms of coronaviruses have
implications for understanding clinical features of viral infections and whether viruses can
evade immune surveillance and/or vaccination and therapeutic interventions. Altered
receptor-binding preferences can lead to insufficient immune responses and extended
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recovery time. Better understanding of binding mechanisms of coronaviruses can benefit
intervention strategies and identify novel and sometimes broad-spectrum antiviral targets.

Frequent arising variants and novel virus discoveries, coupled with the minimal host
adaptation requirements for human infection, clearly identifies coronaviruses as posing a
constant pandemic risk; whereby receptor-binding interactions should be scrutinised in
order to combat coronavirus infection as efficiently as possible. Whilst the focus currently
predominately fixates on human coronavirus infections and their subsequent proteinaceous
receptor interactions, there are numerous circulating veterinary coronaviruses utilising
lesser-studied protein receptors and glycans that continue to pose a threat to both human
and animal health. This review has highlighted the number of sugar derived receptors that
are widely used by several viruses across different genera; for example, neuraminic acid
being utilised by TGEV, IBV, and MERS-CoV–and is an area that needs to be continuously
studied in the same detail as receptors such as APN and ACE2.
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