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Dengue virus (DENV) is the most common arbovirus, causing a significant burden on both
the economy and global healthcare systems. The virus is transmitted by Aedes species of
mosquitoes as a swarm of closely related virus genomes, collectively referred to as a
quasispecies. The level of genomic diversity within this quasispecies varies as DENV
moves through various ecological niches within its transmission cycle. Here, the factors
that influence the level of DENV quasispecies diversity during the course of infection in the
mosquito vectors are reviewed.
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INTRODUCTION

Dengue virus (DENV) is the most common insect-borne virus, that results in a myriad of disease
presentation ranging from subclinical infection to dengue hemorrhagic fever and dengue shock
syndrome. DENV imposes a significant burden globally, infecting an estimated 390 million people
(Bhatt et al., 2013) and costing approximately 2.1 billion dollars (Beatty et al., 2011) annually. With
increasing globalization, urbanization and a growing population, these numbers are estimated to
increase considerably in the coming years (Gubler, 2011; Messina et al., 2019).

DENV is an arbovirus, transmitted predominately by the mosquito vector, Ae. (Aedes) aegypti
(Gubler, 1998). However, other Aedes species, such as Ae. albopictus can act as secondary vectors.
Dengue is usually transmitted in an urban cycle between human and the Ae. aegypti mosquitoes
(Weaver and Vasilakis, 2009) (Figure 1). However, a sylvatic cycle, in which the virus is passed
between a non-human primate host and other Ae. species exists in forested areas (Weaver and
Vasilakis, 2009) (Figure 1). Viruses found in the sylvatic cycle can be transmitted to urban cycles
and vice versa (Pickering et al., 2020), leading to co-circulation of both urban and sylvatic DENV
strains (Johari et al., 2019). To add further complexity to different genotypes of DENV that can be
found within a single region, there are four antigenically distinct DENV serotypes (DENV1-4).
Infection with a single serotype engenders protective immunity towards that serotype, but fails to
protect against subsequent infection with a heterotypic serotype and may even lead to an enhanced
disease phenotype through antibody dependent enhancement (Chan et al., 2019), making
simultaneous transmission of different serotypes within the same region a public health concern.

DENV is a positive-sense single-strand RNA virus. The viral RNA is translated to a single
polyprotein, which is subsequently cleaved into protein subunits by host and viral proteases
(Guzman et al., 2016). The DENV proteome includes three structural proteins (Capsid; C, pre-
Membrane; prM and Envelope; E) and seven non-structural (NS) (NS1, NS2A, NS2B, NS3, NS4A,
NS4B, NS5) proteins. These proteins interact with one another as well as host factors to ensure
gy | www.frontiersin.org June 2022 | Volume 12 | Article 8888041

https://www.frontiersin.org/articles/10.3389/fcimb.2022.888804/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.888804/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:milly.choy@duke-nus.edu.sg
https://doi.org/10.3389/fcimb.2022.888804
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2022.888804
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2022.888804&domain=pdf&date_stamp=2022-06-22


Bifani et al. Dengue Quasispecies Diversity in Mosquitoes
successful infection and viral replication in the host cell. The
genomic RNA is copied by the RNA-dependent RNA
polymerase (RdRp) in the viral replication complex (Lescar
et al., 2018). RNA viruses are notoriously error prone due to
the lack of proof reading capabilities of the RdRp (Poirier and
Vignuzzi, 2017). The DENV RdRp is estimated to carry an error
rate of 1 in 104 base pairs (bp) (Castro et al., 2005; Jin et al.,
2011). In a genome of approximately 10,700 bp, this roughly
translates to one error per dengue genome. As a result, DENV
exists as a collection of closely related genomes, termed a
quasispecies (Wang et al., 2002).
OPTIMAL GENOME DIVERSITY LEVEL
REQUIRED FOR DENGUE VIRUS FITNESS

