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Abstract 38 

To understand the diversity of immune responses to SARS-CoV-2 and distinguish features that 39 
predispose individuals to severe COVID-19, we developed a mechanistic, within-host mathematical 40 
model and virtual patient cohort. Our results indicate that virtual patients with low production rates of 41 
infected cell derived IFN subsequently experienced highly inflammatory disease phenotypes, compared 42 
to those with early and robust IFN responses. In these in silico patients, the maximum concentration of 43 
IL-6 was also a major predictor of CD8+ T cell depletion. Our analyses predicted that individuals with 44 
severe COVID-19 also have accelerated monocyte-to-macrophage differentiation that was mediated by 45 
increased IL-6 and reduced type I IFN signalling. Together, these findings identify biomarkers driving 46 
the development of severe COVID-19 and support early interventions aimed at reducing inflammation. 47 

Author summary 48 

Understanding of how the immune system responds to SARS-CoV-2 infections is critical for 49 
improving diagnostic and treatment approaches. Identifying which immune mechanisms lead to 50 
divergent outcomes can be clinically difficult, and experimental models and longitudinal data are only 51 
beginning to emerge. In response, we developed a mechanistic, mathematical and computational model 52 
of the immunopathology of COVID-19 calibrated to and validated against a broad set of experimental 53 
and clinical immunological data. To study the drivers of severe COVID-19, we used our model to 54 
expand a cohort of virtual patients, each with realistic disease dynamics. Our results identify key 55 
processes that regulate the immune response to SARS-CoV-2 infection in virtual patients and suggest 56 
viable therapeutic targets, underlining the importance of a rational approach to studying novel 57 
pathogens using intra-host models. 58 

Introduction 59 

 Clinical manifestations of SARS-CoV-2 infection are heterogeneous, with a significant 60 

proportion of people experiencing asymptomatic or mild infections that do not require hospitalization. 61 

In severe cases, patients develop coronavirus disease (COVID-19) that may progress to acute 62 

respiratory distress syndrome (ARDS), which is frequently accompanied by a myriad of inflammatory 63 

indicators [1]. Mounting evidence points to a hyper-reactive and dysregulated inflammatory response 64 

characterized by overexpression of pro-inflammatory cytokines (cytokine storm) and severe 65 

immunopathology as specific presentations in severe COVID-19 [2–6]. An over-exuberant innate 66 

immune response with larger numbers of infiltrating neutrophils [7,8] arrests the adaptive immune 67 

response through the excessive release of reactive oxygen species that leads to extensive tissue damage 68 

and depletion of epithelial cells [9]. In addition, lymphopenia, in particular, is one of the most 69 

prominent markers of COVID-19 and has been observed in over 80% of patients [6, 10–12]. However, 70 

the immune mechanisms that lead to disparate outcomes during SARS-CoV-2 infection remain to be 71 

delineated.  72 

Cytokines are critically important for controlling virus infections [13, 14] and are central to the 73 

pathophysiology of COVID-19, sometimes playing a detrimental role in the context of a cytokine storm 74 
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[10]. For example, interleukin-6 (IL-6) can stimulate CD8+ T cell expansion under inflammatory 75 

conditions [15]; however, in hospitalized SARS-CoV-2 patients with lymphopenia, IL-6 has been 76 

shown to be elevated [16] without an increase in CD8+ T cell counts [17]. Type I interferons (such as 77 

IFNs-α, β [18]) also play a major role in limiting viral replication by inducing a refractory state in 78 

susceptible and infected cells [19–21]. Due to this, it has been suggested that a delay in mounting an 79 

effective IFN response may be responsible for COVID-19 severity [22] as it is for other highly 80 

pathogenic coronavirus (i.e. SARS-CoV and MERS) infections [13]. Overall, patients with severe 81 

COVID-19 present with lymphopenia [14, 23], and are likely to have increased inflammatory cytokines 82 

such as IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-83 

stimulating factor (G-CSF) [7, 17, 24].  84 

 Because identifying which immune mechanisms lead to divergent outcomes can be difficult 85 

clinically, and experimental models and longitudinal data are only beginning to emerge, theoretical 86 

explorations are ideal [25]. Quantitative approaches combining mechanistic disease modelling and 87 

computational strategies are being increasingly leveraged to investigate inter- and intra-patient 88 

variability by, for example, developing virtual clinical trials [26–28]. More recently, viral dynamics 89 

models [29, 30] have been applied to understand SARS-CoV-2 within-host dynamics and their 90 

implications for therapy [31–36]. However, there are few comprehensive models that integrate detailed 91 

immune mechanisms and allow interrogation of the dynamics controlling divergent outcomes, and 92 

none have attempted to quantify the high degree of variability in patient responses to SARS-CoV-2 93 

through modelling.  94 

 In this study, we developed a mechanistic mathematical model to describe the within host 95 

immune response to SARS-CoV-2. We explicitly modelled the interactions between epithelial cells, 96 

innate and adaptive immune cells and cytokines. The model was fit to various in vitro, in vivo, and 97 

clinical data, analyzed to predict how early infection kinetics facilitate downstream disease dynamics, 98 

and used to create a virtual patient cohort with realistic disease courses. Our results suggest that mild 99 

and severe disease are distinguished by the rates of monocyte differentiation into macrophages and of 100 

