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Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains a
global health threat despite recent advances and insights into host-pathogen interactions
and the identification of diverse pathways that may be novel therapeutic targets for TB
treatment. In addition, the emergence and spread of multidrug-resistant Mtb strains led to
a low success rate of TB treatments. Thus, novel strategies involving the host immune
system that boost the effectiveness of existing antibiotics have been recently suggested to
better control TB. However, the lack of comprehensive understanding of the
immunomodulatory effects of anti-TB drugs, including first-line drugs and newly
introduced antibiotics, on bystander and effector immune cells curtailed the
development of effective therapeutic strategies to combat Mtb infection. In this review,
we focus on the influence of host immune-mediated stresses, such as lysosomal
activation, metabolic changes, oxidative stress, mitochondrial damage, and immune
mediators, on the activities of anti-TB drugs. In addition, we discuss how anti-TB drugs
facilitate the generation of Mtb populations that are resistant to host immune response or
disrupt host immunity. Thus, further understanding the interplay between anti-TB drugs
and host immune responses may enhance effective host antimicrobial activities and
prevent Mtb tolerance to antibiotic and immune attacks. Finally, this review highlights
novel adjunctive therapeutic approaches against Mtb infection for better disease
outcomes, shorter treatment duration, and improved treatment efficacy based on
reciprocal interactions between current TB antibiotics and host immune cells.
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INTRODUCTION

Tuberculosis (TB) is a chronic infectious disease caused by an
obligate pathogen,Mycobacterium tuberculosis (Mtb), in humans
(1). According to the WHO report, in 2020, approximately 10
million people were newly diagnosed, and 1.3 million people died
from this notorious disease (2). Moreover, the recent treatment
success rate was 82% for drug-sensitive TB and 55% for
multidrug-resistant (MDR)-TB (3). There has been a gradual
increase in the incidence of MDR-TB, defined as resistance to
isoniazid (INH) and rifampicin (RIF), and extensively drug-
resistant (XDR)-TB, defined as in vitro drug resistance to not
only INH and RIF, but also all fluoroquinolones and at least one
injectable aminoglycoside (4).

The presence of a mycobacterial population with more than
one bacterial phenotype has been observed in patients with TB,
as indicated by bacterial populations with varying growth
dynamics in sputum samples (3). TB treatment strategy
involves long-term treatment with several drugs for at least six
months, which may increase the risk of MDR- and XDR-Mtb
emergence (4–6), which is attributed to residual bacteria that are
sheltered from or unresponsive to antibiotic treatment in
heterogenous mycobacterial populations in patients (3). Thus,
enhancing treatment success rate, shortening treatment
duration, and preventing MDR Mtb emergence are the most
critical factors for successful TB treatment. In this review, we
provide an understanding of the mechanism underlying the
generation of persistent mycobacteria in heterogeneous
mycobacteria populations under immune- or drug-induced
stress and discuss the effects of anti-TB drugs on host immune
responses as opposed to their effects on Mtb. This review
provides insights that may contribute to the development of
host immune-mediated therapeutic strategies to eliminate
persistent mycobacteria more effectively, thereby enhancing
treatment success and preventing the development of MDR-TB.
MYCOBACTERIAL PERSISTERS ADAPT
TO STRESSES IN THE HOST AND EXHIBIT
ANTIBIOTIC TOLERANCE

Antibiotic Tolerance
Host-related stresses, such as hypoxia, acidic conditions, nutrient
starvation, oxidative stress, and cytokine responses, alter the
metabolic state of pathogens and eventually induces a drug-
tolerant phenotype termed “persister” (7–10). These persister
cells can maintain an unreplicated status and simultaneously
Abbreviations: AhR, aryl hydrocarbon receptor; AMPK, AMP-activated kinase;
ARE, antioxidant response element; ARNT, AhR nuclear translocator; ESAT-6,
early secretory antigenic target-6; HMG-CoA, b-Hydroxy b-methylglutaryl-CoA;
NFkB, nuclear factor kappa B; HO-1, hemeoxygenase-1; ICL, isocitrate lyase; ILIs,
intracellular lipophilic inclusions; MIC, minimum inhibitory concentration; Mtb,
M. tuberculosis; mTOR, mechanistic target of rapamycin; Nrf2-Keap1, NF-E2-
related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1; Pht, phthiochol;
ppGpp, guanosine pentaphosphate; TA, toxin–antitoxin; TAG, triacylglycerol;
TCA, tricarboxylic acid; RNS, reactive nitrogen species; ROS, reactive
oxygen species.
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survive antibiotic treatment. After cessation of anti-TB therapy,
the surviving persisters revive their metabolism for replication,
subsequently causing a relapse. Thus, antibiotic-tolerant
persisters are considered surviving bacteria that did not
undergo genetic mutations even after long-term antibiotic
treatment (11). Although antibiotic tolerance and antibiotic
resistance share common characteristics, they differ in several
aspects (12, 13). Antibiotic resistance is generally inheritable and
occurs in a drug-specific manner, while antibiotic tolerance is not
inheritable and functions broadly. Antibiotic resistance is
accompanied by an increase in minimum inhibitory
concentration (MIC) of drugs, while antibiotic-tolerant and
susceptible subpopulations show identical MIC (13). Tolerance
refers only to bactericidal antibiotics and not to bacteriostatic
antibiotics, unlike resistance (12).

The mechanism of antibiotic tolerance through the formation
of persisters in response to a variety of stresses, including nutrient
deprivation, oxidative stress, acidic environment, osmotic
conditions, and host immune-mediated stresses, has been
described in many pathogenic bacteria, including Escherichia
coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Mtb
(14–18). Several mechanisms underlying the generation of
persisters in response to the stresses have been identified; these
include metabolic regulation, such as toxin–antitoxin (TA)
systems, stringent and SOS responses, and biofilm formation
(19–24). Understanding the mechanisms of persister formation
under various stresses and developing therapeutic strategies
specifically targeting the mechanisms related to antibiotic
tolerance are expected to contribute to TB control. Therefore,
here, we review the detailed mechanism of persister formation
induced by host-mediated stress in Mtb and its effect on
antibiotic tolerance.

Mtb Adapts to Host-Mediated Stresses
Through Metabolic Regulation
Regulation of Transcription Factors
Mtb encounters various stresses, such as acidic pH, oxidative
stress, hypoxia, nutrient deprivation, and cytokine-mediated
effectors, during infection. On detecting such a stressful
environment, Mtb reprograms its metabolism, at the
transcriptional level, to survive in the niche (25, 26). Bacteria
combat environmental stress to induce changes in antibiotic
resistance and toxicity through two-component systems (TCSs),
consisting of a sensor histidine kinase and a modulator of
cytoplasmic response integrated into the inner membrane, as a
stress recognition and response system (27, 28). To date, 12
complete TCSs have been identified in Mtb, of which PhoPR,
PrrAB, MprAB, NarL, and TcrXY are involved in response to
stresses, including pH, macrophage infection, detergents, hypoxia,
low iron levels, and starvation (27).

The phoPR TCS may be a critical factor for adaptation to a
low pH environment (27). When PhoP detects low pH, it
activates the transcriptional regulator whiB3, regulates the
expression of pH-responsive gene clusters (aprABC, icl, pks2,
pks3, pks4, and lipF), and is involved in the survival of Mtb in
macrophages (29–33) (Figure 1). Indeed, phoP deletion mutants
exhibit growth defects in murine bone marrow-derived
June 2021 | Volume 12 | Article 703060
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macrophages (BMDMs) as well as attenuated virulence with
reduced bacterial burden in the lungs, liver, and spleen of a
mouse Mtb infection model (34). Interestingly, transcriptional
analyses revealed an overlapping of the repressed genes in H37Ra
and phoP knockout mutant of H37Rv (35). Moreover, the
incorporation of intact phoP into the H37Ra genome increased
the bacterial persistence in murine BMDMs (35). In another study,
the phoP mutant Mtb strain showed considerable attenuation in
severe combined immunodeficient mice compared to the parental
and BCG strains (32). Moreover, the Mtb phoP deletion mutant
strain conferred protective anti-TB immunity in mouse and
guinea pig models, indicating its potential as a live vaccine
candidate (32). Liu et al. demonstrated that the expression of
five regulons, DosR, MprA, PhoP, Rv1404, and Rv3058c, is
responsible for the antibiotic tolerance of Mtb; these five
regulons controlled the expression of over 50% of the
upregulated genes after treatment with different anti-TB drugs,
and their (DosR, PhoP, and MprA) deletion reduced drug
tolerance under stress conditions (36).

Stringent Response
The stringent response is a conserved global signaling system that
promotes bacterial survival in various environments, such as
nutrient deprivation and other stresses (37). Particularly,
stringent responses have been reportedly caused by amino acids,
carbon, nitrogen, or phosphorus starvation, as well as UV
exposure and fatty acid depletion (37). The stringent response is
mediated by the hyperphosphorylated guanine nucleotides ppGpp
Frontiers in Immunology | www.frontiersin.org 3
and pppGpp, collectively referred to as [(p)ppGpp], and inorganic
polyphosphate [poly(P)], and the synthesized signaling molecules
regulate bacterial transcriptional changes under various stress
conditions (38, 39). In Mtb, (p)ppGpp synthesis is induced by
nutrient deprivation, long-term culture, and chronic infection in
animal models, and it has been reported to be necessary for Mtb
survival (37, 40, 41). Two proteins, RelA and SpoT, responsible for
the synthesis of (p)ppGpp in gram-negative bacteria, have been
identified, but many gram-positive bacteria, including
mycobacteria, have only one protein (Rel) homologous to both
RelA and SpoT (37). Accumulation of (p)ppGpp synthesized by
Rel-Mtb and the transcription factor CarD in hostile
environments, such as nutrient deficiency and oxidative stress,
leads to transcription and translation of stress-responsive genes in
Mtb (37) (Figure 1).