Intra genetic diversity of a quasispecies has been known to
impact the fitness, transmissibility as well as pathogenesis of a
virus during infection (Lauring and Andino, 2010). Furthermore,
the level of intra-species diversity is dynamic, changing over time
when the viral population is faced with selective pressures that
can result in population bottlenecks. In the case of other RNA
viruses such as polio virus, a mutation in its RdRp conferred
increased fidelity (Vignuzzi et al., 2006). This limited the virus’
ability to adapt to novel niches, ultimately resulting in a loss of
neurotropism and pathogenesis (Vignuzzi et al., 2006; Vignuzzi
et al., 2008). Increased polymerase fidelity has also been observed
to attenuate human immunodeficiency virus (HIV) (Dapp et al.,
2013; Beck et al., 2014; Beck et al., 2018; Davis et al., 2019).
However, the converse is also capable of inducing an attenuated
phenotype in vivo. When a mutator strain of SARS-CoV which
lacked the exonuclease and therefore the virus’ proof-reading
capabilities, was used to infect a mouse model, there was a
reduction in pathogenesis (Graham et al., 2012). Similarly,
mutator strains of coxsackievirus B3 and HIV have attenuated
phenotypes compared to their parental strains (Gnadig et al.,
2012; Dapp et al., 2013; Rozen-Gagnon et al., 2014). Likewise, for
DENV and other closely related arboviruses, an optimal level of
diversity in a quasispecies is required to maintain viral fitness
(Vignuzzi et al., 2006; Beck et al., 2014; Rozen-Gagnon et al.,
2014; Beck et al., 2018). Studies have demonstrated that strains
that have a significantly elevated or reduced level of quasispecies
diversity compared to wildtype tend to be less fit (Vignuzzi et al.,
2008; Bifani et al., 2021). In DENV, clinically-tested successful
attenuated vaccine candidate strains harbored a greater level of
quasispecies diversity than their virulent parental strains (Bifani
et al., 2021).

Genome diversity in arboviruses is particularly interesting as
these viruses need to adapt to survive in at least two profoundly
different environments, arthropod vector(s) and vertebrate host(s).
Many arboviruses can infect a range of vertebrate hosts and
mosquito vectors, which requires a flexible evolutionary strategy
that would benefit from high mutation rate (Coffey et al., 2013).
Indeed, an anti-mutator strain of Chikungunya virus (CHIKV)
was found to decrease pathogenesis and transmissibility in vivo
(Carrau et al., 2019). Related flavivirus, YFV (yellow fever virus)
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vaccine strains 17D and FNV have less quasispecies diversity than
their respective parental strains, Asibi and FVV (Beck et al., 2014;
Beck et al., 2018; Davis et al., 2019). It has also been suggested that
the genomic diversity observed in West Nile virus (WNV) is
engendered during the vector phase of the transmission cycle
(Jerzak et al., 2007; Ciota et al., 2007). Meanwhile, there is evidence
that both vector and human hosts drive DENV diversity (Lin et al.,
2004; Sim et al., 2015; Sessions et al., 2015; Sim and Hibberd,
2016). Studies comparing DENV quasispecies diversity from
infected human sera paired with mosquitoes infected from the
patients’ sera revealed changes in the single nucleotide variants
(SNVs) repertoire when transmitting from human host to
mosquito vector (Sessions et al., 2015; Sim et al., 2015). Certain
regions of the genome were more susceptible to genetic changes
than others during this transition (Sessions et al., 2015). However,
the quasispecies genome diversity is maintained through genetic
bottlenecks and the introduction of novel single nucleotide
variants (SNVs) (Sim et al., 2015). Previous studies have focused
on the host’s contribution to DENV genomic diversity (Lin et al.,
2004). However, contribution of the mosquito vector to xxx
quasispecies maintenance is an engaging question which
warrants further investigation.

As the level of quasispecies diversity oscillates when DENV
progresses through different niches within the transmission
cycles, the outcome of DENV infection is varied between
humans and the mosquito vector. Whilst DENV infection is
eventually cleared by the immune response of the human host,
infection in the mosquito vector persists throughout the lifespan
of the mosquito (Guzman et al., 2016). During the course of
infection, various immune barriers in the mosquito vector, such
as the midgut and the salivary glands, have been noted to induce
genetic bottlenecks in arbovirus genomes (Forrester et al., 2012;
Forrester et al., 2014). Yet, the overall genetic diversity of a viral
population in these flaviviruses is restored by the time the
infection reaches the salivary glands (Brackney et al., 2011; Sim
et al., 2015). Several questions remain to be addressed, such as
what drives the recovery of genomic diversity of a quasispecies
following bottleneck events and when this increase in
diversity occurs.
INFECTION BARRIERS THAT SHAPE
DENV GENETIC DIVERSITY

During the life cycle of DENV in the mosquito vector, the virus
encounters multiple organ/tissue barriers which can either
restrict or drive the diversity of viral quasispecies (Figure 1).
Among them, the barriers associated with the midgut and the
salivary glands are the most well-recognized (Lequime
et al., 2016).

