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Klotho is an identified longevity gene with beneficial pleiotropic effects on the

kidney. Evidence shows that a decline in serum Klotho level occurs in early

chronic kidney disease (CKD) and continues as CKD progresses. Klotho

deficiency is associated with poor clinical outcomes and CKD mineral bone

disorders (CKD-MBD). Klotho has been postulated as a candidate biomarker in

the evaluation of CKD. However, the evidence for the clinical significance of the

relationship between Klotho and kidney function, CKD stage, adverse kidney

and/or non-kidney outcomes, and CKD-MBD remains inconsistent and in some

areas, contradictory. Therefore, there is uncertainty as to whether Klotho is a

potential biomarker in CKD; a general consensus regarding the clinical

significance of Klotho in CKD has not been reached, and there is limited

evidence synthesis in this area. To address this, we have systematically

assessed the areas of controversy, focusing on the inconsistencies in the

evidence base. We used a PICOM strategy to search for relevant studies and

the Newcastle–Ottawa Scale scoring to evaluate included publications. We

reviewed the inconsistent clinical findings based on the relationship of Klotho

with CKD stage, kidney and/or non-kidney adverse outcomes, andCKD-MBD in

human studies. Subsequently, we assessed the underlying sources of the

controversies and highlighted future directions to resolve these

inconsistencies and clarify whether Klotho has a role as a biomarker in

clinical practice in CKD.
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Introduction

The Klotho gene was first identified as a novel longevity gene in 1997 (Kuro-o et al.,

1997). It exists in three paralogs: αKlotho (referred to as Klotho here), βKlotho, and
γKlotho (Ito et al., 2000; Dermaku-Sopjani et al., 2013). Human Klotho protein exists both

as membrane Klotho (mKlotho) and soluble Klotho (sKlotho) (Zhong et al., 2020).

mKlotho is a single-pass transmembrane protein comprising 1,012 amino acids. The

extracellular domain (Kl1 and Kl2) of mKlotho can be shed constitutively by anchored

proteases and yields sKlotho (Zhong et al., 2020). sKlotho is also produced by alternative
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Klotho mRNA splicing (Xu and Sun, 2015). Klotho has

pleiotropic renal protective actions, including anti-fibrosis,

anti-oxidative stress, anti-inflammation, anti-apoptosis (Hum

et al., 2017; Yuan et al., 2022), and modulation of autophagy

(Chen and Sun, 2019).

Klotho is strongly expressed in the kidney and the level there

is related to its functional state (Wang et al., 2018; Kuro, 2019).

Therefore, Klotho deficiency is proposed to be a common feature

of kidney diseases (Wang et al., 2018) and has an important role

in their pathogenesis and development, including chronic kidney

disease (CKD) and related complications. A decreased sKlotho

level has been observed in the early stages of CKD, preceding the

elevation of serum creatine (Scr) level; the sKlotho level gradually

decreases with CKD progression (Shimamura et al., 2012; Liu

et al., 2017; Neyra et al., 2020b). More importantly, reduced

sKlotho was associated with increased adverse clinical outcomes

in CKD patients, including Scr doubling, CKD progression, all-

cause mortality, and CKD-mineral bone disorders (CKD-MBD)

(Kuro, 2017; Charoenngam et al., 2020; Yang et al., 2020).

Therefore, sKlotho is postulated as a promising biomarker in

early CKD diagnosis and prognosis.

Nevertheless, there has been a significant controversy

regarding whether sKlotho serves as a suitable biomarker in

CKD because available clinical evidence on the sKlotho value

remains debated and is inconsistent (Akimoto et al., 2012; Seiler

et al., 2013; Bob et al., 2019; Valenzuela et al., 2019; Savvoulidis

et al., 2020; Desbiens et al., 2022). Indeed, apparent controversies

remain regarding the relationship between the sKlotho level and

kidney function, CKD stages, adverse clinical outcomes, and

CKD-MBD. This, therefore, appears to imply an uncertainty

regarding sKlotho as a possible biomarker in CKD and represents

an area of continuing investigation. The uncertainty of sKlotho

arises from various aspects which need to be summarized and

addressed. Given this, this review summarizes available negative

clinical studies in these respects and mostly explores possible

reasons accounting for these controversies. We aimed to address

and resolve this inconsistency, systemically evaluate the clinical

significance of sKlotho, and highlight the future research

directions prior to applying sKlotho as a potential biomarker

in CKD. Here, a PICOM search strategy was employed and the

Newcastle–Ottawa Scale (NOS) was used for the quality

assessment of included studies in this review (Stang, 2010)

(Supplementary File S1). Studies with ≥7 stars were rated as

high-quality studies.

The controversy of sKlotho as a
biomarker in clinical nephrology

As a kidney protective protein, sKlotho deficiency is observed

to be associated with reduced kidney function, CKD stages,

adverse outcomes, and CKD-MBD, indicating a potential role

as a biomarker in CKD. However, available clinical studies

yielded inconsistent and even contradictory results regarding

the correlation of sKlotho with CKD. To some extent, conflicting

evidence indicates uncertainty in the application of sKlotho as a

biomarker.

sKlotho level does not consistently
correlate with the estimated glomerular
filtration

There is increasing evidence that the source of circulatory

sKlotho is derived from the kidney (Sakan et al., 2014; Hu et al.,

2016; Thongprayoon et al., 2020), indicating the close association

between Klotho and kidney diseases. Theoretically, during

pathological conditions (damaged kidney, particularly with

injured renal tubule), a deficiency (decrease) of this substance

occurs. A number of observational studies have demonstrated

that systemic sKlotho levels are downregulated in CKD animal

models and CKD patients, and it was further reduced as the

eGFR declined (Shimamura et al., 2012; Pavik et al., 2013; Sakan

et al., 2014; Seo et al., 2015; Liu et al., 2017; Li et al., 2018;

Buchanan et al., 2020; Yang et al., 2020). In this context, sKlotho

deficiency is considered to be a common characteristic of CKD

that is involved in its pathogenesis and development (Neyra et al.,

2020a). Subsequently, Klotho is postulated as a potential

diagnostic biomarker.

