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ABSTRACT

Single cell whole-genome sequencing (scWGS) is
providing novel insights into the nature of genetic
heterogeneity in normal and diseased cells. How-
ever, the whole-genome amplification process re-
quired for scWGS introduces biases into the re-
sulting sequencing that can confound downstream
analysis. Here, we present a statistical method, with
an accompanying package PaSD-qc (Power Spectral
Density-qc), that evaluates the properties and qual-
ity of single cell libraries. It uses a modified power
spectral density to assess amplification uniformity,
amplicon size distribution, autocovariance and inter-
sample consistency as well as to identify chromo-
somes with aberrant read-density profiles due either
to copy alterations or poor amplification. These met-
rics provide a standard way to compare the quality
of single cell samples as well as yield information
necessary to improve variant calling strategies. We
demonstrate the usefulness of this tool in compar-
ing the properties of scWGS protocols, identifying
potential chromosomal copy number variation, deter-
mining chromosomal and subchromosomal regions
of poor amplification, and selecting high-quality li-
braries from low-coverage data for deep sequenc-
ing. The software is available free and open-source
at https://github.com/parklab/PaSDqc.

INTRODUCTION

Whole-genome DNA sequencing of single cells (scWGS)
has recently been made possible by the introduction of
single cell amplification methods. Multiple displacement
amplification (MDA) employs a highly processive poly-

merase which can synthesize new molecules (amplicons) of
∼10–100 kb. High-quality MDA-derived data show that
>90% of the human genome is amplified and 40–60% can
be covered at >30× when the average depth is ∼40–50×
(1). Copy number variations identified from low-coverage
(<5×) MDA data have been used to elucidate tumor evo-
lution (2) and to profile mosaic copy number variation
(3). With the decrease in cost of deep whole-genome se-
quencing, more recently, high-coverage (>30×) MDA data
have allowed detection of transposable element insertions
and somatic single nucleotide variants in the human brain
(1,4). Another protocol is multiple annealing and looping-
based amplification cycles (MALBAC), which amplifies the
genome in ∼0.3–5 kb fragments and can cover ∼50–90% of
the human genome (5). It has recently been proposed as a
method for screening in-vitro fertilized embryos for genetic
abnormalities prior to implantation (6,7). A third method
based on DOP-PCR can amplify ∼10% of the genome and
is suitable for copy number variation detection but not sin-
gle nucleotide variant detection (8).

All scWGS amplification methods induce biases and arte-
facts. These include non-uniform read depth that can ap-
pear as copy number aberrations, under and over amplifica-
tion of entire chromosomes, uneven amplification of the two
alleles, and correlation of features at the amplicon scale (e.g.
∼10–100 kb for MDA) (9,10), as well as single nucleotide
and indel mutations and random ligation of fragments that
are hard to distinguish from inversions. These biases fluc-
tuate depending on the exact amplification protocol used
and the state of the isolated cell (Figure 1A). For example,
heat lysis during DNA extraction can increase the rate of
artefactual C>T mutations compared to alkaline lysis (11),
and cells in the G2/M phase amplify more uniformly than
cells in the G1/G0 phase (12). These biases in the data can
affect the accuracy of variants detected in downstream anal-
ysis, and new protocols are frequently proposed claiming to
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Figure 1. Overview of single cell whole-genome sequencing and sources of artefacts, and the PaSD-qc pipeline. (A) Schematic overview of single-cell whole
genome sequencing and the artefacts created by whole-genome amplification. The extent and patterns of the biases depend on the cell condition (high- or
low-integrity) and on the scWGS protocol used (protocol A or protocol B). The pink triangles in the ‘Large-Scale Feature Correlation’ represent genomic
events (e.g., single nucleotide variants) which are spanned by a single amplicon and are thus correlated. The only correlation pattern present in bulk
sequencing is due to paired-end sequencing, represented by positions marked ‘A’ and ‘T’ spanned by the mate pair. (B) Schematic overview of the PaSD-qc
pipeline. Read depth is extracted from bam files at uniquely mappable positions. Red rectangles represent regions where the true read depth is unknown
due to low mappability, locus dropout, or sequencing bias. PaSD-qc uses a custom power spectral density estimation procedure to accurately estimate the
correlation patterns in the data, and these patterns are then used to assess amplification properties and quality control measures. By default, the results are
summarized in an interactive HTML report.

mitigate these biases and provide superior variant detection
(13–15). It is thus important to characterize the biases com-
putationally and assess the quality of single cell data.

Despite the growing popularity of scWGS, few methods
exist to perform this evaluation, and the few that do are al-
most exclusively concerned with estimating the uniformity
of amplification. This itself is a non-trivial task because the
true amplification process is masked by non-unique map-
pability, locus dropout due to amplification failure, or sam-
pling bias during sequencing; additionally, read depth is
highly correlated at positions spanned by the same ampli-
con. Current methods fail to account for these challenges.

For example, several methods estimate read depth variance
by binning reads (15,16). Such methods evaluate dispersion
at a fixed genomic scale (the bin size), which fails to capture
the correlation patterns of scWGS; resolving this requires
re-binning at many scales, which is time-intensive and com-
putationally expensive. More recently, an autocovariance
(ACF) method has been proposed (10). In theory, ACF is an
appealing choice to capture the patterns in scWGS data be-
cause it measures correlations between observations within
a dataset; however, in practice algorithms to estimate the
ACF cannot easily be modified to account for regions of
low mappability or locus dropout. Additionally, no stan-
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dard implementations of these tools are available for incor-
poration into an scWGS pipeline.