Upon ingestion of a DENV-infectious blood meal by a
mosquito, the virus first establishes infection in the mosquito
midgut. This stage is commonly referred to as the midgut
infection barrier (MIB) (Gubler, 2011). It was reported that
this initial midgut infection represents the first bottleneck on
the incoming viral population, potentially through the mosquito
June 2022 | Volume 12 | Article 888804
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immunity in the midgut epithelial cells (Lequime et al., 2016)
(Figure 1). The study using DENV1 to infect four different
mosquito genotypes suggests that the midgut bottleneck is
severe, leading to a founder’s effect of about five to forty-two
DENV1 genomes for each genotype respectively (Lequime et al.,
2016). The virus population bottleneck that occurs at this stage
appears to be a stochastic process (Ciota et al., 2012; Lequime
et al., 2016). Following the midgut infection, DENV encounters
the midgut escape barrier (MEB) during its dissemination from
the midgut into the haemocoel (Gubler, 2011). This barrier
represents a major bottleneck during DENV infection in the
mosquito; even with successful midgut infection, viruses could
still be inefficiently disseminated into the haemocoel (Gubler,
1998). The mechanism by which this happens remains
undefined, but it was believed to be associated with the midgut
basal lamina as an anatomical barrier.

Viral dissemination from the midgut into the haemocoel
allows DENV to access several secondary target organs/tissues
throughout the mosquito body. Among them, the salivary glands
are essential for virus transmission. DENV must infect the
salivary glands (the salivary gland infection barrier; SGIB) and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
finally disseminate into the salivary duct (the salivary gland
escape barrier; SGEB) to be secreted with the mosquito saliva
during subsequent blood meals (Gubler, 2011). The SGIB as a
second, albeit less selective, immune barrier represents a
relatively small bottleneck compared to the MIB (Forrester
et al., 2012). One plausible reason could be because of the
earlier necessary passage through the basal lamina of the
salivary glands. During dissemination from the salivary glands,
the bottleneck of virus genome diversity has also been observed
(Gubler, 1998). However, the level of the bottleneck at this stage
during in vivo transmission requires further investigation as
most of the current studies have been performed using in vitro
saliva collection (Weaver and Vasilakis, 2009; Johari et al., 2019;
Pickering et al., 2020).

Recovery of the quasispecies diversity, however, seems to be
dependent on the mosquito genetics, suggesting that once the
founder’s event has occurred, there is purifying selection for
novel SNVs based on the mosquito response to infection
(Lequime et al., 2016). While the number of viral SNVs were
found to increase once the midgut barriers were circumvented,
consensus changes were only found in the salivary glands
FIGURE 1 | Schematic depicting dengue transmission among non-human primates and Aedes species in the sylvatic cycle and among humans and Aedes aegypti
in the urban cycle as well as the transmission between the two cycles. The immune/genome diversity barriers imposed by anatomical features of Aedes mosquito
species are further depicted. Arrows highlight the path of infection taken by DENV following an infected blood meal. Factors that influence the diversity of a
quasispecies are written in bold red text. Arrows are shaded darker in areas where the mean nucleotide diversity across the DENV genome is higher whereas the
lighter shade represents anatomical regions that are known to impose infection/genome diversity barriers and have a lower mean nucleotide diversity as determined
by Lequime et al., 2016 (Lequime et al., 2016). The image was composed using Biorender.
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(Lequime et al., 2016). This implies that the salivary glands act as
a secondary selective barrier during viral infection in the
mosquito. Indeed, the salivary glands have been observed to
function as a selective pressure for arboviruses such as CHIKV
(Forrester et al., 2012). Nevertheless, there is an increase in the
mean nucleotide diversity (p) in the salivary glands compared to
the midgut (Lequime et al., 2016) (Figure 1).

If the midgut and salivary gland barriers act to restrict DENV
quasispecies diversity, what enables the virus population to
restore this variation in the population? Studies with other
flaviviruses hint that the vector immune response, in particular
the RNAi machinery stimulates quasispecies diversity. The
genomic diversity of WNV passaged in the absence of RNAi
machinery was significantly less diverse than when the RNAi
machinery was functional (Brackney et al., 2015). Furthermore,
regions of the WNV that are targeted to a greater extent by RNAi
contain a greater number of point mutations, indicating the
presence of positive selection (Brackney et al., 2009). Whether
the RNAi machinery of Aedes mosquitoes also plays a role in
driving diversification on the DENV genome remains to
be explored.
THE ROLE OF DIFFERENT MOSQUITO
VECTORS IN DENV QUASISPECIES
DIVERSITY