However, there are observational and cross-sectional studies

that do not confirm these. Seiler et al. investigated the sKlotho

level in 321 CKD patients of stages 2–4. The sKlotho level did not

differ significantly based on the CKD stage, and the baseline

eGFR was not changed significantly according to sKlotho tertiles.

No apparent association was found between the eGFR and

sKlotho levels by Spearman correlation analysis (Seiler et al.,

2013). Akimoto et al. also conducted a study to determine

whether the sKlotho level was associated with the kidney

function. The sKlotho level appeared to be decreased as the

kidney function deteriorated in 131 CKD 1- to 5-stage patients.

However, the distribution of sKlotho among the CKD stages

failed to reach a significant difference, and this association was

not found in multiple regression analysis (Akimoto et al., 2012).

A recent study performed by Bob et al. also demonstrated that the

sKlotho level in patients with diabetic kidney disease (DKD) was

not correlated with the eGFR (Bob et al., 2019). Interestingly, in

this study, patients with an eGFR<60 ml/min had a higher

sKlotho level, which was in agreement with the finding of

another study that included patients with autosomal dominant

polycystic kidney disease (ADPKD) (Sari et al., 2017). Similar

inconsistent findings were also shown in other clinical studies

(Devaraj et al., 2012; Hage et al., 2014; Scholze et al., 2014;

Desbiens et al., 2022). The inconsistent studies were summarized

and the average score was 5.5 stars as shown in Table 1. Several

studies were not scored because of the invalidity of NOS for

cross-sectional studies.
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sKlotho does not always predict adverse
outcomes for pre-dialysis CKD patients

Klotho deficiency is associated with kidney injury and CKD

progression. Indeed, a growing number of studies have examined

the association of sKlotho with adverse renal or non-renal

outcomes, and the majority of these cohort studies

demonstrated a close relationship (Kim et al., 2013;

Fountoulakis et al., 2018; Liu et al., 2018; Qian et al., 2018;

Yang et al., 2020). In this aspect, the sKlotho level is assumed as a

prognostic biomarker for adverse clinical outcomes in this

population (Liu et al., 2019a).

By contrast, some prospective and retrospective cohort

studies showed different results. For example, Seiler et al.

(2013) conducted a study to clarify the association of sKlotho

with the adverse outcomes in 321 CKD patients followed up for

2.2 ± 0.8 years. Patients were categorized into three groups based

on sKlotho tertiles; the composite clinical outcomes were

compared among the groups. The clinical outcomes included

Scr doubling, renal replacement therapy (RRT), and mortality.

The number of patients with event-free survival did not differ

among these groups. There was no relationship between the

sKlotho level and combined endpoints in either univariate or

multivariate Cox regression analyses (hazards ratio [HR] 1.59,

95% confidence interval [CI] 0.12–20.83, p = 0.726). This finding

suggested that lower sKlotho could not predict combined adverse

outcomes (Seiler et al., 2013). Similarly, a study by Qian et al.

(2018) reported that the change in the sKlotho level, not the

sKlotho level at baseline, was correlated with CKD progression.

Similar nonsignificant findings were also demonstrated in other

studies (Seiler et al., 2014; Adamska-Tomaszewska et al., 2020).

Regarding the relationship of sKlotho with cardiovascular (CV)

events or mortality, in the study of Brandenburg et al. (2015),

sKlotho was not found to be associated with CV events (HR 1.03,

95%CI, 0.80–1.31, and p = 0.845) or all-cause mortality risk (HR

1.14, 95%CI, 0.94–1.38; p = 0.187). This study had the largest

sample (2,948 participants, 14% of whom had an eGFR<60 ml/

min/1.73 m2) and the longest term of follow-up (9.9 years).

Another recent observational study with a large sample also

failed to show any significant association (Ciardullo and

Perseghin, 2022). Interestingly, a study performed by Bob

et al. (2019) reported that for patients with DKD, a high

TABLE 1 Characteristics of the negative observational studies regarding the relationship of Klotho with kidney function.

First
author

Year Country N Age Samples eGFR sKlotho
level

Klotho
and eGFR

NOS

Desbiens 2022 Canada 159 non-
CKD

53
(46–60)

Plasma 90 677 (565–877) ▲ Similar levels of sKlotho between the
two groups.

6 stars

153 CKD 64
(59–67)

55 662 (543–831)

Bob 2018 Romania 63 DKD 58.13 ± 12 Serum 65.2 ± 32.5 326.36 ± 246.78 ▲ sKlotho level did not correlate with
eGFR

6 stars

Scholze 2014 Denmark 24 CKD 68
(59–75)

Serum 31 (21–55) 236 (193–291) ▲ sKlotho concentrations did not differ
among CKD stages

Sari 2017 Turkey 76 ADPKD 50.96 ±
15.59

Serum 57.24 ±
33.80

2.92 (0.99–21.97) + sKlotho levels were negatively
correlated with eGFR

4 stars

32 controls 49.53 ±
7.32

90.15 ±
20.71

2.04 (0.95–19.98)

Hage 2014 France 60 CKD 46.7
6 ± 16.6

Serum 71.1 ± 29.2 478 (348–658) ▲ sKlotho is not related to kidney
function

Devaraj 2012 United States 61 CKD 55 ± 17 Serum CKD1 or
CKD3

67 (43, 119) vs108 (66,
182) +

sKlotho was increased in CKD and was
decreased in diabetics

4 stars

82 diabetics 37 ± 12 Normal
eGFR

81 (45, 141) vs 35 (15,
58) +

Seiler 2013 Germany 321 CKD 65.5 ±
12.1

Plasma 43.8 ± 15.6 538 (450–666) ▲ sKlotho level not differ across CKD
stages.