Here, we introduce a suite of tools to comprehensively
measure scWGS data quality, in a package called PaSD-qc
(Power Spectral Density-qc, pronounced ‘passed-qc’). Us-
ing techniques from digital signal processing to estimate
the power spectral density (PSD) of a sample and correct
for observation gaps due to non-unique mappability, assem-
bly gaps, and locus dropout without the need for binning,
PaSD-qc provides a robust assessment of amplification uni-
formity at all genomic scales simultaneously. Because our
method accounts for the uneven spacing of the data while
concurrently reducing background noise, the PSD can be
leveraged to obtain more accurate estimates of variance
and autocovariance than other methods; to quickly iden-
tify chromosomes which may be copy-altered; to discover
chromosomes and sub-chromosomal regions of poor am-
plification; and to compare quality across jointly analysed
samples even at very low coverage (<0.1×). Furthermore,
our statistical method can estimate the full distribution of
amplicon sizes in a sample, which has not previously been
possible. PaSD-qc can easily be incorporated into existing
pipelines and by default summarizes the quality and prop-
erties of each sample in an interactive HTML report. We
use the tool to profile several different scWGS protocols,
compare different samples from the same protocol, and se-
lect high-quality libraries from an initial set of low coverage
(<1×) data for full-depth sequencing.

MATERIALS AND METHODS

Data

MDA data from neurons of phenotypically normal individ-
uals ‘4638’ (Brain A), ‘1465’ (Brain B), and ‘4643’ (Brain
C) were previously obtained by our group (4). Addition-
ally, three muscles cells from the 1465 individual were iso-
lated, amplified, and sequenced as in that study. Thirty-
three additional MDA samples from human cells obtained
for studying chromothripsis (C1a/b, C2a/b, C3a, N1a/b,
N2a/b, N3a, N4a/b, MN1–6a/b, MN8a/b, MN9a-e) were
obtained from (17). The MN cells were treated in such a way
as to induce cell-specific copy losses and copy gains of en-
tire chromosomes. MALBAC samples were obtained from
(5), and the DOP-PCR sample from (2). In Figure 2, the
bulk sample is bulk cortex from 1465, the MDA sample is
cell 30 from 1465. All data were aligned to GRCh37 with
decoy using GATK best practices. Downsampling of sam-
ples to uniform coverage (0.1×, 1× or 5×) was performed
using SAMtools.

Power spectral density estimation

Starting with a BAM file, read depth for each arm of
each chromosome is extracted as the time series xca (t) =
(xt1 , xt2 , . . . , xtn ) where c is the chromosome, a is the chro-
mosome arm and ti is the start position of a uniquely
mappable read. Uniquely mappable positions for the hg19
genome were download from the UCSC genome browser.
By default, PaSD-qc uses mappability tracks calculated for
100 bp reads. Any series with fewer than 10 million observa-
tions is removed from further analysis. Each series xca (t) is

then divided into M windows of length L overlapping by D
positions. By default, L = 1 × 106 and D = 5 × 105.
The Lomb-Scargle algorithm (18,19) is used to calculate
the power spectral density, fca , m, for each xca , m(t) at eight
thousand frequencies, ω, evenly spaced from 1e–6 to 5e–
3 where frequency has units 1 / genomic length (bp). The
PSD for each chromosome is then estimated using a modi-
fied Welch method (20) as

fc (ω) = M
M + N

median
({

fcp, m (ω)
}M

m = 1

)

+ N
M + N

median
({

fcq ,n (ω)
}N

n = 1

)

where M and N are the number of windows on the p
and q arms of chromosome c, respectively. The average
PSD for an individual sample is then calculated as f (ω) =
median{ fc(ω)}. The standard error of the sample average
PSD for each ω is estimated using the usual sum of squared
deviation from the mean formula. The mathematical details
of Lomb-Scargle PSD estimation are described in supple-
mental information (SI). The theoretical justification for the
power spectral density as a measure of variance in an ape-
riodic signal is also given in SI.

Normalizing and plotting power spectral densities

To remove edge effects and effects arising purely from se-
quencing, we take an idealized bulk sample as the baseline
for the read depth power spectral density. The idealized bulk
PSD, fb, was derived by fitting a lowess curve to the PSD of
the 1465 bulk cortex sample. The spectral density for each
single cell sample is then normalized using the decibel trans-
form as

d B (ω) = 10 × log10
f (ω)
fb (ω)

.

This transform is standard in digital signal processing to
remove a background signal.

Traditionally, power spectral densities are plotted as a
function of frequency. However, for the genomic read depth
signal, frequency takes on the unintuitive units of inverse ge-
nomic scale (1/bp). We instead choose to plot the PSD as a
function of period, 1/ω. This results in the familiar units of
genomic scale (bp) on the x-axis. We believe this eases inter-
pretation, especially for those unfamiliar with power spec-
tral densities. The value of the y-axis (dB) can be interpreted
as a measure of variance relative to bulk sequencing, with
higher values reflecting higher variance in the read depth
signal.

Estimating the distribution of amplicon sizes from the power
spectral density

As motivated in ‘Results’, the dynamic portion of the
scWGS PSD curve reflects the cumulative distribution of
the amplicon sizes in that sample. This distribution can
thus be estimated by fitting a linearly scaled cumulative
distribution function to this dynamic region. In practice,
which distribution function should be fit is governed by
two principles: (i) how tractable is fitting the curve using
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modern gradient descent algorithms and (ii) how well does
the estimated distribution reproduce the original data. The
first problem is one purely of computation and amounts
to whether the distribution function has a closed-form so-
lution or easily approximated integral solution. We tested
three distributions which fit this criterion: the normal (erf),
logistic, and gamma distributions. To solve the second prob-
lem, we used the estimated density to simulate an idealized
amplification process and compared the PSD of the ideal-
ized process to that of the original sample. The simulation
procedure is described in the section below. We found the
normal (erf) distribution best reproduced the data.