The protein Rel-Mtb modulates the intracellular (p)ppGpp
content by regulating its synthesis and hydrolysis via an N-
terminal hydrolase and synthetase domain (42). Nutrient
starvation induces upregulation of Rv2583c (Rel-Mtb) that
subsequently promotes the production of intracellular (p)ppGpp
in Mtb (37). Rel-Mtb deletion mutant showed a growth defect in
liquid media, and the disrupted growth rate was restored when
citrate or phospholipid was used as the sole carbon source in vitro
(37). A disrupted growth rate can induce antibiotic tolerance to
drugs that kill actively growing cells. Recently, Dutta et al. showed
that Rel-Mtb deficiency induces disruption of antibiotic tolerance
under stress conditions, increasing susceptibility to INH (43).
They reported that the nutrient-starved Rel-Mtb mutants
FIGURE 1 | General mechanisms for the establishment of antibiotic tolerance in Mycobacterium tuberculosis. Under host-mediated stresses, M. tuberculosis (Mtb)
adapts to stress conditions via several mechanisms. Under acidic pH, the phoPR two-component system activates transcriptional regulator whiB3 that promotes
suppression of the TCA cycle, activation of glyoxylate bypass, and transient upregulation of efflux pump activity. Activation of glyoxylate bypass is mediated by
isocitrate lyase that converts isocitrate to glyoxylate under stress conditions. Nutrient starvation induces several changes in Mtb metabolism. Nutrient starvation also
suppresses the TCA cycle and activates glyoxylate bypass, thereby enhancing the accumulation of triacylglycerol (TAG). The accumulated TAG is stored in the form
of intracellular lipophilic inclusions (ILIs). The stored ILIs are used as an energy source in the persistence state. Additionally, the limitation of amino acids, phosphate,
fatty acids, carbon, iron, and osmotic shock induces activation of stringent response through the production of ppGpp by Rel-Mtb. Production of ppGpp activates
the expression of stress-response genes that causes a metabolic slowdown. Oxidative stress induces the activation of the TA system. Degradation of antitoxin
occurs, and toxin degrades the transcript of log-phase genes. Further, upregulation of stress-response genes occurs, facilitating adaptation to stress conditions.
Collectively, the adaptation of Mtb to stress conditions leads to metabolic modulation that results in antibiotic tolerance.
June 2021 | Volume 12 | Article 703060
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showed similar metabolic activity as wild type bacteria growing in
nutrient-rich conditions (43). Disruption of Rel-Mtb induced
increased susceptibility to INH in vitro nutrient starvation and
BALB/c mouse models (43). Furthermore, they discovered a Rel-
Mtb inhibitor through pharmaceutical library screening that
showed a direct cytotoxic effect on antibiotic-tolerant Mtb and
synergetic effect with INH activity (43). In Mtb, the polyphosphate
kinase PPK1 is responsible for poly(P) synthesis, and the
exopolyphosphatases, PPX1 and PPX2, and PPK2 are
responsible for poly(P) hydrolysis, thereby regulating cellular
poly(P) homeostasis (39). The ppx1 or ppk2 deletion mutant
strains showed low glycerol-3-phosphate (G3P) and 1-deoxy-
xylulose-5-phosphate expression levels in bacterial cells,
suggesting downregulated G3P synthesis pathway (39). As a
result, the ppk2 and ppx1 deletion mutant increased
susceptibility to plumbagin and meropenem, and clofazimine,
respectively (39). Similarly, the ppk1 deletion mutants showed
increased susceptibility to INH, levofloxacin, and RIF (44). These
results suggest that (p)ppGpp and poly(P) synthesis and their
modulators play important roles in the development of antibiotic
resistance in vivo.

Metabolic Modulation
Numerous acid-inducible genes induce a carbon metabolism
shift for microbial persistence in the host macrophages. One
such acid-inducible gene encodes isocitrate lyase that converts
isocitrate to succinate and glyoxylate (45). Moreover, malate
synthase catalyzes malate formation by the addition of acetyl-
CoA to glyoxylate (45). Overexpression of isocitrate lyase causes
the activation of the glyoxylate shunt, subsequently inducing
metabolic shifting; pyruvate, succinate, fumarate, and malate
levels were increased while the a-ketoglutarate level was
decreased in macrophage infection and low pH culture model
(46). The limitation of a-ketoglutarate-derived amino acids and
oxaloacetate by glyoxylate shunt activation slows bacterial cell
growth and metabolic activity (46). Antibiotics can induce
growth and metabolic activity arrest in rapidly growing cells.
For example, the antimicrobial effect of INH depends on INH
conversion to isonicotinoyl by the catalase-peroxidase katG (3).
Converted isonicotinoyl binds NAD+ to make isonicotinoyl-
NAD that inhibits mycolic acid synthesis, a bacterial cell wall
component, subsequently interfering with mycobacterial cell wall
integrity (3). Thus, reduced need for cell wall synthesis due to
arrested growth and metabolic activity due to acidic stress
induces tolerance to INH (3). RIF kills metabolically active
cells by binding to RNA polymerase subunit B and interfering
with transcription; RIF resistance is usually acquired through
mutation in rpoB that encodes RNA polymerase B protein (47).
However, transient antibiotic tolerance has also been reported in
previous studies (48–50). In response to environmental stress,
Mtb translates a mutated form of RNA polymerase with a lower
affinity to RIF, thereby facilitating the acquisition of transient
antibiotic tolerance during antibiotic treatment (50).
Collectively, growing evidence suggests that metabolically
arrested states induce antibiotic tolerance that prevents the
complete sterilization of pathogens. Therefore, to eradicate the
antibiotic-tolerant bacterial population, a treatment strategy that
Frontiers in Immunology | www.frontiersin.org 4
reactivates the metabolically arrested bacterial population is
needed (Figure 1).

Modulation of Lipid Metabolism
Several host immune-mediated stresses induce intracellular
triacylglycerol (TAG) droplet accumulation in Mtb by TAG
synthase activity. For example, TAG synthase upregulation was
confirmed in multiple-stress conditions, such as hypoxia, low
pH, and low iron (51–54). Accelerated TAG synthesis induces a
reduction in TCA flux and subsequently enhances the survival of
Mtb in the presence of antibiotics, such as INH, streptomycin,
ciprofloxacin, and ethambutol (EMB) (54). Interestingly,
antibiotic tolerance due to TAG accumulation can be reversed
by modulating carbon fluxes with complete inhibition of TAG
synthase in vitro and in vivo (54). Furthermore, tgs1 deletion
mutants continue to grow under stress conditions while wild
type strain stops replicating (54). Kapoor et al. developed an in
vitro model of human granuloma for pulmonary tuberculosis
and discovered unique characteristics of Mtb within the granuloma;
Mtb showed dormant phenotypes, including the loss of acid-
fastness, accumulation of lipid droplet, transcriptional change of
lipid metabolism genes, and tolerance to RIF (51). Moreover,
treatment with anti-tumor necrosis factor-alpha (TNF-a)
monoclonal antibodies induced resuscitation of Mtb as previously
described in human TB (51). Similarly, a multiple-stress model that
included low oxygen, high CO2, low nutrient, and acidic pH showed
arrested growth, acid-fastness loss, TAG, and wax ester
accumulation, along with the rise in antibiotic tolerance to INH
and RIF in Mtb (52). Interestingly, antibiotic tolerance was
diminished in the tgs1 deletion mutant and restored with the
addition of complementation. Furthermore, transcriptome
analysis using microarray revealed the achievement of the
dormant state showing repression of energy generation,
transcription and translation machinery, and induction of stress-
responsive genes (52). Recently, Santucci et al. identified the
mechanism of TAG accumulation to involve intracytoplasmic
lipid inclusions (ILI) induced by carbon excess and nitrogen
starvation in M. smegmatis and M. abscessus (53). They also
identified tgs1-mediated TAG formation and lipolytic enzyme-
mediated TAG breakdown mechanisms. Moreover, they
discovered that emergence of antibiotic tolerance against RIF and
INH induced by low nitrogen and high ILI environment as
previously described (53). Taken together, the importance of TAG
synthesis in antibiotic tolerance of Mtb suggests the potential of
lipid metabolism-related proteins, such as triacylglycerol synthase
and fatty-acyl-CoA reductase, as therapeutic targets for abolishing
antibiotic tolerance.

Toxin–Antitoxin (TA) System
The TA system comprises a stable toxin that interferes with
indispensable cellular metabolism and an unstable antitoxin that
blocks the toxin activity during persister formation (55, 56). The
TA systems are generally divided into seven classes depending on
their mechanism (57). In detail, type I and III antitoxin include
an RNA antitoxin that interferes with translocation of the toxin
as an antisense RNA (type I) or binding to toxin protein to
neutralize the toxin activity (type III). Type II antitoxins are
June 2021 | Volume 12 | Article 703060
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proteins that interfere with the toxins by direct binding to the
toxin protein. Type IV antitoxins inhibit toxin activity by
attaching to the toxin target, while type V antitoxins degrade
the toxin mRNA target directly. Type VI antitoxins bind to the
toxin; they do not directly degrade the toxin itself but promote its
degradation by ClpXP (56). In the type VII TA system, antitoxin
acts as an enzyme for the chemical modification of the toxin and
subsequently neutralizes the toxin (57). As a representative
example, in the HipBA toxin/antitoxin module, HipA is a
toxin that inhibits cell growth and induces persister formation,
while HipB is an antitoxin that binds to HipA and acts as a
transcription inhibitor of the hipBA operon. In particular, high
HipA expression leads to multidrug resistance in E. coli (55).
Characteristically, Mtb has many TA system-related loci in its
genome, and at least 88 TAs have been identified (58). According
to Keren et al., 10 TA modules were overexpressed in Mtb
persister cells, suggesting that the TA system not only
contributes to Mtb virulence but also the formation of bacterial
persister cells (8). Further, Torrey et al. revealed that multiple
pathways such as lipid biosynthesis, carbon metabolism, TA
systems, and transcriptional regulators are involved in Mtb
persister formation using transcriptional analysis and whole-
genome sequencing of Mtb hip mutant (59). Notably, most of the
identified Mtb TA systems were Type II, and these include
VapBC, MazEF, YefM/YoeB, RelBE, HigBA, and ParDE (60).