8 stars

Akimoto 2012 Japan 131 CKD 56 ± 18 Serum 46.3 ± 37.5 759.7
(579.5–1,069.1) ▲

Urinary excreted Klotho, not serum
Klotho levels associated with eGFR

5 stars

CKD, chronic kidney disease; N, number; DKD, diabetic kidney disease;▲, pg/ml;+, ng/ml; ADPKD, autosomal dominant polycystic kidney disease; eGFR, estimated glomerular filtration

rate; NOS, Newcastle–Ottawa scale
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sKlotho level rather than a low sKlotho level was associated with

an annual rapid decline of kidney function, which contradicted

the published data. The inconsistent studies were summarized

and the average score was 7 stars, as shown in Table 2.

sKlotho does not necessarily predict poor
prognosis for patients with maintenance
hemodialysis

Klotho is a multifunctional factor with various cytoprotective

effects (Buchanan et al., 2020). In addition to kidney protective

actions, Klotho also exerts beneficial cardiovascular effects,

including homeostasis in calcium and phosphate metabolism

and suppression of atherosclerosis, vascular calcification (VC),

arrhythmia, myocardial fibrosis, and heart failure (Kitagawa

et al., 2013; Navarro-Garcia et al., 2020). These disorders have

been identified as independent risk factors for CV morbidity and

all-cause mortality, particularly in patients receiving

maintenance hemodialysis (MHD) (Pichler et al., 2017).

Klotho deficiency exacerbates these disease conditions; thus, it

is assumed that Klotho deficiency is associated with an elevated

risk for morbidity or mortality in MHD patients (Munoz-

Castaneda et al., 2020). Clinical studies have been performed

to investigate this potential association, and a small number of

them revealed an association between a low sKlotho level and

more adverse clinical outcomes and have shown it as a prognostic

marker for patients on MHD (Cai et al., 2015; Otani-Takei et al.,

2015; Marcais et al., 2017; Wei et al., 2019; Yu et al., 2020; Cai

et al., 2021).

However, there were a few observational and cohort studies

reporting conflicting results. Buiten et al. reported that a lower

sKlotho level was associated with an increased risk for coronary

artery disease and left ventricular dysfunction in 127 dialysis

patients; however, this association was lost after adjusting for

confounders (Buiten et al., 2014). Moreover, a recent prospective

study by Valenzuela et al. (2019) found that a low sKlotho level

was correlated with impaired physical performance, but not with

all-cause mortality (relative risk 1.6%, 95% CI 0.65–1.35).

Similarly, Nowak et al. (2014) found no association between

higher sKlotho levels and a lower risk for mortality in 329 MHD

patients with sKlotho either as a continuous variable or a

categorical variable in multivariable-adjusted analysis after

2.53 years of follow-up (Nowak et al., 2014). Similar

TABLE 2 Characteristics of the negative studies regarding the relationship of Klotho with adverse clinical outcomes (low versus high sKlotho level).

Author Year Country Study
design

N Sample Age eGFR
(ml/
min)

Follow-
up

Outcomes Conclusion NOS

Ciardullo 2022 Italy Observational 2509 DM Serum 60.0 ±
0.2

CKD1-5 — CV events sKlotho levels were
not linked

8 stars

480 CKD with CV events

Adamska 2020 Poland Prospective 217 Serum 72 ±
11, 72

No data
eGFR<60

3 years Death sKlotho levels were
not related

stars

80 CKD 50.1 ±
14.0

to long-term
outcomes.

Bob 2019 Romania Retrospective 63 CKD Serum 58.13 ±
12

65.2 ±
32.5

12 months △decline of
eGFR

Increased sKlotho
was linked with rapid
annual decline of
eGFR

stars

Qian 2018 China Prospective 112 CKD Serum 64.5 ±
12.7

37.5 ± 1.9 1.5 years RRT Changes in sKlotho
level, not baseline
sKlotho, correlated
with RRT or CV

7 stars

CV events

events

Brandenburg 2015 Germany Prospective 2,948 Unknown 63 ± 10 eGFR>90 9.9 years CV events Klotho did not predict 7 stars

eGFR<90 Death CV events or death

Seiler 2013 Germany Prospective 312 CKD Plasma 65.5 ±
12.1

43.8 ±
15.6

2.2 ±
0.8 years

RRT Lower sKlotho failed
to predict

8 stars

Death combined adverse
outcomes

N, number; RRT, renal replacement therapy; Scr, serum creatinine; CV, cardiovascular
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inconsistent results were also demonstrated by other recent

prospective cohort studies (Zheng et al., 2018; Adamska-

Tomaszewska et al., 2020; Erkus et al., 2021). The inconsistent

studies were summarized and the average score was 7 stars, as

shown in Table 3.

sKlotho is not necessarily associated with
acute kidney injury to CKD transition

Acute kidney injury (AKI) is a serious syndrome that is

associated with an increased risk for morbidity and mortality

(Lafrance and Miller, 2010). Mostly, patients with an AKI

episode have an elevated risk for CKD development despite

AKI recovery (Lafrance and Miller, 2010; Coca et al., 2012). It

is of vital importance to screen and validate possible biomarkers

to predict, delay, or reverse adverse AKI consequences such as

subsequent CKD and end-stage renal disease risks after AKI.

sKlotho has powerful renal and extra-renal actions by

modulating oxidative stress, inflammation, apoptosis, and

fibrogenesis (Hum et al., 2017). Although sKlotho is not

filtered by the kidney, it can reach the tubules via transcytosis

(Hu et al., 2016). This indicates that it directly confers

cytoprotective effects on tubular cells and has therapeutic

potential in slowing the progression of AKI to CKD.