Let y = 10 × log10
f (ω)
fb(ω) and x = −log10ω. The dynamic

region of the curve is fit as

y ≈ A+ B ∗ erf
(

x − μ

σ
√

2

)

where y can be viewed as an erf-smoothed PSD. The log10-
transformed density of the amplicon sizes is then given by
N (μ, σ 2), so the amplicon size distribution is log-normal
with mean parameter μ · log(10) and scale parameter σ 2 ·
log(10)2 (see SI). The mean, median, and variance of the
amplicon distribution are estimated analytically from the
log-normal distribution. However, there is no analytical
form for confidence intervals of the log-normal distribu-
tion, so to estimate the 95% bounds, we draw 100 000 ob-
servations from the above normal distribution and calculate
the percentiles of {10θ }1e5

θ = 1, where θ is a simulated observa-
tion.

Simulating an idealized amplification process

Let p(·|�̂) be the log-distribution of amplicon sizes esti-
mated using the above method. For a given chromosome
arm, an idealized amplification process is simulated using
the following algorithm:

1. Initialize a vector, v, of length equal to the length of the
chromosome arm with all entries zero.

2. Randomly simulate an amplicon size as l = 10θ where
θ ∼ p(·|�̂).

3. Randomly choose a starting position s, where s ∼
Unif(a, b) where a and b are the start and end coordi-
nates of the chromosome arm

4. Increase the values of the entries of v overlapped by the
amplicon by one

a. Note: if s + l > b, the simulated amplicon is discarded
5. Repeat 2–5 until the desired average depth of coverage is

reached.
a. Depth of coverage is calculated as

∑b−a
i = 0 vi/(b − a).

6. Randomly choose K non-zero observations from v
where K is the number of non-zero observations from
the chromosome arm in the original data.

The PSD of the resulting simulated read depth signal is
then estimated and normalized as described above. To ac-
count for total power differences and mean shifts between
the simulated data and the true data due to the idealized na-
ture of the above algorithm, we normalize each curve by the
maximum observed power and mean shift each curve such

that f (10−3) = 0. We chose to use the p arm of chromo-
some 3 for simulation purposes as in our experience it is a
large arm with highly consistent amplification across sam-
ples. This simulation is idealized, as it treats the size and
position of each amplicon as independent. Specifically for
MALBAC, the location of amplified regions is non-random
(1), so the simulation may not capture the full complexity of
a true amplification process, leading to differences between
the observed results and simulated results.

Estimating the autocovariance function

The autocovariance function, γ , estimates the covariance
of a time series against itself at lags k. As derived in SI, the
real-valued sample autocovariance can be estimated from
the PSD as

γ (k) =
∫ 1

2

− 1
2

cos (2πωk) f (ω) dω.

This integral can be quickly and accurately estimated nu-
merically using any modern quadrature technique. We use
Simpson’s rule.

To directly calculate the ACF from unevenly space time
series data, we define the ‘observation’ function as

I(t) =
{

1, if xt observed
0, otherwise.

For lag h we construct the set Sh = {xt | I (t + h) = 1},
which is the set of all observations such that an observation
at a distance of h is also present. The sample autocovariance
is then calculated as

γ̂ (h) = 1
|Sh |

∑
xt∈Sh

(xt − x̄) (xt+h − x̄)

where x̄ is the sample mean of the time series and |Sh | de-
notes the size of Sh . The estimate does not change percepti-
bly if the sample median is used for x̄.

Comparing the behaviour of different spectra

Given two probability densities, p1 and p2 and a vector of
observations, X, the Kullback-Leibler divergence is an in-
formatic dissimilarity measure between the two densities
and is defined as

K L (p1, p2) = Ep1

[
ln

p1 (X)
p2 (X)

]
.

It can be shown (see SI) that the Kullback-Leibler (KL)
divergence between two PSDs is

K L ( f1, f2) =
∑

0<ωi <
1
2

−ln
| f1 (ωi )|
| f2 (ωi )| + f2(ωi )

−1 f1 (ωi ) − 1 .

The KL-divergence is not a true distance metric as
K L( f1, f2) �= K L( f2, f1). Following (21), we define the
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symmetric divergence between two spectra as

d ( f1, f2) ≡ 1
N

(K L ( f1, f2) + K L ( f2, f1))

= 1
N

∑
0<ωi <

1
2

f1 (ωi )
f2 (ωi )

+ f2 (ωi )
f1 (ωi )

− 2

where N is the total number of frequencies in the sum. This
value is reflexive and always non-negative (see SI); thus d is
a principled statistical distance metric between two spectra.

To identify aberrantly amplified chromosomes, we calcu-
late d( f, fc) for each chromosome of a sample. We then
calculate the median divergence and the median absolute
difference of the divergences. A chromosome is considered
aberrant if its divergence is greater than the sum of the me-
dian and two times the median absolute difference. An aber-
rant chromosome is considered a possible copy loss if its en-
tire erf-smoothed PSD lies three standard deviations below
the sample average erf-smoothed PSD and is considered a
copy gain if its erf-smoothed PSD lies three standard devia-
tions above the sample average erf-smoothed PSD. In both
cases we additionally require that the minimum vertical dis-
tance between the two curves occurs at the smallest evalu-
ated genomic scale (1 kb). Otherwise an aberrant chromo-
some is considered poorly amplified.