Notably, the VapBC TA family is the most abundant type of
TA system encoded by Mtb (60). Several studies have
demonstrated that host-mediated stress, such as hypoxia and
activated macrophages, induces transcriptional activation of
multiple VapBC TA loci (61–63). Hudock et al. identified the
transcriptional profile from granuloma samples of active and
latent TB patients; the expression of eight dosR regulon members
(Rv0080, Rv0081, Rv1736c, Rv1737c, Rv2032, Rv2625c, and
Rv2630) along with the induction of four pairs of toxin/antitoxin
(vapBC19, vapBC21, vapBC33, and vapBC34) were observed within
the granulomas of active and latent TB patients (61). Sharma et al.
demonstrated that VapC21 overexpression hinders mycobacterial
growth, and co-expression of antitoxin VapB21 reverses this effect
(62). Moreover, VapC21 overexpression mutant and Mtb cultured
in stress conditions, such as nutrient deprivation and hypoxia,
exhibited similar transcriptional profiles (62). Furthermore,
VapC21 overexpression resulted in upregulated WhiB7 regulon,
inducing antibiotic tolerance to aminoglycosides and EMB (62).
Talwar et al. identified the role of VapBC12 TA in persister
formation under cholesterol-rich conditions; VapC12 RNase toxin
targets proT transcript that is indispensable for Mtb growth
regulation in a cholesterol-rich environment (63). Therefore, the
expression of VapC12 RNase toxin induced the generation of a
slow-growing population, and this phenotype occurrence was
increased in the presence of cholesterol (63). Interestingly, co-
expressing of antitoxin vapB12 disrupted the vapC12-induced
phenotype, while vapC12 deletion enhanced the immunopathologic
severity and lung bacterial burden compared with the wild type strain
(63). Recently, Yu et al. demonstrated a phosphorylation-dependent
TA system inMtb (58). Specifically, phosphorylation of TgITbyTakA
induces toxicity neutralization and allows bacterial growth (58).
Frontiers in Immunology | www.frontiersin.org 5
In stressful conditions, TgIT activation via dephosphorylation
promotes bacterial growth inhibition, leading to a non-replicating
but viable state (58).

SOS Response
Various host-mediated stresses, such as reactive oxygen and
nitrogen species, result in DNA damage and subsequently
induce a DNA repair mechanism called SOS response (64). The
SOS response is controlled by two regulator proteins, RecA and
LexA. RecA recognizes damaged single-stranded DNA and
induces the proteolysis of LexA repressor leading to the
activation of SOS genes (64). Völzing and Brynildsen discovered
that DNA repair was essential for the survival of ofloxacin-induced
persisters and that delayed DNA repair occurred after ofloxacin
treatment (65). Another study indicated that the timing of DNA
repair was a key factor for the complete recovery of persisters after
ofloxacin treatment. Additionally, nutrient starvation increased
the survival rate of E. coli to approximately 100%, following
ofloxacin treatment (66). These results indicate that changes in
post-antibiotic treatment recovery time are critical to the
formation of persister and support the notion that interference
of DNA damage repair systems could be an effective strategy to
eradicate the persister population.

Previous studies showed that stress-response regulons,
including SOS response genes, were upregulated in Mtb
persisters (8, 67). In mycobacteria, the DNA damage repair
system comprises LexA-mediated and ClpR factor-mediated
mechanisms (67). Further, DnaE2 polymerase, induced by ROS
and NOS produced in the host immune response, contributes to
mutations during the DNA repair process (68). Recently,
inhibition of DNA gyrase by fluoroquinolone was found to
modulate Mtb growth in intracellular and extracellular
environments (69). Interestingly, inhibition of DNA gyrase
contributes to the drug tolerance via RecA/LexA-mediated SOS
response (69). Choudhary et al. demonstrated that DNA gyrase
knockdown Mtb mutant showed decreased drug susceptibility to
RIF 24 and 48 h post-treatment, and a similar pattern was
observed following INH and EMB treatment (69). Taken
together, these findings indicate that changes in post-antibiotic
treatment recovery time are critical to the formation of persisters
and support the notion that interference by DNA damage
repair systems could be an effective strategy to eradicate the
persister population.

Mtb Biofilm Formation Contributes
to Antibiotic Tolerance
Biofilm is a three-dimensionally organized multicellular bacterial
community that grows on surfaces in vitro and in vivo (70).
Biofilm induces persistent bacterial infection by protecting
bacteria from antibiotics (71). Therefore, the formation of
biofilms has been closely linked to antibiotic tolerance in
various bacterial pathogens, including E. coli, S. aureus,
P. aeruginosa, and Mtb (72–76). Host-mediated stress
conditions, such as prolonged hypoxia, oxidative stress, and
nutrient starvation, induce biofilm formation leading to the
development of antibiotic tolerance (77–81).
June 2021 | Volume 12 | Article 703060
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Ackart et al. showed that human leukocyte lysis enhanced
biofilm formation, subsequently inducing antibiotic tolerance to
several anti-TB drugs, such as INH, RIF, and pyrazinamide
(PZA) (77). Interestingly, treatment with DNase I or tween
scattered the established biofilm. It reversed the antibiotic
tolerance, indicating that biofilm formation induced by host-
mediated stress provides antibiotic tolerance that leads to
persistent infection, and targeting the biofilm enhances drug
sensitivity in Mtb (77). Another study induced Mtb biofilm
formation in vitro through thiol reductive stress (TRS),
resulting in drug-tolerant (INH, RIF, and EMB) phenotypes in
which metabolic activity was maintained with the same levels of
ATP/ADP, NAD+/NADH, and NADP+/NADPH (78).
Furthermore, the TRS-induced biofilm formation was not
interrupted by cell wall biosynthesis inhibitor antibiotics (INH
and ETB), while DNA synthesis (levofloxacin and ofloxacin),
RNA transcription (RIF), and protein synthesis (tetracycline)
inhibitors disrupted its formation (78). Recently, Richards et al.
identified several indispensable genes for Mtb adaptation during
biofilm formation induced by host-mediated stresses, but not in
dispersed culture using detergent (79). They observed that the
formation of biofilm enhances the enrichment of antibiotic-
tolerant cells and subsequently inducing RIF tolerance.
Importantly, they established that isonitrile lipopeptide is
essential for the structural formation of Mtb biofilm under
stress conditions (79). In another study, modulation of
trehalose metabolism was observed in antibiotic-tolerant Mtb
population isolated from a biofilm; antibiotic-tolerant Mtb utilize
trehalose to synthesize central carbon metabolism intermediates
required to sustain mandatory cellular functions, whereas
planktonic cells use cell-surface glycolipids (81). Moreover,
drug-susceptible and MDR Mtb showed similar alteration after
antibiotic therapy, suggesting the role of trehalose in both
transient and permanent antibiotic tolerance (81). Tripathi
et al. showed that ClpB is essential for Mtb survival under
host-mediated stress conditions; they demonstrated that ClpB
is required for bacterial survival during hypoxia and nutrient
starvation (80). The clpB deletion mutant showed abnormal
cellular morphology, disrupted biofilm formation, and reduced
rate of intracellular survival in THP-1 cells (80). In addition, they
showed that ClpB induces the secretion of inflammatory
cytokines, such as TNF-a and IL-6, controlled by MAPK and
NF-kB pathways (80). Taken together, various virulence factors
involved in Mtb biofilm formation may be a potential novel drug
target for the elimination of drug-tolerant bacteria.
ANTIBIOTICS CAN AFFECT HOST
IMMUNITY AND INFLUENCE
CLINICAL OUTCOMES

Host Metabolic Changes Induced
by Antibiotics
Antibiotic activities against bacterial pathogens have
traditionally been considered only in terms of their direct
killing effects (82). However, growing evidence indicates
Frontiers in Immunology | www.frontiersin.org 6
indirect effects of antibiotics through interaction with host
innate immunity that can alter clinical outcomes (83–85).
Yang et al. identified antibiotic-induced host metabolic changes
during infection and found that antibiotic treatment directly
induced the host cells to produce metabolites that reduce drug
efficacy and amplify phagocytic killing (86). After ciprofloxacin
treatment, the systemic alteration of metabolites was confirmed
in mouse tissues, including the peritoneum, plasma, and lungs.
On the contrary, E. coli infection induced local changes in the
peritoneum alone, not in the plasma or lungs (86). Further, most
of the antibiotic-induced metabolic changes were not reliant on
the intestinal microbiome and were most likely caused by the
direct action of antibiotics on local host cells (86).

Above all, advanced host types of machinery protect cells by
detecting and preventing damage due to intrinsic and exogenous
inferior substances, such as oxidative stress and toxins (87).
These apparatuses are partially responsible for microbial
pathogenesis by detecting endogenous factors induced by Mtb
infection or exogenous Mtb factors; however, they are
responsible for detecting and detoxifying anti-TB drugs or
drug-induced endogenous factors (88). These apparatuses may
belong to the NRF2-KEAP1 and aryl hydrocarbon receptor
(AhR) signaling pathways, whose dual action may be a double-
edged sword in Mtb infection. This section evaluates the effect of
such a system on Mtb infection and anti-TB treatment.

Keap1-Nrf2 Signaling Pathway
The Keap1-Nrf2 regulatory pathway is a key mechanism for
preventing cell damage by detecting intrinsic and exogenous
stresses, such as oxidative stress, chemotherapy, and radiation,
regulating gene expression to modulate various subsequent
antioxidant functions (87). Nrf2 is bound to the inhibitory
protein Keap1 in the cytoplasm. When a stressor is detected,
the Nrf2 protein is separated from Keap1, causing its cytoplasmic
accumulation. Thereafter, it translocates to the cell nucleus,
where it acts as a transcription factor, binds to the antioxidant
reaction factor (ARE), and then binds to the antioxidant-related
genes [e.g., hemeoxygenase-1 (HO-1), NAD(P)H:quinone redox
enzyme-1 (NQO1), glutathione S-transferase (GST)] to promote
their transcriptional expression (Figure 2) (87). Mtb factors,
such as ESAT-6, can induce oxidative damage and apoptosis,
counteracted by upregulating antioxidant enzymes via activation
of the Keap1-Nrf2 signaling cascade (88, 89). Recent studies have
shown that the antioxidant factor expressed by activation of the
Keap1-Nrf2 system protects cells by removing infection and damage
caused by drugs; however, it also inhibits T cell activation and rather
hinders the removal of Mtb. Representatively, HO-1 is a cellular
antioxidant enzyme expressed in response to various stress
conditions, such as exposure to heavy metals, heat shock,
hypoxia, starvation, and immune activation (90–95). HO-1 is the
rate-limiting enzyme that degrades heme molecules into free iron,
biliverdin, and carbon monoxide (CO) (96). Free iron inhibits nitric
oxide (NO) production by acting on inducible NO synthase (iNOS)
and, thereby, could improve the survival of intracellular Mtb.