Preclinical data demonstrated that Klotho protein replacement

delayed AKI-to-CKD transition by the regulation of autophagy,

apoptosis, and endoplasmic reticulum stress (Shi et al., 2016; Liu

et al., 2019b). Recently, Neyra et al. (2019) conducted a cohort

study to examine the association of sKlotho with AKI outcomes.

In total, 45 AKI subjects and 52 controls were enrolled. Per one-

fold higher urine sKlotho:creatinine, an 83% reduction in the risk

of developing all-cause mortality, RRT, and a >50% decline in the

eGFR during a 90-day follow-up was observed. This study was

the first to evaluate the predictive value of sKlotho in AKI

patients. Again, due to the limited samples and short follow-

up, the results should be interpreted with more caution.

These conflicting results indicate that there is uncertainty

about whether a decrease in sKlotho level correlates with kidney

function and clinical outcomes. Based on the evidence to date, a

low sKlotho level may not represent a useful biomarker for CKD

diagnosis and prognosis.

Causes of controversy of sKlotho as a
clinical marker in CKD patients

The present evidence base does not currently support using

sKlotho as a biomarker in CKD. Several reasons may contribute

to the discrepant results and affect the interpretation of the

results (Figure 1).

First, standardization of sKlotho assays has yet to be achieved

(Heijboer et al., 2013; Neyra et al., 2020b). The circulating Klotho

level can be measured by different immunoassays, including the

enzyme-linked immunosorbent assay (ELISA), time-resolved

fluorescence immunoassay (TRF), and immunoprecipitation-

immunoblot (IP-IB). A previous study evaluated the quality of

three frequently utilized ELISA assays. There were substantial

heterogeneities with within-run variation ranging from 4% to

32% among three commercial assays, indicating the uncertainty

TABLE 3 Characteristics of the negative studies regarding the relationship of Klotho with adverse outcomes (Low versus high sKlotho level) in MHD
patients.

Author Year Country Study
design

N Sample Follow-
up

Age Outcomes Conclusion NOS

Erkus 2021 Turkey Observational 136 Serum — 48.2 ± 17.4 Uremic
cardiomyopathy

sKlotho was not associated
with uremic

5 stars

58.9 ± 16.7 cardiomyopathy

Valenzuela 2019 Spain Prospective 30 Plasma 18 months 71 ± 9 All-cause mortality sKlotho levels were not
associated

6 stars

with mortality

Zheng 2018 China Prospective 128 Serum 36 months 61.91 ± 15.3 CAC score sKlotho levels were not
associated

8 stars

Observational All-cause mortality with mortality.

Buiten 2014 United Kingdom Observational 127 Plasma — 67 ± 7 AAC + CAC score sKlotho levels were not
associated

8 stars

LV-dysfunction with CV events or mortality

CAD

Nowak 2014 Germany Sectional 239 Plasma 2.53 years 68 ± 14 All-cause mortality sKlotho levels were not
associated

8 stars

Prospective with mortality.

MHD, maintenance hemodialysis; CAC, coronary artery calcification; LV, left ventricular; AF, atrial fibrillation; AAC, abdominal aorta calcification; CAD, coronary artery disease
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of ELISA assays (Heijboer et al., 2013). As for ELISA and TRF,

another report demonstrated sKlotho value using TRF was

associated with eGFR and sKlotho value using ELISA was

associated with age instead of eGFR, favoring the possible

application of TRF assay (Pedersen et al., 2013). Again, for

ELISA and IP-IB, a recent study compared the performances

of the two assays in determining Klotho measurement. sKlotho

level determined by IP-IB displayed a strong correlation with

eGFR but minimal correlation with ELISA, suggesting the

superior performance of IP-IB assay (Neyra et al., 2020b).

However, IP–IB assay also has several weaknesses including

more time and effort and restriction to thawed specimens

(Neyra et al., 2020b). Despite the better reported

performances of the TRF and IP-IB assays, the ELISA assay

is usually preferred due to the kit being more rapid and

cheaper in clinical practice. Given the significant

differences in sensitivity and specificity across available

sKlotho assays kits, it is difficult to produce consistent

results dependent on the different sKlotho assays kits

(Heijboer et al., 2013; Neyra et al., 2020b). The assay-

related variance may partly explain the inconsistent results

of different authors. On the one hand, sKlotho is cleaved from

cell membrane mKlotho by metalloproteinases (ADAM)

including ADAM 10 and ADAM17; thereafter, its

concentration is influenced by ADAMs. This may be one

cause of the increased sKlotho level, while the mKlotho

level is decreased in the DKD model (Typiak et al., 2021;

Ciardullo and Perseghin, 2022). On the other hand, sKlotho is

also generated by alternative mRNA splicing and the existing

ELISA assays were unable to distinguish whether sKlotho

results from shedding of the extracellular domain of

mKlotho or alternative splicing of its transcript. To date,

this spliced Klotho transcript has not been determined or

its determination is inconclusive based on published data

(Jadhav et al., 2021; Li et al., 2021). Additionally, clinical

samples for Klotho determination were collected from fasting

patients and stored at −80°C after centrifugation until further

analysis. The stability of Klotho in different samples and the

ideal time point for its analysis affect its quantification. For

example, consistency between serum and plasma samples has

not been achieved for the same Klotho assay or among

different Klotho assays (Heijboer et al., 2013). For urinary

sKlotho determination, its concentration in freshly voided

urine was significantly higher than that in stored samples,

meaning that Klotho is unstable in stored human urine

(Adema et al., 2015). Furthermore, the performance of the

same assay is limited due to additional freeze–thaw cycles of

clinical samples (Neyra et al., 2020b). To produce accurate

results, standardization in terms of Klotho assays, sample

processing, storage conditions, and time point for analysis

should be developed.