To cluster samples by behaviour, the pairwise KL-
divergence is calculated between each pair of sample PSDs.
The resulting symmetric distance matrix is then used to per-
form hierarchical clustering.

Estimating median absolute pairwise difference

The BICseq2 algorithm (22) was used to calculate the copy
number in bins of 1 kb, 5 kb, 10 kb, 50 kb, 100 kb, 500 kb
and 1 mb for all 1465 and 4643 samples. Estimates were cor-
rected for mappability and GC content. For each bin size,
MAPD is calculated as median{|CNi − CNi+1|}n

i = 2, where
CNi is the copy number in the ith bin and n is the total num-
ber of bins.

Estimating chromosome-level copy number

Both BIC-seq2 (22) and Ginkgo (23) were used to estimate
copy number for each single cell sample using a bin size of
50 kb. Both algorithms gave similar results. Since Ginkgo
provides whole-number copy number estimates, we chose
to plot these results for ease of interpretation.

Implementation

PaSD-qc is implemented in python. It uses SAMtools to ex-
tract coverage from bam files and the astropy package (24)
to implement an O(n · log n) Lomb-Scargle algorithm. The
function curve fit in the scipy module is used to fit the mod-
ified erf function to the scWGS PSD. Clustering of sam-
ples is performed by the linkage function also in the scipy
module. PaSD-qc parallelizes across samples for efficient
multi-sample analysis. Source code, documentation, and ex-
amples – including all data and code to reproduce the fig-
ures in this manuscript––are available at https://github.com/
parklab/PaSDqc.

RESULTS

Characterizing the spatial correlation structure induced by
whole-genome amplification

Figure 1B provides an overview of PaSD-qc, and precise
details of the algorithm are described in Materials and
Methods. In brief, to mitigate issues of mappability, lo-
cus dropout, and sequencing bias, we extract read depth
only at uniquely mappable positions covered by at least one
read. The resulting signal is a time series (indexed by ge-
nomic position) with highly unevenly spaced observations.
To infer the correlation patterns within this series, we apply
the Lomb-Scargle algorithm (18,19) to estimate the power
spectral density (PSD) of the series. This method is one of
the few which is capable of accurately analysing correlation
patterns of unevenly spaced time series data. We addition-
ally apply a Welch correction (20) to minimize the noise of
power spectral density estimation.

PSDs measure the frequencies present in a time series, so
if a signal oscillates every six units, the PSD will show a peak
at the associated frequency of 1/6. This begs the question
whether the PSD is an appropriate approach given that read
depth is naturally an aperiodic signal (15). Rather, it can be
shown (see SI) that the PSD exactly estimates the variance
of an aperiodic signal, and further that it accurately cap-
tures all correlations present in the data, even when the ob-
servations are unevenly spaced. Thus, at any genomic scale,
the PSD estimate from our method can be interpreted as
the variance of the scWGS amplification at that genomic
scale. Additionally, the shape of the curve reveals the cor-
relation patterns induced by the amplification. For ease of
interpretation we provide estimates relative to a bulk sam-
ple, resulting in the units of decibels (dB) for the PSD.

Illustrative examples of a bulk sample, an MDA sample,
a MALBAC sample, and a DOP-PCR sample are shown in
Figure 2A. Below a genomic scale of ∼1 kb, the bulk sample
shows a characteristic pattern arising from paired-end se-
quencing. For a read pair with insert size k starting at posi-
ton t, there will be an increase in signal at xt and xt+k and a
decrease in signal between the two reads. This results in pe-
riodicity at small genomic scales with the strongest period-
icity around the mode of the insert size distribution (350 bp
for the bulk sample shown). In fact, at small genomic scales,
the PSD resembles the distribution of insert sizes in a sam-
ple (Supplementary Figure S1). Above a genomic scale of
∼1 kb, the bulk sample is virtually flat with low amplitude,
indicating that, as expected, the coverage profile from bulk
sequencing has low-variance and has no large-scale correla-
tion structure. The slight increase in the PSD at scales >100
kb is an edge effect of the Welch correction. This edge effect
is removed from scWGS PSDs by using an idealized bulk
sample as a baseline (see Materials and Methods).

The MDA and MALBAC curves have a more complex
shape above the pair-end scale. To interpret these curves,
consider an amplicon of length h starting at position t. The
read depth signal xt will be correlated with xt+i for i < h.
How often a correlation at length i is observed depends on
the number of amplicons with length h ≥ i . If i is less than
the smallest amplicon, then read depth xt and xt+i will al-
most always be correlated, resulting in small local variance

https://github.com/parklab/PaSDqc
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Figure 2. Using power spectral density to infer sample-specific amplification properties of scWGS data. (A) PaSD-qc power spectral densities for a bulk
sample (blue), MDA sample (green), MALBAC sample (purple), and DOP-PCR sample (gold). The very low noise of the estimates allows amplification
properties of the three samples to be inferred, including the paired-end insert size distributions (Supplementary Figure S1), the range of amplicon sizes for
MDA (∼5–100 kb) and MALBAC (∼1–5 kb), and the sub- and supra-amplicon variances of the two amplification protocols. Interestingly, whereas MDA
has a higher supra-amplicon variance than MALBAC, its sub-amplicon variance is considerably lower. DOP-PCR has the lowest supra-amplicon variance
but the highest variance at small-genomic scales; as shown by the faded portion of the DOP-PCR curve, its variance peaks at 200–300 bp consistent with
sonication of DNA to this size prior to amplification. (B) Power spectral density estimates using the algorithm from Leung et al. (13). A similar algorithm
is used in Zong et al. (5). Background noise dominates the estimates making feature extraction infeasible. Resolution was limited to 2 kb because the data
were binned into 1 kb bins as suggested per those algorithms. The DOP-PCR curve is not shown for clarity.