IFN production by infected cells. In our virtual cohort, we found that severe COVID-19 responses were 101 

tightly correlated with a delay in the peak IFN concentration and that a large increase in IL-6 was the 102 

dominate predicator of CD8+ T cell depletion in our virtual cohort. Importantly, these results provide 103 

insight into differential presentations of COVID-19 by identifying key regulators of severe disease 104 

manifestation particularly related to monocyte differentiation and IL-6 concentrations.  105 

Results  106 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.425420doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.05.425420
http://creativecommons.org/licenses/by-nd/4.0/


 
4 

Modelling the immune response to SARS-CoV-2 and the impact of delayed IFN on infection 107 
dynamics 108 
 To study the dynamics of SARS-CoV-2 infection and the development of COVID-19, we 109 

constructed a computational biology model of host-pathogen interactions (Eqs. S1-S22, with variables 110 

and parameters summarized in Table S1 and schematic in Figure 1). The model includes susceptible 111 

lung epithelial cells (𝑆) that encounter virus (𝑉) and become infected (𝐼) before turning into damaged 112 

or dead cells (𝐷) due to viral infection or immune involvement. The immune response is orchestrated 113 

by a myriad of cytokines that act to stimulate the immune cell subsets present in the tissues and recruit 114 

cells from the bone marrow and circulation (Figure 1A). Upon infection, cells begin secreting type I 115 

IFNs (𝐹) that cause lung epithelial cells to become resistant to infection (𝑅) and decrease the 116 

production of newly infected cells [37]. Through stimulation by infected and dead cells, alveolar (lung 117 

tissue-resident) macrophages (𝑀!") become inflammatory macrophages, which also arise through 118 

macrophage (𝑀) differentiation by stimulation by GM-CSF (𝐺) or IL-6 (𝐿) [38]. Neutrophils (𝑁) are 119 

recruited to the infection site by G-CSF and release reactive oxygen species (ROS) causing bystander 120 

damage to infected and susceptible cells [39, 40]. CD8+ T cells (𝑇) are subsequently recruited to the 121 

infection site following a delay to account for antigen presentation, with expansion modulated by type I 122 

IFN and IL-6 concentrations. See Materials and Methods for a complete description. 123 
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 124 
Figure 1. Immune response to SARS-CoV-2 infection model schematic. The model in Eqs. S1-S22 reduced 125 
to A) cell dynamics B) cytokine production dynamics and C) cytokine binding kinetics. Unique lines represent 126 
induced cell death (double line), recruitment (dashed line), cell type change or production (solid line), and 127 
cytokine production (square arrow). Cell and/or cytokines along joining lines denote a causal interaction. A) 128 
Virus (𝑉) infects susceptible lung epithelial cells and creates either infected (𝐼) or resistant (𝑅) cells depending 129 
on the concentration of type I IFN. Infected cells then either die and produce new virus or are removed via 130 
inflammatory macrophages (𝑀!") or CD8+ T cells (𝑇) that induce apoptosis to create dead cells (𝐷). Neutrophils 131 
(N) cause bystander damage (death) in all epithelial cells and are recruited by individually G-CSF and IL-6 132 
concentrations. CD8+ T cells are recruited by infected cells and their population expands from IFN signalling. T 133 
cell recruitment is inhibited by IL-6 concentrations. Monocytes (𝑀) are recruited by infected cells and GM-CSF 134 
and differentiate into inflammatory macrophages based on the individual concentrations of GM-CSF and IL-6. 135 
Tissue-resident macrophages (𝑀!#) also become inflammatory macrophages through interaction with dead and 136 
infected cells. Dead cells are cleared up by inflammatory macrophages and also cause their death. B) Type I IFN 137 
is produced by infected cells, inflammatory macrophages and monocytes. G-CSF is produced solely by 138 
monocytes and GM-CSF is produced by monocytes and macrophages. IL-6 is produced by monocytes, 139 
inflammatory macrophages and infected cells. C) Cytokine receptor binding, internalization and unbinding 140 
kinetics considered for each cell-cytokine interaction.  141 