In addition, bactericidal antibiotics cause mitochondrial
dysfunction and oxidative damage in mammalian cells (97). A
dose- and time-dependent upregulation of intracellular ROS
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production was confirmed in different human cell lines after
treatment with bactericidal antibiotics (ciprofloxacin, ampicillin,
and kanamycin) belonging to different classes. Moreover,
mitochondrial potential, ATP levels, and metabolic activity
were considerably decreased after this treatment, suggesting
impairment of mitochondrial function (97). Furthermore,
treating human sinonasal epithelial cells with the bactericidal
antibiotics, amoxicillin and levofloxacin, leads to increased ROS
production, antioxidant gene expression, and cell death (98).

Bactericidal anti-TB drugs, such as RIF, INH, and PZA, can
similarly cause mitochondrial dysfunction and oxidative damage
in host cells, leading to apoptosis, in addition to their effect on
Mtb. Simultaneously, antioxidant mechanisms, such as the
Keap1-Nrf2 signaling pathway, may interfere with the removal
of Mtb. Interestingly, ROS-mediated damage induced by
antibiotics could be rescued by N-acetyl-l-cysteine (NAC)
without affecting the antibiotic’s killing ability (97). In
addition, an HO-1 inhibitor showed the same effect in the
lungs of Mtb-infected mice as anti-TB drugs (99). Thus, the
long-term use of bactericidal anti-TB drugs can induce cell death
Frontiers in Immunology | www.frontiersin.org 7
due to ROS production and mitochondrial dysfunction, while
simultaneously, the produced ROS act as antioxidants and
interfere with the removal of Mtb. These ambivalences need to
be more clearly elucidated with respect to the pathogenesis of
Mtb. The aforementioned adjuvant treatments are described in
detail in section 4.

AhR Signaling Pathway
The AhR is a transcription factor that detects both endogenous
and exogenous ligands (100). Initially, AhR function was
associated with the detoxification of heterologous ligands, such
as benzo[a]pyrene and the highly toxic 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD); subsequently, endogenous molecules, such as
tryptophan (Trp), kynurenine, or formindolo [3,2-b] carbazole
(FICZ), dietary components, and bacterial-derived ligands, were
identified as AhR ligands, broadening the understanding of their
function (100).

Particularly, bacterial pigment proteins such as phenazine
produced by P. aeruginosa and 1,4-naphthoquinone phthiochol
(Pht) produced by Mtb have been identified as bacterial-derived
FIGURE 2 | AhR modulation by anti-TB drugs and downstream events. NRF2-KEAP1 signaling and AhR signaling pathways generally protect cells by detecting and
preventing damage to endogenous and exogenous substances such as oxidative stress and toxins. They can also detect M. tuberculosis (Mtb) infection or anti-TB
drugs and affect host defense and drug metabolism. 1,4-naphthoquinone phthiochol (Pht) produced by Mtb and anti-TB drugs can attach to AhR present in the
cytoplasm across the cell membrane. The combined ligand and receptor complex transfers into the nucleus and heterodimerizes with AhR nuclear translocator
(ARNT). The ligand, receptor, and ARNT complex binds to xenobiotic response elements (XRE) that are specific DNA sequences found in the target gene promoter
region. Activation of the AhR by Pht and anti-TB drugs (e.g., rifabutin, bedaquiline) in macrophages induces impaired phagocytosis of Mtb H37Rv, and phagosome
acidification, and production of pro-inflammatory cytokines. Furthermore, activation of AhR facilitates the hepatic metabolism of drugs, ultimately reducing drug
availability. Meanwhile, some drugs (e.g., rifampicin) act as AhR inhibitors, inducing impairment of phagocytosis and phagosome acidification, consequently improving
the intracellular survival of Mtb in macrophage and zebrafish models. On the other hand, Mtb ESAT-6 and anti-tuberculosis drugs (e.g., isoniazid, rifampicin,
pyrazinamide) act on Nrf2-Keap1 signaling to induce the translocation of Nrf2 to the nucleus by degradation of Keap-1. The translocated Nrf2 binds to the
antioxidant response element (ARE) and upregulates antioxidant enzymes. Production of hemeoxygenase-1 (HO-1), a representative antioxidant enzyme, is activated,
which subsequently induces catabolism of heme to biliverdin, CO, and Fe2+. Elevated Fe2+ inhibits the production of nitric oxide from L-arginine mediated by IFN-g
signaling. Thus, activation of heme catabolism by HO-1 induces the reduction of intracellular bacterial killing. Taken together, activation of AhR signaling and HO-1
production induces a pathogen-beneficial effect that enables persistent infection.
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AhR ligands (101). AhR is widely expressed in almost all cell
types; in particular, both innate and adaptive immune cells
express AhR, suggesting its potential broad-range effects on
host immunity (102). AhR is present in the cytoplasm and is
activated upon binding to a ligand. Activated AhR binds to the
AhR nuclear translocator (ARNT) and regulates the transcription
of several target genes, including cytochrome P450
monooxygenases (CYP1A1 and CYP1B1), AhR inhibitor, and
pro-inflammatory cytokines (102) (Figure 2).

Ligand-activated AhR translocates to the nucleus from the
cytosol and induces immunosuppressive or pro-inflammatory
downstream effects depending on the ligand property (102).
Further, AhR can modulate macrophage immune response.
Shinde et al. showed that phagocytosis of apoptotic cells
through toll-like receptor (TLR)9-dependent sensing of the
apoptotic cell DNA induces the activation of the AhR
pathway (103).

The ligand-activated AhR binds to TB virulence factors and
regulates antibacterial responses (104). Puyskens et al. demonstrated
that anti-TB drugs, such as RIF and rifabutin bind to AhR and
induce modulation of host immune response (104). However, AhR
signaling inhibition by a synthetic AhR inhibitor, CH-223191,
impairs phagocytosis in THP-1 macrophages. Further, they
demonstrated that the rate of internalized zymosan was decreased
following RIF treatment, while phagosome acidification was also
impaired after RIF as well as CH-223191 treatment (104). In
addition to this in vitro study, they confirmed AhR modulation
during M. marinum infection in a zebrafish model; a higher
bacterial burden was observed in zebrafish embryo following AhR
inhibition with CH-223191 than in the untreated control group
(104). Similarly, Moura-Alves et al. demonstrated significantly
increased bacterial burden in the lungs, liver, and spleen of AhR-/-

mice than wild type mice after aerosol Mtb infection (101).
Moreover, the production of pro-inflammatory cytokines, such as
TNF-a, IL-12p40, and IL-6, were hindered in AhR-/- bone marrow-
derived macrophages (101). Furthermore, Memari et al.
demonstrated that AhR induced expression of IL-23 and IL-1b,
thereby stimulating the production of IL-17 and 22 by specific T cell
subsets (Th17, Th22, and ILC3 cells) (105). Upregulation of IL-17
activates parenchymal cells and subsequently induces an influx of
polymorphonuclear cells to the infection site mediated by CXCL1,
CXCL3, and CXCL5 (106). Further, phagocytosis of apoptotic
polymorphonuclear cells by macrophages promotes a phenotypic
change of macrophage from M0 to M2c, thereby contributing to
inflammation resolution (106).

Modulation of Host Immunity
by Anti-TB Drugs
Antibiotics can modulate host immunity either indirectly or
directly (107). First, antibiotics alter the host immune system
indirectly by affecting the host microbiota composition (108).
Second, antibiotics affect the host immune system directly by
altering the functions of immune cells (86, 97, 109). Therefore, the
interaction between antibiotics and host immunity may influence
the clinical outcomes or treatment duration. Several studies have
reported the modulation of host immune response by anti-TB
drugs. For example, INH induces the apoptosis of activated CD4+
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T cells in Mtb-infected mice (110) as well as impairs the
production of Mtb-specific interferon (IFN)-g and anti-CFP10
antibody in household contacts of latent TB patients (111).
Similarly, RIF reportedly exerts a mild immunosuppression
effect, as indicated by its inhibition of human lymphocytes (112)
and significant suppression of T cells compared to that in TB
patients without RIF treatment (113). Moreover, RIF partially
suppressed the phagocytosis of zymosan by macrophages and
moderately suppressed the expression of TNF-a at high doses
(114). it was reported to significantly inhibit the secretion of IL-1b
and TNF-a while increasing the secretion of IL-6 and IL-10 (115).
Furthermore, RIF suppressed LPS-induced production of iNOs,
cyclooxygenase-2, IL-1b, TNF-a, and prostaglandin E2 in
microglial cells, subsequently improving neuron survival (116).
Manca et al. demonstrated that PZA treatment reduces the
secretion of pro-inflammatory cytokines and chemokines, such
as IL-1b, IL-6, TNF-a, and MCP-1, in Mtb-infected human
monocytes and mice (117). Additionally, PZA treatment
elevated the expression of adenylate cyclase and peroxisome-
proliferator activated receptor in the lungs of Mtb-infected
mice (117).

Bedaquiline (BDQ) specifically disrupts intracellular ATP
production in bacteria by inhibiting the activity of bacterial
ATP synthase, resulting in depleted energy production (118,
119). Recently, a genome-wide transcriptional analysis
demonstrated that BDQ promotes the formation of lysosomes,
phagocytic vesicle membrane, vacuolar lumen, hydrolase
activity, and lipid homeostasis in naïve and Mtb-infected
macrophages (120). Moreover, it suppressed basal glycolysis,
reduced glycolytic capacity in heat-killed-Mtb-stimulated
macrophages, and triggered anti-mycobacterial mechanisms,
such as phagosome–lysosome fusion and autophagy (120).
Further, BDQ treatment induced the activation of the
lysosomal pathway through transcription factor EB and
calcium signaling. Interestingly, other classical anti-TB drugs,
such as amikacin, EMB, and INH, did not activate the lysosomal
pathway. Additionally, BDQ potentiated the anti-mycobacterial
activity of PZA but did not show synergistic effects with
bactericidal activities of EMB, INH, and RIF (120).