and thus a lower amplitude PSD at sub-amplicon scales.
For length i greater than the largest amplicon, xt and xt+i
are necessarily independent, resulting in a higher amplitude
PSD at supra-amplicon scales, reflecting the unevenness of
the amplification. The PSD will smoothly transition from
the sub- to supra-amplicon variances precisely following the
cumulative distribution of amplicon sizes. These patterns
are apparent in Figure 2A. The MDA curve rises from ∼5–
100 kb and the MALBAC curve rises from ∼1–5 kb, consis-
tent with expected amplicon sizes for these protocols. Ad-
ditionally, the supra-amplicon variance of the MALBAC
library is lower than the supra-amplicon variance of the
MDA library while the opposite is true of the sub-amplicon
variances, reflecting that MALBAC provides more consis-
tent amplification at positions far apart but that MDA is
locally more uniform since two positions close together are
likely to be spanned by a single amplicon. The DOP-PCR
curve shows a peak in variance at 200–300 bp, consistent
with the DNA being sonicated to this size prior to ampli-
fication; it then asymptotically approaches the variance of

a bulk sample as expected. As DOP-PCR samples are se-
quenced to very low coverage (<<1×), the utility of our
method is limited, so we do not further consider this am-
plification protocol.

We are not the first to propose power spectral density esti-
mation as a uniformity measure. However, prior estimation
procedures (5,13) require binning the data into 1 kb bins
and do not take steps to reduce background noise. This re-
sults in an inferior PSD estimate where resolution is lim-
ited to a minimum genomic scale of 2 kb (since the Nyquist
frequency is 5 × 10−4), and fine scale differences between
samples are obscured by the high level of background noise
(Figure 2B). Additionally, the PSD was criticized as lacking
reproducibility since a Fourier transform may not be sta-
ble in regions of zero read depth or low mappability (15).
As stated before, PaSD-qc corrects for these regions, result-
ing in highly reproducible estimates (Supplementary Figure
S2).
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Estimating the distribution of amplicon sizes in scWGS data

Since the dynamic region of the scWGS PSD curve reflects
the cumulative distribution of amplicon sizes, this distribu-
tion can be estimated by fitting a properly scaled probabil-
ity function to the PSD. The error function (erf) provides
a particularly good fit (Figure 3A) and defines a density
over the log10 amplicon sizes of the form N (μ, σ 2) (Figure
3B) where μ and σ are parameters estimated from the erf
curve. In standard coordinates, the distributions are skewed
with heavy tails extending into larger genomic ranges, fol-
lowing a log-normal distribution with mean and scale pa-
rameters μ · log(10) and σ 2 · log(10)2, respectively (Figure
3C). To confirm the accuracy of this estimation, we sim-
ulated an idealized amplification process on the p-arm of
chromosome 3 using the amplicon size distribution esti-
mated from the MDA curve as the generative model (see
Methods). The resulting read depth signal was then anal-
ysed using the PaSD-qc algorithm. Figure 3D shows the re-
sults of the simulation (red curve) along with the true es-
timate (green curve); Supplementary Figure S3 shows the
simulated curve for the MALBAC sample. We additionally
tested the logistic and gamma distributions as possible mod-
els (Supplementary Figure S3). While the logistic and erf
functions produce similar fits, we opted to use the erf fit
as it allows amplicon sizes to be modelled analytically us-
ing a log-normal distribution (see Materials and Methods).
The simulated curves are over-dispersed for MALBAC, sug-
gesting all three distributions overestimate the variance of
MALBAC amplicons. However, we are limited to these den-
sity functions for two reasons: (i) the cumulative distribu-
tion must be sigmoidal and, more restrictively, (ii) the cumu-
lative distribution must have a functional form which can be
quickly and stably approximated using numerical methods.
It is also possible that the idealized simulation process does
not adequately capture the complex, small-scale dynamics
of the MALBAC amplification process, leading to the ob-
served over-dispersion (see Materials and Methods).

The median, mean and variance of the amplicon sizes per
sample are determined analytically from the log-normal dis-
tribution while 5% and 95% confidence bounds are inferred
using Monte Carlo simulation (see Materials and Meth-
ods). For the MDA sample, the median amplicon size is 19
kb and the 5% minimum and 95% maximum amplicon sizes
are 3.7 and 103 kb, respectively; for the MALBAC sample,
the median amplicon size is 2.6 kb and 5–95% bounds are
1.2 and 5.8 kb, respectively (Figure 3C). We additionally
profiled the amplicon distribution of 35 samples from (4)
and 33 samples from (17) at high coverage (∼5X) and found
that distributions are consistent between samples amplified
with the same protocol but divergent between different pro-
tocols (Figure 3E); samples using the Qiagen REPLI-g Sin-
gle Cell Kit with heat lysis (17) have a smaller median am-
plicon size than samples using Epicenter RepliPHI Phi-29
with alkaline lysis (4) (13.3 ± 1.2 kb versus 6.4 ± 1.0 kb;
P-value <1e–31 by Kolmogorov–Smirnov test).

A method for calculating the characteristic length scale
of correlation in scWGS was previously proposed (10). We
profiled four samples also profiled in that study and found
our estimated median amplicon size was consistent with
though slightly smaller than their characteristic length scale

estimates (Supplementary Table S1). No other method esti-
mates the full distribution of amplicon sizes in scWGS data.
Our method is stable in the presence of chromosomal copy
alterations and consistent at depths of 0.5× and greater,
though there is a tendency to overestimate amplicon sizes
at low coverages (Supplementary Figure S4).