 Because the model has several parameters that are undetermined biologically and insufficient 142 

data exists to confidently estimate their values, we used a stepwise approach to parameter estimation 143 

(see Materials and Methods and Figures S1-S5). We first confirmed that we could recapitulate early 144 

infection viral kinetics with a reduced version of the full model (‘viral model’). For this, we excluded 145 
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immunological variables (i.e. only including Eqs. 6-9) and estimated parameters relating to viral 146 

kinetics by fitting to viral load data from macaques (see Materials and Methods). The resulting model 147 

dynamics were in good agreement to these early infection data (Figure 2) and demonstrate a rebound 148 

in epithelial lung tissue as the viral load and infected cells decrease.  149 

 150 
Figure 2. Viral dynamics model fit to macaque viral data from Munster et al. [41] A reduced version of the 151 
full model (all cytokine and immune cells set to 0, Eqs. 6-9) was fit to data from macaques [41] to estimate 152 
preliminary viral kinetic parameters. A) Virus (𝑉) infects susceptible cells (𝑆) making infected epithelial cells (I) 153 
which then die to produce dead cells (𝐷) and new virus. B) Comparison of predicted viral dynamics compared to 154 
observations from 6 animals, with susceptible cell kinetics (left) with predictions of infected and dead cells over 155 
time (right). We estimated 𝛽, 	𝑝, 	𝑑" , 	𝑉$ and 𝑑% from the reduced model in A) fit to data from Munster et al. [41] 156 
measuring the viral load in macaques after challenge with SARS-CoV-2 (Table S1). 157 

We then isolated the IFN dynamics to assess clinical and experimental findings suggesting that 158 

delaying IFN results in more severe presentations in highly pathogenic coronavirus infections including 159 

SARS-CoV-2 [13, 14, 22]. Using the parameters obtained from the ‘viral model’ (Eqs. 6-9; Table S1), 160 

we then simulated the impact of IFN with the ‘IFN model’ (Eqs. 10-16 and Figure 3A). We examined 161 

the predicted dynamics in response to delayed IFN by simulating with and without a fixed delay for 162 

IFN production from infected cells. Our results suggest that delaying type I IFN production by 5 days 163 

yields a 10-fold increase in tissue damage with only 20% of the lung tissue remaining on day 2 (Figure 164 

3B), caused by the increase in infected cells and subsequent lack of resistant cells. IFN dynamics were 165 

matched to systemic IFN-α concentrations from clinical cohorts by visual predictive check to confirm 166 

that predictions fell within the observed ranges [42] (Figure S6A). 167 
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 168 
Figure 3.  Delayed type I IFN response impacts heavily on tissue survival in reduced model. A) Submodel 169 
(Eqs. 10-16) with all non-IFN cytokines and immune cell interactions set to zero and only considering 170 
interactions between virus (𝑉) and susceptible (𝑆), infected (𝐼), resistant (𝑅), and dead (𝐷) epithelial cells. B) 171 
Predictions from the simplified model without delayed IFN production (solid lines) versus with a constant delay 172 
(𝜏& = 5 days) (dotted lines). Solid black (left panel): viral loads from SARS-CoV-2 infection in macaques by 173 
Munster et al. [41] is overlayed with predicted viral dynamics. 174 

Immunologic determinants of mild and severe disease 175 

 Next, to establish the mechanisms that differentiate mild versus severe disease, we simulated 176 

the full model (Eqs. S1-S22) using two different parameter sets. Mild disease dynamics were recreated 177 

using the estimated parameter values (Table S1) with the virus decay rate (𝑑#) and the infected cell 178 

death rate (𝑑$) recalculated to ensure that the maximum death rate of the virus and infected cells did not 179 

exceed the value obtained from the reduced viral dynamics model fit (Figure 2). Simulating mild 180 

disease, we predicted that all cell populations and cytokines rapidly return to homeostasis, with the 181 

immune response effectively clearing virus within 10 days (Figure 4 and Figure S7).  182 

Because severe SARS-Cov-2 infection results in lower levels of IFN [42] and increased monocytes 183 

[43], we recapitulated severe disease by modulating model parameters relating to these processes, i.e., 184 

the rates of IFN production from infected cells and macrophages were decreased, and the rate of 185 

monocyte recruitment from the bone marrow by infected cells was increased. With these changes, the 186 

model predicted a dramatic shift in disease response that was characterized by a cytokine storm 187 