Clofazimine (CFZ) is a riminophenazine compound used for
the standard treatment of leprosy (121). In addition to its
antimicrobial activity, CFZ has an immune-modulatory activity;
CFZ forms biocrystal and modulates innate immune response
after phagocytosis as demonstrated by the intracellular CFZ
crystal-induced activation of the Akt pathway and enhancement
of IL-1RA production in RAW 264.7 cells (122). Moreover, CFZ
treatment inhibited TLR2-and TLR4-mediated NF-kB activation
and TNF-a production (122). Fukutomi et al. demonstrated that
CFZ induces apoptosis of macrophages; representative features of
apoptosis, such as decreased metabolic activity, diminished cell
size, nuclear condensation, and fragmentation, were observed in
CFZ-treated human monocyte-derived macrophages (123).
Further, caspase-3 activity was significantly increased in CFZ-
treated macrophages (123). Recently, Ahmad et al. showed that
BCG revaccination with CFZ treatment induces the differentiation
of the stem cell-like memory T (Tsm) cells in mice (124).
Differentiation of Tsm cells recovered long-lasting central
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memory T cells and T effector memory cells to provide enhanced
vaccine efficacy in mice (124).
ADJUNCTIVE HOST-DIRECTED
THERAPIES IMPROVE ANTI-TB
DRUG ACTIVITY

Anti-TB therapy involves the combination of several drugs and
has a long treatment duration of treatment, resulting in the
frequent occurrence of side effects (125, 126). Side effects range
from minor ones that disappear spontaneously to serious ones
that require treatment (126). The strategies for developing new
treatments to control Mtb can be divided into two broad
categories: developing novel efficient antibiotics and using
existing therapeutic drugs to achieve faster and more effective
treatments in a host-specific manner (127, 128). The development
of host-directed therapy maximizes treatment efficiency by using
the adjunct to elicit a response (127). Essentially, these treatments
do not directly target pathogens, thus avoiding the occurrence of
drug resistance and reducing drug side effects, thereby making this
a promising strategy (127). In this section, we have proposed
several such strategies, including various host targets that affect
Mtb susceptibility, and discussed the corresponding drugs and
their mechanisms of action. A summary of the proposed
adjunctive host-directed therapies that improving anti-TB drug
activity is presented in Table 1.

Autophagy-Modulating Drugs
Autophagy is an intracellular self-degradation system that
transfers cytoplasmic components or specific cytosolic targets
to the lysosome for cellular homeostasis maintenance (153).
Autophagy is induced by various stress conditions, such as
nutrient starvation, hypoxia, and microbial infection (153).
Furthermore, diverse pathophysiological conditions, such as
aging, autoimmune disease, neurodegeneration, cancer, and
inflammation-associated metabolic disorders, are involved in
autophagy (154). Autophagy is an essential part of the host
immune system against diverse intracellular pathogens, such as
Salmonella, Listeria monocytogenes, and Mtb, via the activation
of phagolysosome formation (155–157). Therefore, activating
autophagy is a promising strategy for eradicating Mtb, especially
in the case of MDR-TB.

Rapamycin
Rapamycin (RAP) is a potent antifungal agent produced by
Streptomyces hygroscopicus and is used to suppress transplant
rejection reactions due to its immunosuppressive property (158,
159). RAP also enhances the T helper 1-driven immune response
when co-administered with the BCG vaccine (129). Further,
RAP-loaded nanoparticles were efficiently phagocytosed by
THP-1 macrophages, significantly reducing the intracellular
Mtb load at a concentration of 100 mg/mL (130). In addition
to the in vitro results, Gupta et al. showed that inhaled RAP
particles reduced pulmonary Mtb loads as well as activated
autophagy and phagosome–lysosome fusion in a mouse model
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(131) (Figure 3). Another study showed that a low dose of RAP
(<10 mM) was sufficient to increase autophagy in RAW264.7
cells; however, intracellular mycobacteria killing was only
observed at a high concentration of RAP (10 mM) (160). In
contrast, Andersson et al. demonstrated that RAP facilitates the
increase of Mtb burden in both single and human
immunodeficiency virus (HIV) co-infected human monocyte-
derived macrophages (161). They suggested that autophagy
induction disrupts intracellular killing during a low dose
infection. However, they used HIV co-infected human
macrophages for their experiment that exhibit impaired
immunity and, therefore, are not suitable for investigating the
effect of RAP on autophagy.

Metformin
Metformin (MET) is the most commonly used medication for
diabetes and has been suggested as an adjunctive agent for host-
directed TB therapy (132). Singhal et al. discovered that the MET
disrupts the intracellular Mtb growth, reduces immunopathological
severity, and increases the efficacy of anti-TB drugs (132). In detail,
MET treatment reduced the bacterial load (in terms of CFU) 35
days post-infection in Mtb-infected mice (132). The combination
of MET and anti-TB drugs, such as INH and ethionamide,
significantly decreased lung Mtb load in the mouse model,
indicating synergism between MET and anti-TB drugs (132).
Additionally, reduction of lung tissue pathology was confirmed
in the MET-treated mice, and the number of lung CD8+ IFN-g+

cells was increased in MET-treated mice in both unstimulated and
Mtb-stimulated groups, suggesting an enhanced immune response
to TB (132). Similarly, the protective effect of MET was confirmed
in a chronically Mtb-infected guinea pig model in which reduced
lung legions and Mtb CFU were observed in the MET-treated
group compared to those in the untreated group (135). Further,
the MET-treated animals showed a higher proportion of
lymphocytes in the acute and subacute stages and well-
encapsulated granulomas (135). MET reportedly reduces the
immunopathological severity by reprogramming T cell
metabolism (162, 163). MET-induced oxidative phosphorylation
and glycolysis enhanced the host resistance to Mtb infection in the
guinea pig model (135). Moreover, Degner et al. demonstrated
that MET treatment reduces mortality during TB therapy in a
retrospective cohort study in Taiwan (133). Another study
reported that MET enhances anti-TB immune responses by
altering host responses in humans (134). Additionally, MET
induced a significant reduction in TNF-a, IL-1b, IL-6, IFN-g,
and IL-17 release in response to Mtb lysate (134). These studies
indicate that MET protects against Mtb infection via modulation
of inflammation andmetabolism (133–135). Indeed, MET reduces
the type I IFN response and pathological severity of TB while
enhancing anti-TB immunity, such as autophagy, ROS
production, and phagocytosis (132, 164, 165) (Figure 3). In
contrast, Dutta et al. showed that MET-treated mice had similar
lung Mtb CFU compared to control mice, and the percentage of
mice with Mtb culture relapse was similar between the two groups
(166). This result was contradictory to a previous in vivo study
that used the same MET dose (250 mg/kg) (132). The major
difference between the two studies is the co-injection of multiple
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TABLE 1 | Effect of TB representative adjunctive therapeutic agents of anti-TB drugs on host immunity.

Therapeutic
agent

Mechanism
of action

Role in TB Model Therapeutic effect or outcome References

Rapamycin Inhibits mTOR
complex

Enhances autophagy
and antigen
presentation

Mouse
(C57BL/6)

Increased Ag85B-specific T cell responses (129)

Macrophage
(THP-1)

Inhibition of Mtb growth (130)

Mouse
(BALB/c)

Reduced pathological lesion and
Mtb burden

(131)

Metformin Activates the
AMPK

Enhances autophagy
and reduces
inflammation

Mouse
(C57BL/6)

Reduced pathological lesion and enhanced Th1 immune
response

(132)

Clinical trial Decreased mortality during TB treatment in diabetes patients (133)
PBMCs Lowered TNF-a, IFN-g, and IL-1b

Increased phagocytosis and ROS production
(134)

Guinea pigs Decreased pathological severity (135)
Statins Inhibits HMG-

CoA reductase
Increase
intracellular
Ca2+

Enhancing autophagy
and phagosome
maturation

MDM Decreased intracellular Mtb survival
by statin monotherapy

(136)

Mouse
(C57BL/6)

Decreased intracellular Mtb survival
Decreased pathological severity

Macrophage (J774) Decreased intracellular Mtb survival (137)
Mouse
(BALB/c)

Enhanced bactericidal activity of anti-TB drugs

Macrophage (THP-1) Decreased intracellular Mtb survival (138)
Mouse
(BALB/c)

Decreased intracellular Mtb survival
Reduced TB relapse rates

PBMCs Decreased intracellular Mtb survival (139)
Macrophage
(THP-1)

Reduced Mtb growth (140)

Mouse
(C3HeB/FeJ)

Enhanced bactericidal activity of anti-TB drugs

NAC ROS
scavenging
Increase
intracellular
GSH

Reduces oxidative
stress/inflammation

Randomized clinical trial Reduction of anti-TB drug-induced hepatotoxicity (141)
Guinea pig Decreased intracellular Mtb survival

Decreased pathological severity
(142)

Macrophage
(THP-1)

Decreased intracellular Mtb survival (143)

Mouse
(C57BL/6)
(gp91Phox−/−)

Decreased intracellular Mtb survival
by NAC monotherapy

Randomized clinical trial Clearing of lung infiltration
Reduction of cavity size

(144)

Human granuloma Decreased intracellular Mtb survival
Formation of solid stable granuloma

(145)

Macrophage
(THP-1)

Synergistic effect on bactericidal activity of anti-TB drugs (146)

Randomized clinical trial in
TB/HIV co-infected
patients

No significant change between NAC-treated and non-treated
groups

(147)

In vitro NAC potentiates the activity of anti-TB drugs (148)
Macrophage
(THP-1/J774)

Reduced intracellular Mtb survival in THP1, but not in J774

Mouse
(CBA/J)

Co-treatment of NAC potentiates the activity of anti-TB drugs, but
disappeared at the later time point

Verapamil Inhibits the
calcium ion
channel

Inhibits the drug efflux
pump of Mtb

Mouse (C3HeB/FeJ) Co-treatment of verapamil with anti-TB drugs significantly lowered
lung bacterial loads and relapse rates compared to standard
therapy alone

(149)

Mouse
(BALB/c)

Co-treatment of verapamil with a combination regimen of
moxifloxacin and linezolid showed a significant reduction in lung
mycobacterial load

(150)

Disrupts membrane
potential of Mtb

In vitro VP kills exponentially growing, stationary-phase and nutrient-
starved non-replicating Mtb

(151)

Increase drug
bioavailability and
efficacy

Mouse (CD-1) VP increases plasma concentration of RIF (151)
Mouse
(BALB/c)

Co-treatment of BDQ with VP increased the plasma exposure for
BDQ

(152)
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anti-TB drugs (RIF, INH, PZA, and EMB) in the in vivo model
compared with the single anti-TB drug (INH or EMB) used
in vitro (132, 166). In addition to its antimicrobial activity, RIF
promotes liver metabolism by activating hepatic cytochrome
P450 enzymes, such as CYP2D6 and CYP3A4, thereby
accelerating the drug metabolism and clearance by the liver
(167). However, MET is not metabolized in the liver and is
excreted via the urine in its unchanged form (168). Another
potential explanation is that MET and RIF compete for the
same drug target, namely the AMP-activated protein kinase
(AMPK) in the liver (109, 169). Therefore, the combination
with RIF reduces the effect of MET in the host.