Comparison to existing scWGS quality control metrics

The autocovariance function (ACF) of scWGS data has
previously been proposed as a quality metric. While the
ACF can be calculated directly from unevenly spaced time
series data in theory, no computationally efficient algorithm
exists to perform the estimation, and implementations are
either time intensive, memory intensive, or both. Addition-
ally, the statistical power at each lag varies and no theoret-
ical results exist on the consistency of the unevenly spaced
ACF estimator. However, it is possible and theoretically jus-
tified to calculate the ACF from the PSD (see SI). PaSD-qc
implements an efficient algorithm based on this principle
(see Materials and Methods).

To compare the performance of the PaSD-qc ACF
against the directly calculated estimate, we analysed all 16
single cell samples from the 1465 individual in (4) using
both methods (Figure 4A). These samples were pair-end se-
quenced with an average insert size of 350 bp. The PaSD-qc
ACF estimate consistently identifies the peak in correlation
expected at this scale; the direct estimation fails to capture
this feature. Additionally, the autocorrelation should oscil-
late around zero beyond the largest amplicon size. While
this behaviour is present in the PaSD-qc ACF, the direct
estimation remains positive beyond 1 mb, a genomic scale
far larger than the upper amplicon size limit of the Phi-29
polymerase used in MDA. This empirically demonstrates
the potential inaccuracy of directly calculating the ACF
from highly unevenly spaced observations and illustrates
how PaSD-qc surmounts this limitation.

Additionally, the ACF at lag zero (equivalently the inte-
gral of the PSD) provides an estimate of the overall vari-
ance. This dispersion estimate outperforms the other com-
monly used dispersion estimate, median absolute pairwise
difference (MAPD) (16,25). MAPD is calculated by bin-
ning the read depth signal into fixed-width bins, calculat-
ing the copy number in each bin, and taking the median of
the pair-wise differences between all neighbouring bins. We
calculated MAPD scores at a range of bin sizes (Figure 4B)
and the PaSD-qc PSD estimates (Figure 4C) for all 1465
and 4643 samples from (4). Both reveal 1465 samples have
higher supra-amplicon variance than 4643 samples. How-
ever, calculating MAPD even at a single bin size is computa-
tionally intensive; as such, it is usually calculated only for a
single bin size, often 50 kb. At this scale, MAPD fails to dis-
tinguish a difference between the sets of samples (Figure 4D,
P-value: 0.11 by Kolmogorov–Smirnov test). However, the
PaSD-qc variance readily discriminates the two sets (Figure
4E, P-value: 1.7e–6 by Kolmogorov–Smirnov test). More-
over, since MAPD requires estimating copy number, it be-
comes unreliable at small bin sizes because copy estimation
in scWGS is inaccurate at genomic scales below ∼50 kb.
This inaccuracy is appreciable in Figure 4B as MAPD in
4643 samples appears higher than in 1465 samples below
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Figure 3. The distribution of amplicon sizes can be directly estimated from the power spectral density. (A) MDA (green) and MALBAC (purple) curves as
in Figure 2 along with the inferred error function (erf) fit of the dynamic region (red), the median amplicon size (pink stars), and 5% and 95% bounds on
amplicon sizes (yellow stars). (B and C) Distributions of inferred amplicon sizes in the MDA and MALBAC sample. Densities are normally distributed in a
log scale (B), but highly skewed according to a log-normal distribution in standard coordinates (C). (D) The average power spectral density (red) resulting
from ten simulated amplification processes using the MDA density shown in (C) as the generative distribution. The shaded region represents the 95%
confidence interval and the green curve corresponds to the original data. The MALBAC fit and fits using other distributions are shown in Supplementary
Figure S3. (E) The average amplicon size distributions for 35 samples from Lodato et al. (4) (green) and 33 samples from Zhang et al. (17) (blue) reveal
that different MDA protocols produce different amplicon size distributions, but a single protocol produces consistent amplicon size distributions across
samples (shaded regions represent 95% confidence intervals around the average).

50 kb despite their having identical variances at these scales
(Figure 4C).

Identification of chromosomes with potential copy number al-
terations and regions with amplification abnormalities

The close relationship between a power spectral density esti-
mate and a normal distribution (21) permits the calculation
of a statistical distance measure, the symmetric Kullback–

Leibler (KL) divergence, between two spectra (see Materi-
als and Methods). For a given sample, PaSD-qc identifies
chromosomes with aberrant amplification patterns by cal-
culating the distance of each chromosome’s PSD from the
sample-average PSD. A chromosome is considered aberrant
if it’s KL-divergence is two standard deviations beyond the
sample median across all chromosomes (Figure 5A).
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Figure 4. The PaSD-qc variance measure outperforms prior dispersion estimates. (A) Average sample autocovariance with 95% confidence intervals for
the sixteen 1465 samples from Lodato et al. (4) as calculated by PaSD-qc (blue) and by direct estimation (gold). See text for a comparison. (B) Average
MAPD scores with 95% confidence intervals calculated for seven bin sizes ranging from 1 kb to 1 mb for sixteen 1465 samples and eleven 4638 samples
from Lodato et al. (C) The average power spectral density with 95% confidence intervals for the same samples. (D) Densities for the MAPD scores of the
two sets of samples at 50 kb, the standard bin size at which the score is calculated. At this bin size, MAPD cannot distinguish behaviour of the two sets of
samples. (E) Densities of PaSD-qc variance for the two sets of samples are significantly different.