(elevated  IL-6, GM-CSF and G-CSF), high ratios of innate to adaptive immune cells, and a marked 188 

reduction in healthy viable lung tissue (Figure 4A), whereas changes in viral load remained relatively 189 

consistent with mild disease. 190 
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 191 
Figure 4. Predicting mild and severe COVID-19 dynamics. Mild disease (solid lines) dynamics obtained by 192 
using baseline parameter estimates (Tables S1) while severe disease dynamics (dashed lines) were obtained by 193 
decreasing the production rate of type I IFN (𝑝&,") and increasing the production of monocytes (𝑝(,") and their 194 
differentiation to macrophages (𝜂&,(!). A) Viral load and lung cells concentrations (susceptible, resistant, 195 
infected, and dead cells). Solid black line with error bars indicates macaque data [41] (see Figure 2). B) Immune 196 
cell concentrations (inflammatory macrophages, monocytes, neutrophils, and CD8+ T cells. C) Unbound 197 
cytokine concentrations (free IL-6, GM-CSF, G-CSF, and type I IFN). Time evolution of all model variables is 198 
shown in Figure S7 (including bound cytokine and alveolar macrophages). 199 

 In addition, there was a significant increase in the number of inflammatory macrophages 200 

(Figure 4B), IL-6, GM-CSF and, importantly, a delayed and reduced IFN peak (Figure 4C). In 201 

comparison to the mild disease, inflammatory macrophages and neutrophils (Figure 4B) remained 202 

elevated for at least 30 days after initial infection. Comparing mild and severe disease highlighted 203 

significant differences in the area under the curve (AUC) of macrophages (6 × 10% cells/ml versus 204 

3 × 10&& cells/ml) and neutrophils (2 × 10' cells/ml versus 3 × 10&( cells/ml) over 30 days. 205 

 Interestingly, inflammation remained high in the severe disease scenario despite the virus being 206 

cleared slightly faster (~1 day) than in the case of mild disease (Figure 4A). Further, the peak of 207 

inflammatory macrophages increased from ~10% cells/ml to ~10) cells/ml in severe scenarios 208 

compared to mild scenarios (Figure 4B). The model also accurately predicted that CD8+ T cell 209 

dynamics were lower in severe cases, which is indicative of lymphopenia and similar to clinical 210 
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observations from patients with severe COVID-19 [14, 23]. Despite varying only three parameters to 211 

generate disparate dynamics, the immune cell and cytokine dynamics were qualitatively in line with 212 

clinical observations for IFN-α [42], IL-6 [42, 44], and G-CSF [24] (Figure S6B-F). 213 

Macrophages, CD8+ T cells, IFN and IL-6 regulates response to SARS-CoV-2 infection 214 

 To further understand how the host immune system regulates the response to SARS-CoV-2 215 

infection, we conducted a local sensitivity analysis by varying each parameter individually by ±20% 216 

and comparing a set of metrics (see Materials and Methods) chosen to provide a comprehensive 217 

understanding of each parameter’s impact on the host-pathogen dynamics. This analysis identified 17 218 

sensitive parameters (Figure 5) relating to virus productivity (𝑝, 𝛿#,+ , 𝛽, 𝜖,,$), CD8+ T cell induced 219 

epithelial cell apoptosis (𝛿$,-), macrophages, monocyte and CD8+ T cell production (𝑝./!,0 , 𝑝.,$ , 𝑝-,$), 220 

IL-6 (𝑝0,./, 𝑘1" , 𝑘234"), G-CSF (𝑘1#), and IFN (𝑝,,$ , 𝑝,,./, 𝑘523$ , 𝑘1$ , 𝑘234$). 221 

 The rate of viral infectivity (𝛽) had a particularly significant impact on all metrics where 222 

increases resulted in higher viral loads and longer periods of tissue damage > 80%. The duration of 223 

extensive tissue damage (>80% damaged) also increased with IFN potency (𝜖,,$). Decreasing the rate 224 

of IL-6-induced monocyte differentiation into inflammatory macrophages (𝑝.!,0) increased the peak of 225 

both IL-6 and IFN. Notably, changes to parameters that increased the bound IFN concentration, i.e. 226 

increasing the binding and production rates (𝑘1$ 	and	𝑝,,$) and decreasing the internalization and 227 

clearance rates (𝑘523$ and 𝑘234$) induced significant changes in most metrics (Figure 5). See Figure S8 228 

for complete sensitivity analysis results. 229 
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Figure 5. Parameters driving COVID-19 severity. A local sensitivity analysis was performed by varying each 230 
parameter ±20% from its originally estimated value and simulating the model. Predictions were then compared 231 
to baseline considering: Maximum viral load (max(𝑉)), maximum concentration of dead cells (max(𝐷)), 232 
minimum uninfected live cells (min(S+R)), maximum concentration of inflammatory macrophages (max(𝑀!")), 233 
maximum number of CD8+ T cells (max(𝑇)), maximum concentration of IL-6 (max(𝐿))), maximum 234 
concentration of type I IFN (max(𝐹))), the total exposure to type I IFN (𝐹) exposure), the number of days 235 
damaged tissue was >80% (time (𝑆 + 𝑅	)/𝑆*+,), and the day type I IFN reached its maximum (day max(𝐹))). 236 
The heatmaps show the magnitude change of each metric, where blue signifies the minimum value observed and 237 
red signifies the maximum value observed, or by the number of days, where light to dark pink signifying 238 
increasing number of days from zero. The most sensitive parameters are shown here (for complete parameter 239 
sensitivity results, see Figure S8). 240 