Second, it remains unclear what happens regarding Klotho

production and clearance in the failing kidney. This may be

another reason for the inconsistent findings in specific CKD

models such as DKD versus non-DKD (Wang et al., 2018; Bob

et al., 2019), pre-dialysis versus dialysis (Liu et al., 2019a;

Valenzuela et al., 2019), remaining kidney function versus

urine output (Golembiewska et al., 2013). In addition to non-

renal Klotho production, the tubule may play an important

role in maintaining the sKlotho level. The fact that sKlotho

was detected in urine indicates that renal epithelial cells were

involved in Klotho metabolism because Klotho is too large to

pass through the glomerular barrier (Hu et al., 2010). It has

been reported that sKlotho undergoes a transcytosis process

and reaches the tubular lumen (Hu et al., 2016). This may

explain the fact that serum sKlotho was inversely associated

FIGURE 1
The controversy of sKlotho as a biomarker in CKD.
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with urine output other than with the remaining kidney

function in patients undergoing peritoneal dialysis

(Sikorska et al., 2019). Tubular injury decreased sKlotho

clearance and was associated with an increased serum

sKlotho level in specific CKD models, such as DKD (Bob

et al., 2019). This indicates serum sKlotho may not serve as a

candidate marker for eGFR, but instead, as a possible marker

for renal tubular damage, which may be another possible

reason for the conflicting results.

Third, the sKlotho level is regulated by several

pathological processes, including inflammation, oxidative

stress, uremic toxins, and the renin-angiotensin system

(RAS), as well as commonly administrated agents, such as

phosphate binders or active vitamin D in CKD (Kale et al.,

2021; Xia and Cao, 2021). These pathological states and used

drugs are common in CKD, but also different according to the

CKD stage, which may confound their

relationship. Additionally, the sKlotho level was influenced

by dialysis modalities in dialysis patients (Hu et al., 2016;

Picciotto et al., 2019). Therefore, the sKlotho level varies over

time. A single measurement of the sKlotho level at baseline

does not reflect the actual sKlotho level.

Fourth, sKlotho is also produced by extra-renal organs (Lim

et al., 2015; Picciotto et al., 2019). Extra-renal Klotho production

is probably stimulated as a compensatory source under CKD

conditions (Kale et al., 2021). The contribution of extra-renal

organs such as the parathyroid glands, spleen, and choroid plexus

to systemic sKlotho remains a matter of debate (Picciotto et al.,

2019). This indicated that the association between the sKlotho

level and kidney function may be underestimated due to extra-

renal organ sKlotho production.

Finally, the quality of the included studies inevitably affects

the interpretation of the results. Regarding the correlation of

sKlotho with the eGFR, the design of the cited literature is

observational or case-control (Table 1). These study types

have inherent limitations, and the study quality is relatively

low (5.5 stars). Concerning the sKlotho level in adverse

outcomes, the design of the literature is a prospective or

retrospective cohort, and the study quality is relatively high

(7 stars) (Tables 2, 3). Despite this, there are still significant

differences, particularly in terms of specific CKD etiology, sample

size, follow-up, sample types, and endpoints among the cohort

studies (Tables 2–4). Given this, it may not be reasonable to

combine these studies to produce more convincing results, or one

study may be more rigorous than another study under specific

conditions.

Taken together, there are conflicting results from various

sources, such as the uncertainty of sKlotho assays or Klotho

production/clearance and differences in disease conditions,

treatment modalities, drugs, and study quality.

Consequently, these inevitably challenge the translation of

sKlotho into clinical practice. Therefore, the current

evidence should be interpreted with caution until further

studies are reported.

TABLE 4 Characteristics of the negative studies regarding the relationship of Klotho with vascular calcification in CKD patients.

Author Year Country Study
design

N Sample Age Disease
models

Outcomes Relationship NOS

Liang 2021 China Observational 716 Serum 53.6 ±
13.5 (men)

General
population

BP cfPWV No 7 stars

51.0 ± 12.0
(women)

Savvoulidis 2020 Greece Observational 60 Serum 63 (52, 72.5) CKD1-5 CAC No 7 stars

AVC

Chou 2019 Taiwan Before and
after

62 Serum 59 (52–65) MHD AAC No —

Nattero
Chávez

2019 Spain Observational 164 Plasma 37 ± 10 DM MAC No 6 stars

Krishnasamy 2017 Australia Prospective 82 Serum 62.9 ± 10.2 CKD4-5 AAC No 8 stars

42Controls

Di Lullo 2015 Italy Observational 100 Serum 51 (46–56) CKD3-4 Valve
Calcification

No 5 stars

Morita 2015 Japan Observational 157 Serum W:65.8 ± 11.5 CKD2 CAC No 7 stars

M:67.0 ± 11.6 CKD2 AVC No

Buiten 2014 United Kingdom Observational 127 Plasma 67 ± 7 MHD AAC No 8 stars

CAC No

Kitagawa 2013 Japan Observational 114 Serum 58 (47–66) CKD1-3 ACI No 5 stars

CKD, chronic kidney disease; BP, blood pressure; cfPWV, carotid–femoral pulse wave velocity; MHD, maintenance hemodialysis; W, women; M, men; MAC, medial arterial calcification;

CAC, coronary artery calcification; AVC, aortic valve calcification; AAC, abdominal aorta calcification; ACI, aortic calcification index

Frontiers in Pharmacology frontiersin.org07

Yu et al. 10.3389/fphar.2022.931746

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.931746


sKlotho was not definitely associated with
vascular calcification

Vascular calcification (VC), which results from excess

calcium phosphate deposition in blood vessels and/or heart

valves, is a hallmark feature of CKD-MBD (Hu et al., 2011).

It is highly prevalent in several diseases such as CKD and diabetes

mellitus, and in aging (Yannoutsos et al., 2018; Timofte et al.,

2020). It has been demonstrated that VC contributes to an

increased risk for CV morbidity and all-cause mortality and

was identified both as an independent predictor of poor clinical

outcomes and an interventional target for the CKD population

(Rennenberg et al., 2009; Lioufas et al., 2020).