DENV is principally transmitted by Ae. aegypti in the urban
transmission cycle and Ae. albopictus in a peri-rural setting
(Guzman et al., 2016). Naturally, the question arises if the
different vectors differentially influence the level of DENV
quasispecies diversification. Indeed, when the genomic
diversity of DENV1 was examined in both Aedes species, there
were SNVs unique to Ae. aegypti and others specific to Ae.
albopictus (Sessions et al., 2015). Furthermore, when strains with
a recent history of spillover from sylvatic to urban cycles were
compared to urban endemic strains, it was found that they did
not infect Ae. aegypti as readily (Pickering et al., 2020). In a way,
these results are not surprising as it is expected that vector
competence would be increased for strains naturally occurring in
their respective vectors. This has been supported by an observed
codon bias in strains specifically adapted to each vector (Dos
Passos Cunha et al., 2018). Nevertheless, viruses jumping
between sylvatic and urban cycles give rise to the possibility of
novel strains with epidemic or pathogenic potential to the
human population.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
FUTURE DIRECTIONS

Previous studies have clearly demonstrated that quasispecies
diversity has the ability to shape viral fitness and pathogenesis
(Vignuzzi et al., 2006). Arbovirus strains that have significantly
more or less population diversity than wildtype stains have been
associated with diminished fitness (Coffey et al., 2011; Beck et al.,
2014; Rozen-Gagnon et al., 2014; Beck et al., 2018; Bifani et al.,
2021). However, alternating between a mammalian host and a
mosquito vector imposes restrictions on diversity of the DENV
genome which are lost when DENV is exclusively passaged in either
mammalian or mosquito cells (Dolan et al., 2021). As a result,
certain regions in the genome are more amenable to changes when
switching between hosts, while others are more conserved following
transmission events (Sessions et al., 2015). There is no doubt that
DENV quasispecies diversity is influenced by both human and
mosquito vector (Sim et al., 2015). Here, special focus is given to
contribution of mosquito vectors in maintaining quasispecies
diversity. While in vivo studies in mosquitoes on arbovirus
quasispecies diversity have been fruitful, there is still a dearth of
knowledge to understand how the genetic diversity shaped by the
anatomical and immune barriers of mosquitoes can influence virus
fitness. The Ae. aegypti and Ae. albopictus mosquito genomes
remain poorly annotated, and heterogeneity in the mosquito
genome exists between different mosquito strains/species that can
influence viral genetic diversity and virus fitness (Black et al., 2002).
Several questions remain and warrant further investigation
(Table 1). Teasing apart which stage of the DENV life cycle in
the mosquito vectors enhances and diminishes viral genetic
diversity and how these virus populations influence virus fitness
would be an interesting area of study. As various host cells impact
viral mutation rates differently (Combe and Sanjuan, 2014), it is
plausible that certain cell types within the mosquito vectors are able
to recover the genetic diversity lost after passages through
anatomical and immune barriers. Additionally, exploring whether
there is a difference in the amount of genetic diversity induced by
Ae. aegypti or Ae. albopictus could be beneficial in predicting strains
with epidemic potential.

However, it is noteworthy that a detailed characterization of the
mosquito would be complicated by the presence of many different
body compartments and tissues. Moreover, while the conventional
sample pooling strategy adopted to achieve sufficient starting
materials for sequencing has proved fruitful in identifying
common variants, it may obscure low-frequency variants due to
the averaging effect of combining individuals. Despite that,
advances in next generation sequencing capabilities, specifically
the ability to call low frequency variants (Wilm et al., 2012; Bifani
TABLE 1 | DENV quasispecies diversity key questions?

DENV quasispecies diversity key questions

• Does quasispecies diversity influence the length of the extrinsic incubation period?
• Are strains with higher levels of quasispecies diversity more or less likely to carry epidemic potential?
• Does quasispecies diversity impact vector competence?
• What maintains the level of quasispecies diversity in the mosquito?
• Do Aedes aegypti or Aedes albopictus impact the level of quasispecies diversity differently? If so, which Aedes species has a greater contribution to quasispecies
diversity?
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et al., 2021) provide new opportunities to examine viral genome
diversity at the population level rather than the consensus, and
rare variants would likely be discovered more in the coming years
(Dolan et al., 2021). Furthermore, novel technologies that allow for
the manipulation of the viral quasispecies composition by
targeting specific variants could aid in ascertaining the function
of specific variants. One such approach is a CRISPR-Cas9 system
using CRISPR RNA with a shorter spacer region that has been
shown to effectively suppress DENV and the related flavivirus
ZIKV (Zika virus) (Singsuksawat et al., 2021; Chen et al., 2022).
Without a doubt, there is much to uncover about the dynamics of
DENV quasispecies diversity and its influence on fitness as well as
shaping the DENV strains of the future.
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