Virtual patient cohort identifies heterogeneity in immune dynamics and severity 241 

 To better understand the clinical variability in SARS-CoV-2 infection severity [1], we next 242 

generated a cohort of 200 virtual patients (see Materials and Methods and Figure 7). To create each 243 

in silico patient, seven patient-specific parameters were sampled from normal distributions with means 244 

corresponding to their respective fixed values and standard deviations inferred from clinical 245 

observations (Table 1). In doing this, we assumed intrinsic interindividual heterogeneity in monocyte 246 
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to macrophage differentiation, production of IL-6 by macrophages, recruitment of macrophages by the 247 

presence of infected cells, and production of IFN by infected cells, macrophages and monocytes, 248 

respectively. 249 

 Parameters were chosen based on their impact on maximum IL-6 and IFN levels as well as 250 

tissue damage observed in the sensitivity analysis (𝑝./!,0 , 𝑝0,./, 𝑝,,$ , 𝑝.,$, and 𝜖,,$; Figure 5). In 251 

addition, we designated patient-specific parameters accounting for alternate pathways through which 252 

IFN is affected by innate immune cells (𝜂,,./ and 𝑝,,.). For the production of IL-6 by macrophages 253 

and monocyte to macrophage differentiation via IL-6 stimulation, standard deviations were inferred 254 

from IL-6 levels in non-mechanically ventilated patients (mild) and from mechanically ventilated 255 

patients (severe) [44] (Figure S7D). Standard deviations for the production of IFN by infected cells 256 

were determined from the 95% confidence interval for IFN-𝛼 from Trouillet-Assant et al. [42] (Figure 257 

S7A-B), and, lastly, the standard deviation for the production of IFN by macrophages was obtained 258 

from the 95% confidence interval in Sheahan et al. [45]. The variation in virtual patient responses was 259 

then constrained by experimental and clinical viral loads, IFN, neutrophil, IL-6, and G-CSF (Figure 7). 260 

The resulting cohort dynamics were within ranges for IFN and IL-6 measurements in asymptomatic to 261 

severe COVID-19 patients in the literature [11, 17] (Figure S9). 262 

Table 1 Virtual patient-specific parameter values. Seven parameters in the model were deemed patient-263 
specific and were drawn from a normal distribution with mean the parameter value obtained either through 264 
fitting or from the literature (Table S1). The standard deviation (Std Dev) for each normal distribution was 265 
informed by values in the literature (see Materials and Methods and Supplementary Information Sections 266 
S6.1). Initial parameter sampling and new parameters generated through the simulated annealing optimization, 267 
were bounded within the interval range noted. All other parameters in the model were fixed to their original 268 
value (Table S1). 269 

Para
m 

Units Description Mean Ref Std 
Dev 

Ref Range 

𝑝./!,0 1/day Monocyte to 
macrophage 

differentiation by IL-6 

1.7 [46] 2.2 [7] [0, 9.9] 

𝑝0,./ pg/ml/day IL-6 production by 
activated macrophages 

1872 [47] 2.2 [7] [1863, 1880] 

𝑝,,$ pg/ml/day IFN production by 
infected cells  

2.82 [48] 1.9 [44] [0, 12.2] 

𝑝.,$ 1/day Monocyte recruitment 
rate by infected cells 

0.22 [49] 0.08 [50] [0, 0.63] 

𝜂,,./ 109cells/ml IFN by infected cells 0.001
2 

[48] 1067 [51] [0, 106%] 

𝜖,,$ pg/ml IFN production of 
CD8+ T cells 

0.004 [52] 1067 [45] [0, 106%] 

𝑝,,. pg/ml/day IFN production by 
monocytes 

3.56 [53, 54] 0.013 [53] [3.4, 3.6] 
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 To quantify disease severity, we introduced an inflammation variable, Ψ, that measured 270 

maximum IL-6, neutrophils and tissue damage (Eq. 18) and then compared it to individual 271 

characteristics of each virtual patient’s disease. We evaluated each virtual patient’s maximum IL-6, 272 