Klotho systemic deficiency is associated with severe VC.

Experimental studies have shown that increased Klotho

expression or Klotho therapy ameliorates VC (Hu et al., 2011;

Lin and Sun, 2022), indicating that Klotho is implicated in the

pathogenesis and progression of VC (Yamada and Giachelli,

2017). Klotho is expressed in vascular cells, and CKD is

associated with a deficiency of vascular Klotho (Lim et al.,

2012). Local Klotho deficiency in the vasculature can

potentiate VC (Lim et al., 2012). Mechanistically, Klotho

regulates the osteogenic transition of vascular smooth muscle

cells and ameliorates VC by inhibiting phosphate transporter

(Pit)-1 and Pit-2 activity (Hu et al., 2011) or by suppressing the

Wnt/β-catenin signaling pathway (Chen et al., 2015). Indeed, in

the clinic, reduced sKlotho levels have been associated with

greater VC, including coronary artery calcification (CAC)

(Zheng et al., 2018; Koga et al., 2020), aortic valve

calcification (AVC) (Chen et al., 2021), and abdominal aortic

calcification (AAC) (Cai et al., 2015; Savvoulidis et al., 2020;

Orces, 2022). A reduced sKlotho level was also correlated with

vascular dysfunction, including arterial stiffness in CKD patients

in multivariate analyses (Kitagawa et al., 2013; Memmos et al.,

2019). These data suggested that sKlotho has a beneficial role

against VC and is thus presumed as a surrogate biomarker

for VC.

By contrast, some observational and cross-sectional studies

reported no association between sKlotho and AVC, CAC, or

AAC in CKD patients, indicating the controversy regarding the

role of sKlotho inmediating VC. A previous study which enrolled

127 patients with MHD reported that the serum sKlotho level

was not related to the AAC or CAC scores neither in a crude

model nor adjusted model (Buiten et al., 2014). Another study

reported that patients with CKD had a higher prevalence of AAC

compared with controls without CKD, yet no significant changes

in the sKlotho levels between the two groups were observed

(Krishnasamy et al., 2017). Additionally, the clinical irrelevance

of sKlotho in AAC was demonstrated in this study in a

multivariate regression analysis (Krishnasamy et al., 2017). A

recent study conducted by Savvoulidis et al. (2020) found that

there was no association of sKlotho with CAC or AVC by

multivariate analysis, although the sKlotho level in patients

with stage-5 CKD was dramatically reduced in comparison

with that in patients with stage-3 CKD (Savvoulidis et al.,

2020). Similar negative results were also verified in other

studies (Di Lullo et al., 2015; Meuwese et al., 2015; Baralić

et al., 2019). Interestingly, two other studies which enrolled

CKD patients with moderately impaired kidney function

reported that the sKlotho levels were positively correlated with

CAC in coronary artery biopsies (van Venrooij et al., 2014) or

AVC in men after adjustment for confounders in the subgroup

analysis despite no association in the overall analysis (Morita

et al., 2015). For subjects with normal kidney function, no

significant relationship between sKlotho and arterial stiffness

or VCwas also observed (Nattero-Chávez et al., 2019; Liang et al.,

2021). Furthermore, an interventional clinical trial revealed

recently the amelioration of AAC was not followed by an

increase or decrease in the sKlotho level in MHD patients

with secondary hyperparathyroidism, which further challenged

the clinical value of sKlotho in VC (Chou et al., 2019) The

inconsistent studies were summarized and the average score was

6.6 stars, as shown in Table 4. Given this, the above inconsistent

evidence means that the association between sKlotho and VC

remains to be determined.

These discrepant findings represented a more complex role

of Klotho in VC. There were several explanations for the

conflicting results. First, whether Klotho is located in the

vasculature is a matter of debate (Mencke et al., 2015).

Although the differences in antibodies against Klotho isoforms

may partially account for the discrepant findings (Lewin and

Olgaard, 2015), the effect of systemic Klotho on local vasculature

is uncertain. Second, the association of sKlotho with VC may

differ depending on specific disease conditions, and the

differences in participant baseline characteristics may

complicate the results. For example, the prevalence of VC in

CKD increases as CKD progresses, and it is higher in dialysis

patients who have a greater risk for VC than those for pre-dialysis

(Cai et al., 2015; Krishnasamy et al., 2017). Additionally,

locations and diagnostic strategies for VC confuse the

interpretations. Furthermore, the precise molecular

mechanism underlying VC is complex and not fully

elucidated, and the roles of other regulators in this process

should not be precluded (Kurabayashi, 2019). Most

importantly, available data examining their association arise

from cross-sectional or observational studies, not retrospective

or prospective cohort studies. These studies are unable to supply

strong evidence to clarify whether their causal link is due to

inherent defects, such as selection bias, and other potential

confounders (6.6 stars). Therefore, it is not possible to

conclude whether or not reduced sKlotho is associated with

greater VC due to the conflicting results or a lack of

prospective cohort studies, although this notion was

confirmed by pre-clinical studies. The significance of sKlotho

in suppressing VC formation needs to be re-evaluated in

prospective cohort studies in the future.
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Consequently, due to the above contradictions and

insufficient data, the association of sKlotho with VC remains

uncertain and needs to be clarified in the future.

sKlotho may not be an ideal biomarker for
CKD-mineral bone disorders

Serum calcium and phosphate levels are regulated by 1,25-

dihydroxyviatmin D3, intact parathyroid hormone (iPTH), and

calcitonin by balancing their intestinal uptake, renal excretion,

and bone mobilization. Klotho-deficient mice exhibited mineral

metabolism disorders, including phosphate retention,

hypercalcemia; VC, valve calcification; and elevated

fibroblastic growth factor-23 (FGF23) levels (Kuro-o et al.,

1997). These disorders are ubiquitous in CKD; thus,

diminished Klotho is supposed to be implicated in the

modulation of CKD-MBD (Figure 2) (Neyra et al., 2020a).