To investigate how this classification behaves in the pres-
ence of true copy alterations, we analysed 19 samples from
(17), which had rigorously validated cell-specific copy gains
and losses. We found significant KL-divergence can be
caused both by true chromosome copy changes and poor
amplification. However, a chromosomal copy gain mani-
fests as a large mean shift of the chromosomal PSD up from
the sample average PSD whereas a deletion manifests as a
mean shift down from the sample average. Chromosomes
with altered amplification patterns generally have curves
with shapes distinct from the sample average (Figure 5B, left
panel; Supplementary Figure S5). This is further reflected in
the chromosome-specific amplicon distributions; gains and

losses have distributions similar to the sample average dis-
tribution, whereas aberrantly amplified chromosomes often
have distinct distributions (Figure 5B, right panel; Supple-
mentary Figure S5).

We developed a simple heuristic algorithm which uses
these properties to categorize chromosomes as harbouring
a possible copy loss, possible copy gain, or as aberrantly
amplified (Figure 5C). This heuristic accurately identifies
most true-positive whole-chromosome CNVs (37/40) as in-
ferred by the BICseq2 and Ginkgo algorithms (Figure 5D)
at the expense of a handful of false-positives (9/378). Chro-
mosome 10 is not flagged in any sample as the gain ef-
fects only the q arm. Similarly, chromosome 4 of MN8a is
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Figure 5. Identification of copy-altered chromosomes and poorly amplified chromosomes. (A) KL-divergence between individual chromosomes and the
sample average PSD of MN2b from (17). Black dashed line is two standard deviations above the median divergence. (B) The erf-smoothed PSD of the
sample average (dark blue), a true copy-loss (light blue), a true copy-gain (green), and a suspected poorly amplified chromosome (red) (left panel), and the
inferred amplicon distributions for the sample and the individual chromosomes (right panel). The shaded region is three standard deviations around the
average sample PSD. (C) Classification of chromosomes at 1X coverage across all 19 micro-nucleated samples from (17) based on heuristic behaviour of
each chromosome’s PSD. (D) The average copy number of each chromosome as inferred using the Ginkgo algorithm.

not identified as the gain affects only part of the chromo-
some (Supplementary Figure S6). When only the q arms
of these chromosomes are analysed, the gains are identifi-
able (Supplementary Figure S7). MN9d is masked in Fig-
ure 5D as the Ginkgo algorithm failed to provide meaning-
ful calls (Supplementary Figure S6). At lower depths, the
heuristic algorithm becomes more sensitive to copy gains,
identifying 28/29 whole-chromosome copy gains at the ex-
pense of sensitivity to deletions, detecting 6/11. At high cov-
erage, it becomes more specific for deletions (3/378 false-
positives) at the expense of sensitivity to true-positive dele-

tions (9/11) and gains (2/29) (Supplementary Figure S8).
Chromosomes 19, 21 and 22 are identified as poorly ampli-
fied in most samples; they may be hard to amplify due to
their high gene-density and GC content compared to other
chromosomes, consistent with known difficulties of ampli-
fying GC-rich sequences and further supported by the fact
that other small chromosomes with lower gene-density and
GC content (e.g. chromosomes 18 and 20) are not identified
as aberrantly amplified.

This same method can be used to quickly identify
sub-chromosomal regions which have aberrant amplifica-
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tion properties. In this use-case, a chromosome is treated
as a sample, and each sub-region viewed as a pseudo-
chromosome. PaSD-qc then identifies sub-regions with KL
measures divergent from the chromosome average. This
method identifies a large spike in coverage at the centromere
of chromosome 1 in MN1a (Supplementary Figure S9).
This analysis can be run in less than one minute for a given
chromosome.

Discriminating high- and low-quality samples

From previous sequencing data, we identified three sam-
ples of low quality (Supplementary Figure S10). Compar-
ing them to high-quality samples from 4638 provides an il-
lustrative example of how PaSD-qc can be used to distin-
guish high- and low-quality samples. Two samples (lowQual
1 and 2) have higher supra amplicon and total variance than
4638 samples whereas lowQual 3 behaves as if the entire
sample were haploid (Figure 6A). This over-dispersion of
read depth in lowQual 1 / 2 compared to 4638 samples and
the ‘haploid-like’ behaviour of lowQual 3 are apparent by
eye from the copy number profiles of these samples (Supple-
mentary Figures S11). Additionally, all three lowQual sam-
ples have smaller median amplicon sizes and higher vari-
ance amplicon size distributions (Figure 6B).

PaSD-qc can cluster the libraries based on behaviour us-
ing the symmetric KL-divergence. Unsurprisingly, it clus-
ters the 4638 samples, clusters lowQual 1 and 2, and places
lowQual 3 on its own (Figure 6C). Finally, PaSD-qc can
use the symmetric KL-divergence to probabilistically assign
samples to different categories (e.g. high- and low-quality)
using pre-computed gold-standard spectra. The toolbox
is distributed with several pre-computed spectra from the
data analysed in this paper and includes methods which
allow users to generate gold-standard spectra from their
own data. PaSD-qc can discriminate the quality of these six
samples with coverage as low as 0.1X (Supplementary Fig-
ure S12). However, at this low coverage, the nuances of the
PSD used to estimate the amplicon distribution and evalu-
ate chromosome behaviour are diminished, precluding ap-
plying these methods.