CD8+ T cells, and neutrophils; minimum percentage of healthy lung tissue; the time to peak IFN; and 273 

total IFN exposure (area under the curve or AUC) within 21 days of infection. Ordering patients by 274 

their value of Ψ and plotting the corresponding values for different characteristics evaluated showed a 275 

clear separation between those with mild disease and those with severe disease (Figure 6A).  276 

 Patients with higher inflammation had higher IL-6, neutrophil, and inflammatory macrophage 277 

concentrations (Figure 6A). While the IFN exposure was not significantly stratified by Ψ, the peak of 278 

IFN and CD8+ T cell levels were strongly negatively correlated with the inflammation marker (R =279 

−0.85, p	< 1 × 1068, see Materials and Methods). IL-6 was most noticeably correlated with Ψ (R =280 

0.91, p< 1 × 1068), with a distinct upper bound in the concentration (~100 pg/ml) achieved in 50% of 281 

the virtual cohort. There appeared to be a transition phase in inflammation driven by neutrophil levels 282 

where patients with moderate inflammation (3 < Ψ < 3.5) had low counts (less than 7 × 10) cells/ml) 283 

compared to patients with more severe inflammation (Ψ ≥ 3.5) who had higher levels (p =284 

1.46 × 106)). Despite this, patients with moderate inflammation exhibited increased disease markers 285 

including delayed IFN peaks and lower CD8+ T cells, compared to patients with mild inflammation 286 

(Ψ ≤ 3).  287 

 A distinct jump in the timing of the IFN peak in the virtual cohort (p < 1 × 1067) was 288 

correlated with inflammation, as patients with low inflammation (Ψ ≤ 3) had peaks at day 2 compared 289 

to day 6 in patients with higher inflammation (Ψ>3). Grouping virtual individuals by their time to IFN 290 

peak suggests that those with IFN peaks after day 3 of infection also had fewer macrophages (p<291 

1 × 1067) and larger numbers of CD8+ T cells (p < 1 × 1067). Overall, delays in IFN peak did not 292 

cause significant changes to viral load but were sufficient to cause major tissue damage (100x 293 

reduction in viable tissue remaining) and over-heightened immune responses (4x increase in maximum 294 

IL-6 and GM-CSF concentrations). 295 

 We found a positive correlation (R= 0.67, p= 1.58 × 106') between the time to peak IFN 296 

concentration for each patient against their IFN production rate from infected cells (Figure 6B). 297 

Interestingly, the time to peak IFN for each patient was also strongly related to their rate of IL-6-298 

stimulated monocyte differentiation into macrophages. Low IFN production rates were predominately 299 

responsible for significantly delayed IFN peaks over 6 days after infection, whereas IFN peaks within 3 300 

days of infection were largely caused by lower rates of monocyte to macrophage differentiation. 301 
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Further, examining the relationship between each virtual patient’s maximum IL-6, IFN, and CD8+ T 302 

cell concentrations (Figure 6C) identified a weaker correlation between the maximum concentration of 303 

CD8+ T cells and IFN (R= 0.24, p = 0.0008) as opposed to with IL-6 (R= −0.86, p < 1 × 1068).  304 

 305 
Figure 6. Virtual Cohort of SARS-CoV-2 infected patients. 200 virtual patients were generated by sampling 306 
parameters related to macrophage, IL-6, and IFN production (𝑝(!!,- , 𝑝-,(! , 𝑝&," , 𝑝(," , 𝜂&,(! , 𝜖&," , and 𝑝&,() from 307 
normal distributions with mean equal to their original values and standard deviation inferred from clinical 308 
observations (Figure 7). Each virtual patient had a distinct parameter set that was optimized to that patient’s 309 
dynamics in response to SARS-CoV-2 infection corresponded to physiological intervals reported in the literature 310 
(see Materials and Methods). A) Infection and immune response metrics (blue) in individual patients were 311 
compared to inflammatory variable Ψ (green). Each point represents an individual patient, ordered according to 312 
Ψ. The correlation coefficient (R) and p-value are indicated for each, with α<0.05 denoting significant 313 
correlations. B) Parameters most correlated to the IFN peak time were the rates of macrophage production via 314 
IL-6 (𝑝(!!,-) and the IFN production by infected cells (𝑝&,"). Individual patient values for these parameters are 315 
plotted as circles coloured by the patient’s corresponding day of IFN peak (see color bar). Patients are ordered 316 
by their inflammation marker Ψ. C) Correlations between maximal IFN, IL-6, and T cell concentrations for each 317 
patient (circles). Circle colour corresponds to the maximal T cell concentration of each patient. 318 

Discussion  319 

 Serial immunological measurements from COVID-19 patients are only beginning to be 320 

collected, and the ability to assess initial infection kinetics and the drivers of the ensuing disease 321 