Statin
Statins are anti-hyperlipidemic drugs that block 3-hydroxy-3-
methylglutaryl coenzyme A reductase in the cholesterol synthesis
pathway, thereby lowering the risk of stroke and cardiovascular
diseases (170) (Figure 3). As cholesterol is an essential
intracellular energy source for Mtb, elevated cholesterol level is
a risk factor for TB (171). Statins also have immunomodulatory
effects, such as the production of natural killer T cells,
downregulation of MHC II expression, elevated secretion of
IL-1b and IFN-g, and increased caspase-1 enzyme activity, and
thereby promote apoptosis and autophagy (172) (Figure 3). Both
retrospective clinical trials and animal model studies have
reported that statins are effective in the treatment and
prevention of TB (136, 173, 174). Decreased bacterial burden
was confirmed in peripheral blood mononuclear cells and
Frontiers in Immunology | www.frontiersin.org 11
monocyte-derived macrophages from patients with familial
hypercholesterolemia during statin treatment compared to
healthy donors (136). Further, statin treatment reduced the
Mtb burden and histopathological severity in the lungs of Mtb-
infected mice (136). Lobato et al. evaluated the effects of two
statins (atorvastatin and simvastatin) alone and in combination
with RIF on M. leprae and Mtb in THP-1 macrophages (175).
Both statins showed bactericidal effects on intracellular
mycobacteria 72 h post-infection and synergism with RIF at a
concentration of 0.2 µM for reducing the viability of intracellular
Mtb (175). Skerry et al. investigated the bactericidal activity of
simvastatin alone and in combination with anti-TB drugs (RIF,
INH, and PZA) in macrophages and a mouse model and found
that the addition of 5 mM simvastatin significantly enhanced
the bacterial killing of INH in Mtb-infected J774 macrophages
(137). In contrast, the addition of 25 mg/kg simvastatin to the
standard TB treatment regimen significantly reduced the lung
bacterial burden in BALB/c mice (137). Similarly, Dutta et al.
found that the addition of simvastatin (60 mg/kg) to the TB
treatment regimen (INH/RIF/PZA) shortened the duration
required to attain culture-negative results from 4.5 to 3.5
months, i.e., shortened the treatment duration (138). Simvastatin
significantly improved the bactericidal activities of anti-TB drugs
against intracellular Mtb while having no effect on intracellular
RIF concentrations (138). The same research group further
showed that various statins, including pravastatin, simvastatin,
and Fluvastatin, improved the antimicrobial activity of INH,
RIF, and PZA in THP-1 cells and the C3HeB/FeJ mouse model
FIGURE 3 | Effect of adjunctive therapeutic agents of anti-TB drugs on host immunity. Various adjunctive drugs aid TB treatment by modulating the host immune
response. M. tuberculosis (Mtb) can accumulate cholesterol for use as a source of carbon and energy. Statins bind to the active site of HMG-CoA reductase,
thereby inhibiting cholesterol biosynthesis. In addition, statins induce autophagy and phagosome maturation to promote the removal of Mtb. Similarly, rapamycin
induces autophagy and phagosome–lysosome fusion to enhance the intracellular killing of Mtb. Metformin inhibits the mTOR complex via AMPK activation in the
mitochondria to promote autophagy. Metformin also inhibits ROS production, NFkB signaling, and type I interferon signaling. Similarly, N-acetyl-l-cysteine eliminates
the generated ROS and inhibits NFkB signaling. Suppression of pro-inflammatory immune response and type I interferon signaling lead to reduced
immunopathological severity that beneficial to the host.
June 2021 | Volume 12 | Article 703060

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Park et al. Immunological Enhancement of Anti-TB Drugs
(140). Additionally, pravastatin induced phagosome–lysosome
fusion and macrophage activation observed in IFN-g- and
LPS-activated macrophages (140). Interestingly, Guerra-De-Blas
et al. demonstrated that simvastatin alone significantly reduced
bacterial load in Mtb-infected PBMCs via enhanced production of
natural killer T cells, upregulation of co-stimulatory molecules in
monocytes, increased the secretion of IL-1b and IL-12p70, and
promotion of apoptosis and autophagy in monocytes (139).

ROS Modulating Drugs
ROS and reactive nitrogen species (RNS) are critical host defense
mechanisms to eradicate pathogens during infection (176). The
ROS and RNS react with the phagosomes and efficiently
eliminate intracellular bacteria. However, excessive ROS
production may cause mitochondrial damage and cell
apoptosis, leading to severe immunopathologic outcomes
(177). Therefore, appropriately balanced cellular ROS levels are
critical for eliminating intracellular Mtb without causing a
detrimental effect in the host.

N-Acetyl-Cysteine (NAC)
Multiple studies have shown that reducing ROS accumulation in
the Mtb-infected host by NAC inhibited the Mtb growth and
reduced the immunopathological severity despite the
contradictory views on the Mtb killing ability of NAC (142, 143,
145, 148, 178–182) (Figure 3). Several studies have demonstrated
that NAC ameliorates aminoglycoside-induced ototoxicity (183–
185). Venketaraman et al. found that glutathione level was
significantly reduced in PBMCs and RBCs isolated from TB
patients (181). Further, reduced secretion of IL-10, IL-6, TNF-a,
and IL-1 was confirmed in blood cultures of TB patients after
NAC treatment (181). Similarly, Palanisamy et al. showed that
NAC treatment moderately increased blood glutathione level and
the serum antioxidant capacity in Mtb-infected guinea pigs,
reduced the bacterial burden in the spleen, and decreased the
immunopathological severity in the lungs and spleen of animals
(142). Subsequently, Guerra et al. demonstrated that increased
glutathione level due to NAC treatment inhibits the intracellular
growth of Mtb by causing an increase in the levels of IL-2, IL-12,
and IFN-g secreted by T cells (180). Furthermore, NAC attenuates
liver injury induced by anti-TB drugs by promoting free radical
scavenging and glutathione synthesis (141).

Similarly, Amaral et al. demonstrated that NAC inhibits the
growth of diverse pathogenic mycobacteria such as Mtb, M.
bovis, and M. avium (143). The mycobacterial loads in the lungs
of NAC-treated animals were significantly reduced compared to
that in the untreated animals in both wild type and gp91Phox-/-

macrophages, suggesting that the anti-TB activity of NAC is
independent of the host NADPH oxidase system (143).
Lamprecht et al. showed that NAC potentiates the bactericidal
activity of BDQ, Q203, and CFZ in an in vitromacrophage model
(179). They found that the addition of NAC significantly
improved bactericidal activity of the three anti-TB drugs,
leading to complete Mtb sterilization (179). In another study,
NAC treatment caused a 50% reduction in bacterial load (in
terms of CFU) in THP-1 macrophages and potentiated the
bactericidal effect of anti-TB drugs, such as INH, RIF, EMB, or
Frontiers in Immunology | www.frontiersin.org 12
PZA (146). Moreover, NAC treatment can modulate TNF-a
levels to maintain granuloma structure without inducing
detrimental cell damage to the host (146). Similarly, Teskey
et al. showed that incubation of Mtb Erdman strain with NAC
significantly inhibited the bacterial growth, while incubation
with a combination of NAC and anti-TB drugs (INH, RIF, and
EMB) completely sterilized the Mtb culture (145). In addition,
NAC treatment significantly increased the IFN-g level while
decreasing that of TNF-a as well as significantly enhanced the
phagosome acidification in human granulomas, which indicates
improved intracellular killing (145). On the contrary, NAC alone
did not kill Mtb in macrophages, whereas INH and NAC
combined showed an improved bactericidal activity than INH
alone (178). However, Khameneh et al. demonstrated that the
combination of anti-TB drugs (RIF and INH) and vitamin C, but not
NAC, induced synergistic effects for bacterial killing (182). However,
there were a few inconsistencies in their results. For instance,
in the presence of 20 mg/mL RIF, treatment with 0.05 mg/mL
NAC showed 10% CFU, whereas treatment with 0.1 mg/mL NAC
showed 150% CFU compared to untreated controls (182). Recently,
Vilchèze et al. showed that NAC improves the sterilizing activity
of first and second-line anti-TB drugs in vitro against drug-
susceptible and drug-resistant Mtb strains (148). However, a
synergistic effect between NAC and anti-TB drugs was not
observed in Mtb-infected mice (148). Moreover, although NAC
initially inhibited Mtb growth, the NAC-induced growth
inhibition was not significant and was lost after the first week
of treatment (148). The major difference between the
controversial studies is the host species. The direct killing
effect of NAC was not seen in studies using in vivo or in vitro
mouse models. Similarly, clinical trials on the adjunct effect of
NAC on TB therapy in TB patients showed contradictory results
(144, 147). Mahakalkar et al. showed that NAC treatment
significantly shortened the duration of anti-TB therapy in TB
patients (144). On the contrary, a recent clinical trial in Brazil
demonstrated that NAC addition to a standard TB regimen did
not reduce the duration required to achieve a negative sputum
culture, nor did it reduce radiological severity in hospitalized
patients with severe TB and HIV co-infection (147) (Table 1).
However, these trials did not include a sufficiently large study
population. Therefore, a large-scale clinical study is needed to
determine the safety and efficacy of NAC treatment in TB.

Vitamin C
Vitamin C (VC) is an essential nutrient for humans that
possesses reducing and antioxidant abilities associated with its
ability to donate electrons (186). Several studies have investigated
the host beneficial or detrimental roles of VC in the pathogenesis
of TB (187–192). Vilchèze et al. demonstrated that VC kills drug-
susceptible and drug-resistant Mtb via Fenton reaction in a dose-
dependent manner in vitro, and 4 mM of VC completely
sterilized Mtb culture at three weeks after treatment (187). VC
is assumed to kill Mtb by increasing the intracellular ROS level,
and this process depends on the intracellular iron concentration
(187). The same research group also showed that a combination
of VC and anti-TB drugs sterilizes Mtb cultures faster than
monotherapy with anti-TB drugs (190). Further, Susanto et al.
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revealed that administration of VC improves the sputum
conversion culture rate in RIF-susceptible Mtb-infected
patients (189). On the contrary, Sikri et al. suggested that VC
induces Mtb dormancy leading to a viable but non-culturable
state (188). VC-treated Mtb showed antibiotic tolerance, thereby
exhibiting a higher survival rate than untreated Mtb culture in
the presence of anti-TB drugs (188). Similarly, Nandi et al.
demonstrated that VC induces the activation of multiple
transcriptional regulators for the temporal adaptation to VC,
leading to a dormancy response (191). In summary, VC sterilizes
Mtb culture by generating ROS via Fenton reaction and
promoting oxygen consumption, thus eradicating bacterial
persisters. However, several studies report that VC promotes
the generation of bacterial persisters in TB. Therefore, further
research is needed to elucidate the role of VC in the pathogenesis
of TB.