DISCUSSION

Here, we have demonstrated the effectiveness of PaSD-qc
to comprehensively evaluate the quality and amplification
properties of scWGS data. Although several studies have re-
cently compared the uniformity of different scWGS proto-
cols (25–27), each study uses its own collection of statistics,
making the task of determining the superior protocol diffi-
cult. We believe PaSD-qc represents an important step for-
ward for the field as it provides a standardized suite of anal-
yses that researchers can easily insert into any pipeline. In
particular, PaSD-qc introduces novel methods to estimate
the full distribution of amplicon sizes in a sample, iden-
tify individual chromosomes which may be copy-altered
or poorly amplified, discover sub-chromosomal regions of
aberrant amplification, and compare samples based on am-
plification behaviour.

These analyses not only allow comparisons across am-
plification protocols but also provide an important starting

point for variant analysis. It was recently demonstrated that
the correlation in allelic balance induced by the large am-
plicons of MDA can be exploited to increase the accuracy
of single cell single nucleotide variant (SNV) calling (11).
Dong et al. proposed a method employing a kernel smooth-
ing algorithm that requires a user-defined bandwidth to
compute the expected balance at a given genomic locus. The
length of the bandwidth reflects the user’s belief about the
maximum distance at which informative correlation exists,
and the authors suggest using a fixed bandwidth of 10 kb for
all samples. However, PaSD-qc provides a principled, data-
driven strategy to assign a tailored bandwidth to each in-
dividual sample as the 95% upper bound on amplicon sizes
naturally defines a maximum correlation distance. PaSD-qc
further allows users to determine the bandwidth for individ-
ual chromosomes or even sub-chromosomal regions, by ap-
plying amplicon distribution estimation to only that chro-
mosome or region. Given that the accuracy of amplicon size
estimation becomes more accurate as depth increases, we
recommend running PaSD-qc at higher coverage (e.g. 5X)
if results are being used to calibrate mutation detection al-
gorithms.

Additionally, our results address the question of whether
in vitro amplification of the human genome by the Phi-29
MDA polymerase (28) produces amplicons of 10–100 kb
as documented in bacterial genomes (29). We found that
some protocols approach the upper bound while others pro-
duce far smaller amplicons, with the lower bound in the
1–5 kb range. This has important consequences for PacBio
or 10X Genomics sequencing on single cells in which frag-
ments many kilobases in length are required. In particular,
only some protocols may consistently produce large enough
amplicons to make long-insert or haplotype-based sequenc-
ing possible. PaSD-qc provides a principled, efficient, and
inexpensive way to measure a sample’s suitability for these
technologies using low coverage Illumina sequencing.

Our results demonstrate that it is possible to detect
whole-chromosome copy alterations using power spectral
density estimation. We present this method not to replace
bone fide copy number callers but to guide further analy-
sis. Copy calling algorithms can be time and computation-
ally intensive. PaSD-qc can comprehensively profile many
samples in a fraction of the time using far less computa-
tional resources. Pre-profiling with PaSD-qc would allow
researchers to identify samples which may harbour whole-
chromosome copy alterations and to prioritize further anal-
ysis of these samples. We developed a heuristic method for
classifying chromosomes. Heuristics are generally not opti-
mal, and we suspect a probabilistic classification algorithm
trained on many validated CNVs will demonstrate supe-
rior performance. As the number of publicly available high-
coverage samples increases, such an algorithm will become
possible. Additionally, the heuristic was calibrated using
MDA samples, and as such we do not recommend its use
on samples amplified with other protocols.

In principle, it should be possible to apply this method
to detect sub-chromosomal copy number alterations. How-
ever, there are virtually no validated sub-chromosomal copy
events in high coverage scWGS to use as training data. We
therefore currently recommend sub-chromosomal outlier
detection only as a method of blacklisting regions which
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Figure 6. PaSD-qc separates high-quality from low-quality samples and groups similarly behaving libraries. (A) power spectral densities for three high-
quality libraries (green) and three low quality libraries (pink, yellow, and blue). Genome-wide copy profiles support the higher dispersion of lowQual 2
and the haploid-like behaviour of lowQual 3 (Supplementary Figure S11). (B) Amplicon size density plots for the six samples. C. Hierarchical clustering
using the symmetric KL-divergence.

have altered amplification properties and thus may not yield
accurate mutation detection.

Lastly, full mutational analysis at the single cell level re-
quires high-coverage (>30×) sequencing, but the uneven
quality of scWGS data, primarily due to the variable qual-
ity of cells, has often resulted in only a portion of the data
generated being usable. The ability to accurately charac-
terize data quality from low-coverage data suggests that
a cost-effective approach in scWGS data generation is to
screen a large number of cells at very low coverage (e.g.
<0.1×) and select only a small number of high-quality can-
didates for additional sequencing. PaSD-qc provides an effi-
cient computational framework to perform this evaluation.
While the specific PaSD-qc metrics defining ‘high-quality’
samples will depend on the amplification protocol and par-
ticular application, in general lower sub-, supra- and over-

all variance is desirable; samples with less dispersed ampli-
con size distributions are usually of superior quality; and,
most importantly, samples amplified using the same proto-
col should have highly similar PSDs. Samples with outlying
PSDs should be discarded as poor quality.

AVAILABILITY

Source code, documentation, and examples – including all
data and code to reproduce the figures in this manuscript –
are available at https://github.com/parklab/PaSDqc.

BAM files for the 1465 individual from (4) are available
for downloaded from the Short Read Archive (SRA) with
accession number SRP042470; BAMs for 4638 and 4643
from (4) are available from SRA with accession numbers
SRP061939. BAMs from (5) are available from SRA with

https://github.com/parklab/PaSDqc
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accession number SRA060929 and from (17) with accession
number SRP052954. The DOP-PCR sample was obtained
from (2) and has SRA accession number SRX342583. The
BAMs for the three additional lowQual samples shown in
Figure 6 are available from the corresponding author upon
reasonable request.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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