M
ax T cells
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L

A

B C

IL-6 Neutrophils Inflammatory macrophages

IFN exposure IFN peak T cells

IFN
 peak (day)

IFN
 peak (day)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.425420doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.05.425420
http://creativecommons.org/licenses/by-nd/4.0/


 
14 

remains limited. The data-driven mechanistic mathematical model and virtual patient cohort developed 322 

here identified important immunological drivers of COVID-19. In particular, to recreate severe 323 

dynamics, it was sufficient to vary only two processes in the model: the rates of type I IFN production 324 

from infected cells and macrophages, and the rate of monocyte recruitment by infected cells. This 325 

suggests that the distinction between severe and mild disease may be driven by a limited set of causal 326 

regulators. The effect on IFN production may be further exacerbated by autoimmunity against type I 327 

IFNs, which has been shown to correlate to life-threatening COVID-19 pneumonia in 2.6% of women 328 

and 12.5% of men [18].  329 

 Our results show that delaying type I IFN production is sufficient to cause major tissue damage 330 

and heightened immune responses yet have little impact on peak viral loads. In the severe disease 331 

simulation, viral load was cleared marginally faster (~1 day) in comparison to the mild disease 332 

simulation. This finding is supported by recent clinical evidence showing that an increased rate of viral 333 

decline rather than peak viral load may be more predictive of disease severity [6]. This therefore 334 

suggests that viral load may not be a necessary attribute to obtain severe tissue damage. Instead, our 335 

model predicts that increases in tissue damage occur through heightened innate immune responses.  336 

Evaluating SARS-CoV-2 infection in a cohort of 200 virtual patients revealed several immunological 337 

responses responsible for differential disease presentation. Notably, a distinct, emergent switch in the 338 

type I IFN response corresponded with late IFN peaks and more severe disease (i.e., higher 339 

inflammation Y). This supports previous findings that connect a delay in type I IFN with more severe 340 

presentations of highly pathogenic coronaviruses infections including SARS-CoV, MERS-CoV, and 341 

SARS-CoV-2 [13, 14, 22]. Virtual patients with rates of monocyte differentiation close to the rate at 342 

homeostasis tended to achieve peak IFN concentrations approximately 2 days after infection compared 343 

to those with higher inflammation and later IFN responses, who had at least a 3-fold increase in this 344 

rate. This switch in timing was caused by increased rates of monocyte-to-macrophage differentiation 345 

and decreased production of IFN by infected cells, with the initial delay of IFN caused by increased 346 

monocyte differentiation and the more extreme IFN delays caused by IFN production from infected 347 

cells, indicating that the timing of the IFN peak in a patient may allow for improved stratification into 348 

treatment arms designed to target one or both of these responses. The finding that IFN binding was 349 

predictive of the duration of lung tissue damage, suggests that virus-intrinsic properties and their ability 350 

to inhibit receptor mediated binding and endocytosis could delay IFN production and cause 351 

downstream increases in IL-6 and GM-CSF resulting in severe disease. Our results further highlight 352 

that lymphopenia is tightly correlated with maximum IL-6 concentration and less dependent on the 353 

timing of IFN. 354 
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 The ability of our model to recapitulate severe disease by, in part, regulating monocyte 355 

differentiation raises the possibility that patients with low monocyte levels [7] may benefit from 356 

treatments that better regulate monocyte differentiation. This is in line with recent studies identifying 357 

distinct transcriptional factors as regulators of differentiated monocyte fates in inflammatory conditions 358 

[55, 56]. It also raises the possibility that modulation by exogenous cytokines, including macrophage 359 

colony-stimulating factor in combination with IL-4 and tumour necrosis factor-alpha (TNF-a), may be 360 

able to direct monocyte differentiation in favour of monocyte-derived dendritic cells and reduce this 361 

response [55]. Recently, the neutralization of both TNF-α and IFN-γ has been found to benefit patients 362 

with COVID-19 or other cytokine storm-drive syndromes by limiting inflammation and tissue damage 363 

[57]. Given that TNF-α also has a secondary benefit on monocyte differentiation, our results support 364 

the viability of this avenue of treatment. Caution should be noted, however, given that previous 365 

attempts to regulate host responses by IL-6 blockade have proven unsuccessful [58]. 366 