HO-1 Inhibitor
In section 3, we discussed that Mtb and bactericidal anti-TB
drugs cause mitochondrial dysfunction and oxidative damage in
host cells, consequently ROS-mediated apoptosis as well as
simultaneous activation of antioxidant mechanisms, such as
the Keap1-Nrf2 signaling pathway, that may interfere with the
removal of Mtb (88, 89) A major factor involved in this
mechanism is HO-1 (95, 192). However, the detailed role of
host HO-1 during the onset and pathogenesis of TB remains
controversial and has not been fully elucidated (95, 99, 192–195).
HO-1 exerts anti-inflammatory and cytoprotective effects,
although the underlying mechanisms are not fully understood
(196). Several studies have investigated the host beneficial or
detrimental roles of HO-1 during TB infection (95, 99, 192–195).
Andrade et al. showed that active TB patients show a negative
correlation between plasma levels of HO-1 and MMP-1 (95).
Notably, the TB patients with high plasma levels of HO-1 or
MMP-1 demonstrated unique clinical presentation and
inflammatory cytokine profiles (95). Moreover, a high HO-1
level was induced by the infection of virulent Mtb strain in
human or murine macrophages, and MMP-1 expression was
inhibited by CO by suppressing c-Jun/AP-1 signaling (95). Costa
and colleagues demonstrated that the administration of tin
protoporphyrin IX (SnPPIX), an HO-1 enzymatic inhibitor,
decreases pulmonary Mtb loads comparable to that
accomplished by anti-TB drug therapy as well as improves the
bactericidal activity of anti-TB drugs (RIF, INH, and PZA) (192).
Interestingly, host T cell immune response was needed to inhibit
HO-1 by SnPPIX, and SnPPIX failed to reduce bacterial growth
and activity of Mtb HO-1 enzyme in broth culture (192).
Rockwood et al. reported HO-1 upregulation in Mtb-infected
rabbits, mice, and non-human primates, and anti-TB therapy
reduced the HO-1 plasma levels (193). Similar upregulation
of HO-1 was observed in the plasma of untreated HIV-1
co-infected TB patients. In these patients, the plasma HO-1
levels positively and negatively correlated with the HIV-1 viral
load and CD4+ T cell count, respectively (193). Further, early
secreted antigen ESAT-6-mediated nuclear translocation of
transcription factor NRF-2 is required for Mtb-induced HO-1
expression (193). Recently, Costa et al. discovered that HO-1
Frontiers in Immunology | www.frontiersin.org 13
inhibition improves IFN-g-induced NOS2-dependent bacterial
killing by murine macrophages (99). Additionally, HO-1
inhibition induced low intracellular non-protein bound iron in
Mtb-infected macrophages and reduced iron deposition in the
lungs of Mtb-infected mice (99). Taken together, HO-1
expression inhibits T cell-mediated IFN-g-induced NOS2-
dependent control of Mtb by producing free iron. Therefore,
inhibition of HO-1 expression potentiates the anti-TB therapy
and improves clinical outcomes.

Calcium Channel Blocker
Verapamil (VP) is a calcium channel blocker used for
hypertension treatment that also acts as an inhibitor of drug
efflux protein. Several studies have proposed that VP can
potentially improve the bactericidal activity of anti-TB drugs,
such as RIF, INH, EMB, BDQ, and CFZ (151, 197–199).
Machado et al. demonstrated that VP disrupts the heightened
antibiotic resistance induced by repetitive exposure to INH
(197). Similarly, Gupta et al. showed that VP potentiates the
bactericidal activity of BDQ in reference strain H37Rv and eight
clinical Mtb isolates (198). Similarly, Li et al. suggested that the
addition of VP improves RIF susceptibility in RIF-resistant Mtb
isolates (199). Chen et al. suggested that VP monotherapy kills
exponentially growing, stationary-phase, nutrient-starved, non-
replicating Mtb by disrupting membrane energetics without
affecting the physical integrity of the membrane (151). Further,
VP potentiates the bactericidal effects of BDQ and CFZ in vitro
and in a RIF mouse model without changing the intracellular
concentration of the drugs (151). Similarly, Xu et al.
demonstrated that VP potentiates the efficacy of BDQ and
CFZ against Mtb clinical isolates (152). However, VP increased
bioavailability and efficacy of BDQ but not CFZ in Mtb-infected
mice (152). Collectively, synergistic activity of VP in vivomay be
attributed to improved systemic exposure to co-treated drugs by
modulating mammalian transporters without inhibiting bacterial
efflux pumps (152). Thus, the combination of VP and anti-TB
drugs may be an effective therapy for TB.
Cytokines
Cytokines are small soluble proteins with multifaced aspects of
host protective and detrimental effects (200). Excessive TB-
induced inflammation interferes with normal lung function
and may increase the risk of TB relapse (201). Comprehensive
insight into host-pathogen interaction in TB would aid in
designing host-directed therapies to shorten antibiotic treatment
duration and relieve immunopathology. Immunotherapy with
several cytokines protects the host and boosts bacterial
clearance (Table 2).

IFN-g and IL-12
IL-12/IFN-g axis plays a critical role in host immune response for
controlling TB, and IFN-g is the key cytokine in the innate
immune response during Mtb infection (219). IFN-g is
responsible for enhancing bactericidal activity through the
upregulation of ROS, RNI, and autophagy (155, 228, 229). IFN-
g reverses the blockade of phagosome–lysosome fusion caused
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by Mtb (230). Moreover, IFN-g stimulates the production of IL-12
in Mtb-infected macrophages, while IL-12 stimulates the
production of IFN-g by T cells and NK cells, thus activating
macrophages that lead to intracellular bacterial killing (231).
Dawson et al. reported a significant increase in CD4+
Frontiers in Immunology | www.frontiersin.org 14
lymphocyte response and significantly reduced Mtb load in the
sputum of the recombinant IFN-g1b-treated group (207). Mata-
Espinosa et al. demonstrated that exogenous administration of
IFN-g reduces bacterial loads and tissue damage in the lungs of
Mtb-infected mice (208). Along similar lines, Khan et al. showed
TABLE 2 | Effect of cytokines on host immunity in TB.

Cytokine Role in TB Model Therapeutic effect or outcome References

GM-CSF Restriction of Mtb burden
Lymphocyte recruitment
Formation of normal granulomas

Mouse
(C57BL/6)

Prevented weight loss and enhanced pulmonary Mtb clearance (202)

Mouse
(BALB/c)

Exogenous administration GM-CSF induced significant reduction of
pulmonary bacterial loads

(203)

Mouse
(BALB/c)

Exogenous administration GM-CSF induced significant reduction of
pulmonary bacterial loads and pneumonic area

(204)

Mouse
(C57BL/6)

GM-CSF neutralization reduces acute lung inflammation and neutrophil
recruitment

(205)

Mouse
(C57BL/6)

GM-CSF neutralization induces increased pathological lesion, necrosis,
inflammation, and pulmonary Mtb burden

(206)

IFN-g Mediator of macrophage activation Randomized
clinical trial

Increased rate of Mtb clearance
Significant reduction of prevalence of clinical symptoms such as fever,
sneeze, and night sweats

(207)

Mouse
(BALB/c)

Exogenous administration of IFN-g reduced bacterial loads and tissue
damage in the lung

(208)

Macrophage
(MDM)

Pretreatment of IFN-g impaired immune response of MDM from MDR-TB
patients

(209)

Type I
interferons (IFN-
a/IFN-b)

Suppression of pro-inflammatory
cytokines and Th1 responses

Mouse
(C57BL/6)

Overexpression of type I interferons induced increased pulmonary Mtb loads (210)

Mouse
(C57BL/6)

Ifnar-/-/Ifngr-/- mice showed decreased survival rate and increased Mtb loads
in the lung

(211)

Mouse
(C57BL/6)

Ifnar-/- mice showed similar Mtb loads in the lung (206)

Mouse
(129S2)

Suppression of type I IFN signaling significantly enhanced the bactericidal
activity of RIF which leading to reduced bacterial loads and improved survival

(212)

Mouse
(C57BL/6)

Il1r1-/- mice showed decreased survival rate and increased pulmonary Mtb
loads

(213)

TNF-a Macrophage activation, critical for
granuloma formation and maintenance

Analysis of
reports

Infliximab therapy induced the reactivation of latent tuberculosis (214)

Mouse
(B6D2F1)

Exogenous administration of TNF-a induced significant reduction of bacterial
load and pneumonic area

(215)

3D cell
culture
model

TNF-a neutralization reverses augmented Mtb growth caused by anti-PD-1
treatment

(216)

In vitro
granuloma
model

TNF-a antagonists induced resuscitation of dormant Mtb (217)

IL-2 Promotes the expansion of the antigen-
specific T cells

Clinical trials Exogenous administration of IL-2 reduced bacterial loads in sputum (218)
Mouse
(C57BL/6)

Exogenous administration of IL-2 restored T cell dysfunction induced by
persistent Mtb infection

(219)

IL-12 Proliferation and activation of T
lymphocytes, NK cells, and NKT cells

Mouse
(C57BL/6)

IL-12 improved survival and reduced bacterial loads of Mtb-infected CD4-/-

mice
(220)

Mouse
(BALB/c)

IL-12 reduced bacterial loads and immunopathological severity (221)

IL-22 Production of inflammatory mediators
and recruitment of pathologic effector
cells

Mouse
(C57BL/6)

Il22-/- mice showed increased bacterial loads in the lung and spleen (222)

Macrophage
(MDM)

Exogenous administration of IL-22 induced significant reduction of
intracellular growth of Mtb

(223)

IL-17 Affect neutrophil homeostasis and
survival

Mouse
(C57BL/6)

Il17-/- mice showed increased lung bacterial burden compared to wild type (224)

IL-23 Induces the IFN-g and IL-17 response in
the lung and enhances host protection

Mouse
(C57BL/6)

Il23-/- mice showed moderately enhanced immunopathological response in
the lung

(225)

Mouse
(C57BL/6)

Exogenous administration of IL-23 significantly reduced the pulmonary Mtb
loads, and the lung inflammation levels

(226)