Klotho downregulation antedated FGF23, iPTH, and

phosphate elevation in human CKD (Shimamura et al., 2012;

Rotondi et al., 2015; Khodeir et al., 2019). This means that Klotho

may be a possible early biomarker of CKD-MBD (Kuro, 2017).

Indeed, Klotho modulates calcium and phosphate metabolism

primarily via FGF23-dependent mechanisms as well as non-

FGF23-dependent mechanisms (Kawai, 2016; Andrukhova et al.,

2017). The net effect of Klotho on mineral metabolism is to

maintain the serum calcium level, but to decrease the serum

phosphate level (Figure 2) (Neyra et al., 2020a). In agreement

with this, Klotho was positively related with calcium and

inversely related with phosphate in many clinical studies (Kim

et al., 2013; Kitagawa et al., 2013; Sakan et al., 2014; Rotondi et al.,

2015; Sawires et al., 2015; Liu et al., 2017; Savvoulidis et al., 2020).

Despite this, there is evidence available that does not support

this view. Regarding calciummetabolism, Klotho was reported to

increase its reabsorption and reverse renal calcium loss by

modulating renal calcium-selective channels independent of

FGF23 (Wolf et al., 2014; Wright et al., 2019). This effect of

Klotho results in normal or near-normal calcium levels.

However, Klotho was also reported to reduce calcium

absorption and contribute to a decreased calcium level by

inhibiting the production of active vitamin D and iPTH via

FGF23 (Yoshida et al., 2002; Hu et al., 2013; Olauson et al., 2013).

With respect to phosphate metabolism, Klotho is believed to

lower hyperphosphatemia by stimulating renal phosphate

excretion and maintaining phosphate homeostasis. A recent

study reported that sKlotho may be a new biomarker of

phosphate reabsorption after adjustment for confounders,

including FGF23. Yet, in this study, Klotho was observed to

be positively associated with phosphate reabsorption (Tan et al.,

2017), and this means that Klotho inhibited phosphate excretion,

which was contrary to the published data. Other studies also

demonstrated no negative relationship between Klotho and the

phosphate level (Morita et al., 2015; Hage et al., 2016). In the case

of iPTH, Klotho and FGF receptor 1 are co-located in the

parathyroid, which suggests that the parathyroid is a Klotho-

targeted organ (Yan et al., 2015). Generally, Klotho mediated the

suppression of iPTH by several pathways, including canonical

Klotho-FGF23 signaling (Koizumi et al., 2013; Olauson et al.,

2013; Fan et al., 2018). Nevertheless, Klotho was also reported to

induce iPTH secretion by regulating parathyroid Na+ and K+-

ATPase activity (Imura et al., 2007). Klotho may also have an

indirect role in triggering PTH secretion by directly regulating

mineral metabolism and 1,25 (OH) 2D synthesis (Kimura et al.,

2016). Moreover, this paradoxical relationship of Klotho with

iPTH was found in clinical studies (Buiten et al., 2014; Dhayat

et al., 2020). Regarding the effect of Klotho on bone metabolism,

it was found to be expressed in osteocytes (Rhee et al., 2011), and

its expression was downregulated in renal osteodystrophy in

FIGURE 2
The role of Klotho in CKD-MBD.
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CKD (Komaba et al., 2017). Klotho-deficient mice developed

osteoporosis or retardation in bone resorption (Kawaguchi et al.,

1999; Yamashita et al., 2000), while sKlotho delivery may induce

bone differentiation and promote bone mineralization in

osteoblast cells (Toan et al., 2020). Surprisingly, unlike

systemic Klotho deletion, its specific depletion from osteocytes

may dramatically increase bone formation and Klotho

overexpression in osteoblastic cell-suppressed bone mineral

formation and osteogenic activity (Komaba et al., 2017). The

complicated role of Klotho on bone metabolism possibly leads to

inconsistent results regarding the association of Klotho with bone

fracture in clinical studies (Chalhoub et al., 2016; Ribeiro et al.,

2020; Desbiens et al., 2022).

The inconclusive results represent an important controversy

in this area. These discrepancies may result from different

experimental animals, the CKD stage, diet composition, and

varied participant baseline characteristics (Yokoyama et al.,

2012; Morita et al., 2015; Zhao et al., 2015; Dhayat et al.,

2020). Additionally, it is difficult to specifically clarify the

interplay of Klotho with other regulators such as FGF23,

vitamin D, and iPTH in CKD-MBD, and this is possibly

responsible for the confusion. To elucidate the more

complicated role of sKlotho in the regulation of CKD-MBD,

further investigation is necessary.

How to resolve the controversy

sKlotho is postulated to become a potential marker in CKD;

however, one should be aware that there are still contradictory

findings in terms of the relationship of sKlotho with kidney

function, CKD stage or progression, and CKD-MBD. This

indicates that a complete consensus has not been reached in

this context due to the existing inconsistent results. To address

this issue, the sources of controversies previously described

should be resolved specifically before the potential application

of sKlotho as a biomarker in CKD.

First, one important issue is how to accurately detect sKlotho

in serum or body fluid. Several available sKlotho assays failed to

precisely determine the actual sKlotho level or the range of the

sKlotho reference value (Heijboer et al., 2013; Neyra et al.,

2020b). Interestingly, a recent study by Espuch-Oliver et al.