IL-24 Induces IFN-g production by CD8+ T
cells

Mouse
(BALB/c)

Exogenous administration of IL-24 significantly reduced the Mtb loads in the
lung and spleen. Also, survival was improved in IL-24 treated group

(227)
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that treatment with exogenous IFN-g restored defective immune
response of MDMs isolated from MDR-TB patients (209).
Exogenous administration of IL-12 improved survival and
reduced the bacterial loads of Mtb-infected CD4-/- mice (220).
Similarly, treatment with recombinant adenovirus encoding
IL-12 (AdIL‐12) significantly reduced the bacterial loads in a
progressive pulmonary TB mouse model (221). AdIL-12-treated
mice showed significantly higher levels of IFN-g, TNF-a, and
iNOS compared with the untreated group. In addition, AdIL-
12-treated mice showed less severe pathological legions than the
untreated mice (221).
TNF-a
TNF-a plays an important role in controlling TB in both the
initial and late stages (232). TNF-a activates macrophages and
contributes to the formation and maintenance of granulomas to
suppress the dissemination of Mtb; however, it also induces
tissue damage due to the excessive immune responses (233).
Keane et al. demonstrated that treatment with TNF-a inhibitor
induces the reactivation of latent TB (234). Similarly, treatment
with several TNF-a antagonists differentially induced resuscitation
of dormant Mtb in a 3D microgranuloma model (214).
Adalimumab, a TNF-a antagonist, showed a greater resuscitation
rate than etanercept through the TGF-b1-dependent pathway (214).
Furthermore, exogenous administration of TNF-a significantly
decreased the bacterial load and pneumonic area in Mtb-infected
mice (217). In contrast, Tereza et al. demonstrated that excessive
TNF-a secretion via PD-1 inhibition facilitated Mtb growth in a
micro granuloma model (215).
IL-24
IL-24 plays an immune-regulatory role to induce Th1 cytokines,
such as IFN-g, IL-6, and TNF-a, during TB infection (216).
Upregulated IL-24 expression was observed in BCG-vaccinated
newborns, suggesting the host protective role of IL-24 during TB
infection (235). Wu et al. demonstrated that administration of
exogenous IL-24 induces IFN-g upregulation, whereas IL-24
neutralization causes IFN-g downregulation (216). Similarly,
IL-24 stimulation results in the upregulation of IFN-g-inducing
cytokines, such as IL-12, IL-23, and IL-27 (216). Furthermore,
Ma et al. demonstrated that administration of IL-24 induced
IFN-g production and activated CD8+ T cells in mice, indicating
its host protective effect in TB (227). Huang et al. found that
IL-24 family cytokines, such as IL-19, IL-20, and IL-22, are
elevated in BCG-vaccinated non-human primates as well (236).
Treatment with exogenous IL-24 significantly increased the
survival rate and significantly reduced the bacterial burden
compared to the control group (Table 2).
IL-2
IL-2 plays a critical regulatory role during T cell differentiation
via induction of the transcription factor eomesodermin and
perforin (237). During chronic viral infection, the production
of memory T cells and memory T cell-associated molecules, such
as CD127 and CD44, was observed after stimulation with
Frontiers in Immunology | www.frontiersin.org 15
low-dose IL-2 (238). IL-2 administration is proven to exert
host protective effects in TB infection; it reduced or cleared
bacterial burden and increased the number of CD25+ and CD56+

cells (239). A similar protective effect of exogenous IL-2 was
reported by Shen et al., who showed that the IL-2-treated group
showed decreased sputum smear-positive rates, whereas the
control group showed increased sputum smear-positive rates
(218). The IL-2-treated group also demonstrated less severe
legions than the control group during TB treatment (218). Liu
et al. showed that persistent stimulation with Mtb antigen
induces disrupted cytokine production by T cells, and IL-2
restores the T cell dysfunction (219). Their findings suggested
that administration of exogenous IL-2 leads to maintenance of
immune homeostasis in the bone marrow and reactivation of the
disrupted hematopoiesis by persistent Mtb infection (219).
Granulocyte-Macrophage Colony-Stimulating
Factor (GM-CSF)
Previous studies showed that GM-CSF exerts a host protective
role during TB infection (202–205, 240–242). It mediates the
formation of granuloma and promotes bacterial clearance in the
host (241), and induces classical activation of macrophage to M1
polarization state (242).

Treatment with recombinant adenoviruses encoding GM-CSF
significantly reduced the bacterial burden in the lungs, increased
the number of activated DCs, and elevated the levels of TNF-a,
IFN-g, and iNOS (203). The same group further demonstrated
that exogenous administration of GM-CSF significantly reduced
the pulmonary Mtb loads and pneumonic area in Mtb-infected
mice (202). Similarly, Pasula et al. demonstrated that exogenous
keratinocyte growth factor administration protects against Mtb
infection through GM-CSF-dependent macrophage activation and
phagosome–lysosome fusion (204). Moreover, neutralization of
GM-CSF induced higher bacterial burden and increased
immunopathologic severity with necrotic granulomatous lesions
during INH/RIF treatment in TNF-a-deficient mice (205).
Furthermore, GM-CSF blocking by monoclonal antibody
enhanced host susceptibility and immunopathological severity in
Mtb-infected mice (206). Moreover, the absence of GM-CSF
signaling results in type I IFN-induced neutrophil extracellular
trap formation that aggravates lung mycobacterial burden and
lung pathology (206). In addition, neutrophil extracellular traps
were abundant in the lung lesions of Mtb-infected C3HeB/FeJ
mice and TB patients who showed impaired response to anti-TB
therapy (206).
Type I IFNs
Type I IFNs include IFN-a, IFN-b, and several other IFNs that
interact with IFNAR1 and IFNAR2 to activate a range of IFN-
stimulated genes via STAT1 and STAT2 signaling (243, 244).
Type I IFNs play a complex role in mediating beneficial and
detrimental effects in the host during TB infection (244). Whole
blood transcriptional profiling of active TB patients revealed that
upregulation of type I IFN-ab-inducible transcripts correlated
with radiographic severity of the lungs that was restored to the
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level of healthy controls after anti-TB therapy (245). Recent
studies have demonstrated that type I IFN-inducible blood
transcriptional signature, including upregulation of STAT1,
IFITs, GBPs, MX1, OAS1, and IRF1, was associated with active
TB disease (246–248).

Antonelli et al. demonstrated that overexpression of type I
IFNs increased pulmonary bacterial loads and extensively
distributed necrotic legions in the poly-l-lysine and
carboxymethylcellulose (poly-ICLC)-treated Mtb-infected mice
(210). Further, a significant increase of CD11b+F4/80+Gr1int
cells that showed diminished MHC II expression was confirmed
in their lungs (210). Similarly, Mayer-Barber et al. showed IL-1-
dependent host protection by producing eicosanoids that
suppress immoderate type I IFN production and control
bacterial loads (213). The Il1r1-/- mice showed a significantly
decreased survival rate and increased bacterial loads in the lungs
compared with the wild type mice (213) (Table 2). Similarly,
induction of type I IFN due to loss of GM-CSF signaling or
genetic susceptibility facilitated Mtb growth and increased
disease severity (206). Interestingly, the same group
demonstrated host protective effect of type I IFN in the lungs
of Mtb-infected mice lacking IFN-g signaling; the pulmonary
bacterial loads were significantly higher in the Ifnar-/-/Ifngr-/-

mice compared with that in the Ifngr−/− and Ifnar−/− mice on
post-infection days 24 and 28 (211). Recently, Zhang et al.
demonstrated a correlation between type I IFN signaling and
cell death of Mtb-infected mouse macrophage (212). Further,
suppression of type I IFN signaling significantly enhanced the
bactericidal activity of RIF in Mtb-infected mice, leading to
reduced bacterial loads and improved survival (212).
Collectively, these results provide strong evidence that
modulation of type I IFN signaling determines the disease
severity and susceptibility of immunopathologic lesions in TB.

Th17 Cytokines
Th17 cytokines secreted by Th17 and Th22 cells may play a
regulatory role in the immune response during Mtb infection
(249). Th17 cytokines play a protective role in Mtb infection but
are also involved in pathology due to excessive immune response
(250). IL-22 promotes the production of inflammatory mediators
and the recruitment of pathologic effector cells in TB (250). IL-22
also promotes tissue repair and healing in lung epithelial cells
(251). Treerat et al. demonstrated a significantly increased
bacterial burden in the lungs and spleen of Il22-/- mice (222).
Similarly, exogenous administration of IL-22 significantly
inhibited intracellular Mtb growth by inducing calgranulin A
expression (223). Modulation of Th17 responses is essential to
p romot e an t i -TB immun i t y and b l o ck immens e
immunopathology, leading to a detrimental effect on the host
(Table 2). Gopal et al. showed that Il17-/- mice demonstrate
increased lung bacterial burden compared to that in wild type
mice; however, IL-17 overexpression improved the resistance to
TB in Mtb-infected Il17−/− mice (224). IL-23 induces the
production of IFN-g and IL-17 response that promotes anti-TB
immunity. Khader et al. observed increased immunopathological
severity in the lungs of Il23-/- mice (225). The exogenous
administration of IL-23 induced significant reduction of the
Frontiers in Immunology | www.frontiersin.org 16
pulmonary Mtb loads and the immunopathological severity in
a mouse model via enhanced local T cell immunity (226). Taken
together, appropriate modulation of Th-17 cytokines is critical to
control TB with minimal detrimental effects to the host.
CONCLUSION AND FUTURE
PERSPECTIVE

Understanding bacterial adaptation to host-mediated stress
contributing to antibiotic tolerance is a critical factor in
improving disease outcomes and shortening treatment
duration. In addition to eliminating the pathogen, effective TB
therapy should relieve the associated clinical symptoms by
controlling immune-mediated inflammatory responses and
minimize damage to the host, thereby minimizing the sequelae.
Within the host, Mtb undergoes metabolic reprogramming by
drugs or host-mediated stress, resulting in a drug-tolerant state
across drug classes. Representative examples of metabolic
reprogramming include metabolic stagnation, activation of
metabolic bypass, accumulation of triacylglycerol, biofilm
formation, and stringent response. The host metabolism is
modulated by Mtb infection or the anti-TB drugs, leading to
the critical point that determines the treatment success.
Therefore, if the host metabolism can be regulated to induce a
host-favorable state, the treatment period can be drastically
reduced, and side effects can be minimized, dramatically
improving clinical outcomes.
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