(2022) investigated the reference values of serum sKlotho in a

larger sample with 346 healthy adults by ELISA. They observed

that sKlotho levels differed significantly across ages, and sKlotho

was inversely correlated with age in healthy subjects. This study

provided the possibility for the determination of the sKlotho

reference value in the future. Better or standardized methods for

Klotho measurement are anticipated to yield more reliable

results. In agreement with this, a novel sKlotho assay (IP-IB)

was shown to display better performance than other available

sKlotho assays, which may resolve this issue in the future (Neyra

et al., 2020b). One other important question regarding detecting

the sKlotho level is how to distinguish the sources of sKlotho due

to the presence of two isoforms in the circulation. It has been

verified that sKlotho is generated mainly frommKlotho and shed

extracellularly by ADAM10 and ADAM17 action. Therefore, the

expressions and activities of ADAMs in different CKD models

may influence sKlotho production (Akasaka-Manya et al., 2020).

Consequently, in addition to the sKlotho level, ADAM10 and

ADAM17 should also be determined and compared in the

specific CKD context. In addition, the secreted sKlotho

isoform that is produced by alternative mRNA splicing

comprises a unique 15aa sequence at the C-terminus in the

Kl1 domain; given this, a novel antibody has recently been

generated to specifically detect this secreted sKlotho isoform

(Jadhav et al., 2021). Consequently, this recently reported novel

assay offers a possibility for resolving this issue in the future.

Another important issue is that the sKlotho level changes over

time due to the presence of a cluster of regulators in CKD,

including vitamin D, phosphate binders, inflammation, oxidative

stress, and RAS. Furthermore, part of the total sKlotho detected

in serum is also derived from other non-kidney organs, and this

may alter the association of Klotho with kidney function.

Therefore, to achieve a more accurate result, sKlotho

measurement should be conducted repeatedly and averaged,

and the sKlotho value should be obtained after eliminating or

balancing the influence of other potential regulators, including

inflammation, drugs, RAS and extra-kidney organs, in the study

design.

Second, the kinetics of sKlotho is currently still not fully

understood (Hu et al., 2016; Zhong et al., 2020). It was reported

that 125I-labeled exogenous Klotho is located mainly in the

kidney, with much lower levels in other organs, including the

spleen, liver, heart, and brain (Hu et al., 2016). The half-life of

exogenous Klotho was much longer in anephric rats compared

with normal rats. Moreover, Klotho was also detected in urine

because it can enter the urinary lumen via transcytosis by renal

proximal tubules (Hu et al., 2016). Therefore, a healthy kidney

plays a vital role in maintaining the Klotho balance (Lim et al.,

2015; Hu et al., 2016). Not surprisingly, sKlotho production,

distribution, and clearance varied significantly under normal and

CKD conditions, particularly the condition with complete kidney

loss (Hu et al., 2016; Picciotto et al., 2019). In addition, sKlotho

production/clearance may be significantly different even in a

specific CKD model. For example, Picciotto et al. recently

reported that for CKD patients with an eGFR<60 ml/min,

Klotho was also cleared by splanchnic organs (Picciotto et al.,

2019). This indicated that the association of sKlotho with CKD

may differ depending on the particular CKD model (Akimoto

et al., 2012; Sari et al., 2017; Bob et al., 2019), as well as in dialysis

versus pre-dialysis (Golembiewska et al., 2013; Liu et al., 2018).

Therefore, the kinetics of sKlotho both in a specific CKD model

and at different CKD stages are required to be intensively

investigated and characterized in the future. On the basis of

fully understanding the metabolic kinetics of Klotho, this
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association should be examined carefully under the condition of a

specific CKD.

Finally, due to the current controversy, high-quality studies,

such as interventional trials and prospective or retrospective

cohort studies, with standard diagnostic criteria and

indicators, are warranted to elaborate and clarify the

confusion of Klotho in CKD. In this regard, meta-analysis and

systemic review also offer the potential possibility of addressing

this issue. Indeed, several meta-analyses have been performed to

address this issue in recent years. These published studies

supported a close association of sKlotho with kidney function

and adverse outcomes in CKD (Wang et al., 2018; Liu et al.,

2019a; Liu et al., 2020; Liu et al., 2021). However, the meta-

analyses included a very limited number of eligible studies, with

small samples. Above all, there were substantial heterogeneities

among the included studies, indicating the differences in terms of

participant baselines, study designs, and statistical methods, and

thus, the conclusion drawn may to some extent not be

convincing. Additionally, it must be noted that an individual

biomarker, for example, sKlotho, inherently has some limitations

for accurate diagnosis and monitoring progression in CKD

without the combination of a set of other biomarkers

because a single indicator lacks sufficient performance and

efficiency to reflect the complexity of the mechanisms

underlying CKD pathogenesis and development. Due to

the limitations, clinical predictive models incorporating

Klotho and other traditional or novel indicators possibly

have the greatest potential to evaluate the clinical utility of

Klotho (Manou et al., 2020; Yan et al., 2021). Therefore, to

gain more information regarding this association, additional

high-quality studies in these respects should be conducted,

and only in this way can current disputes be addressed and

specifically resolved in the future.

Conclusion and perspectives

CKD is increasingly identified as a global threat to public

health, and screening and validating surrogate biomarkers in

CKD is critical for its management. Klotho is involved in various

biological processes. Its role in clinical nephrology has been

particularly examined over recent years. Despite a significant

association between sKlotho and kidney function, for CKD

outcomes and CKD-MBD, as demonstrated by the

experimental and epidemiological studies, there are equally

inconsistent findings that suggested that sKlotho may not be a

good surrogate biomarker in CKD. This means that much still

needs to be resolved regarding the clinical significance of Klotho

in CKD. This prompts us to continuously seek the possible

sources of controversy and specifically address and resolve

this issue in the future. Given the conflicting results, further

well-designed research is urgently required to clarify and validate

the clinical value of Klotho. In addition, more efforts should be

directed to improving sKlotho assay performance. Through this,

the possibility of Klotho as a potential biomarker is to be

systemically assessed, and a more reliable conclusion can be

reached.
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