 Together, our findings support the idea that early interventions aimed at reducing inflammation 367 

are more likely to be beneficial for patients at risk of progressing to severe COVID-19 than attempts to 368 

inhibit cytokine storm later in the disease course, given that early IFN responses were found to provoke 369 

better controlled immune responses and outcomes in our virtual cohort. It will be essential to 370 

characterize both the timing and mechanisms of proposed therapeutic interventions to develop effective 371 

treatments to mitigate severe disease.  372 

Materials and Methods 373 

Mathematical model of the immune response to SARS-CoV-2  374 

 Our model was developed to examine SARS-CoV-2 infection dynamics and identify 375 

immunological drivers of disease severity (Eqs. S1-S22). Throughout, cytokine and immune cell 376 

interactions and effects were described by Hill functions as   377 

 𝐵9

𝐵9 + 𝛾9 , 
1 

where 𝐵 is the interacting compound, 𝛾 its half-effect value, and ℎ the Hill coefficient [59, 60]. Further, 378 

for a given cytokine 𝑋 and cell population 𝑌, the production (recruitment/differentiation) rate of 𝑋 by 𝑌 379 

was denoted by 𝑝:,; and the rate of production of 𝑌 by 𝑋 by 𝑝;,:. The half-effect concentration (i.e. 𝛾 380 

in Eq. 1) of cytokine 𝑋 on cell population 𝑌 was represented by 𝜖:,; and the half-effect concentration 381 

of cell 𝑌 affecting cytokine 𝑋 was given by 𝜂:,;. The natural death rate of cell 𝑌 was denoted by 𝑑;, 382 

and the rate of induced death of cell 𝑌 by cell 𝑍 by 𝛿;,<. Lastly, the carrying capacity concentration of 383 

cell 𝑌 was denoted by 𝑌=>?, and regeneration or proliferation rates by 𝜆;.  384 
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 We modelled virus (𝑉) being produced by infected cells at rate 𝑝 and cleared via exponential 385 

clearance at rate 𝑑#, which accounts for all contributions to viral degradation except macrophage- and 386 

neutrophil-mediated clearance. Immune-mediated viral clearance via phagocytosis by inflammatory 387 

macrophages [61] and neutrophil extracellular traps (NETs—extracellular chromatin fibres produced 388 

by neutrophils to control infections) [39, 40] was considered to occur at rates 𝛿#,.%! and 𝛿#,+, 389 

respectively. Susceptible epithelial cells (𝑆) grow logistically with per capita proliferation rate 𝜆@ and 390 

carrying capacity 𝑆=>?, and become infected (𝐼) at rate 𝛽. The damage inflicted on epithelial cells by 391 

neutrophils was modelled using a Hill function (Eq. 1) [60], where neutrophils kill/damage epithelial 392 

cells at rate 𝛿+	through the release of NETs and other antimicrobials proteins [39, 40]. The constant 𝜌 393 

(0 < 𝜌 < 1) was included to modulate bystander damage of uninfected cells (𝑆 and 𝑅).  394 

 For the purposes of our investigation, we only considered type I IFN dynamics (primarily IFN-395 

α, β). Type I IFN (𝐹A and 𝐹1) reduces the infectivity and replication capability of viruses by stimulating 396 

cells to become resistant to infection. These resistant cells (𝑅) proliferate at a rate equivalent to 397 

susceptible cells (𝜆@). The concentration of bound IFN (𝐹1) modulates the creation of infected and 398 

resistant cells [19, 21, 62, 63], where increasing the concentration of IFN causes more cells to become 399 

resistant to infection and less to become productively infected (𝐼). The potency of this effect is 400 

controlled by the half-effect parameter 𝜖,,$.  Following the eclipse phase (which lasts 𝜏$ 	hours), 401 

productively infected cells (𝐼) produce virus before undergoing virus-mediated lysis at rate 𝑑$. 402 

Although various immune cell subsets contribute to infected cell clearance, we limited our 403 

investigation to macrophages and effector CD8+ T cells which induce apoptosis at rates 𝛿$,./	and 𝛿$,-, 404 

respectively.  405 

 The accumulation of dead cells (𝐷) was assumed to occur through infected cell lysis 𝑑$, 406 

neutrophil damage/killing of epithelial cells 𝛿+, macrophage phagocytosis of infected cells 𝛿$,./, 407 

macrophage exhaustion 𝛿./,B, and CD8+ T cell killing of infected cells 𝛿$,-. These dead cells 408 

disintegrate relatively quickly [64] at rate 𝑑B, and are cleared through phagocytosis by macrophages 409 

[65] at rate 𝛿B,./.  410 

 Resident alveolar macrophages (𝑀/") are replenished at a logistic rate inversely proportion to 411 

viral load with maximal rate of 𝜆./ and half-effect 𝜖#,./ (i.e. as the virus is cleared, the inflammatory 412 

macrophage pool replenishes the alveolar macrophage population in the lung). We modelled the 413 

transition of alveolar macrophages to inflammatory macrophages (𝑀/$) as dependent on infected and 414 

dead cells, with a maximal rate of 𝑎$,./. Resident macrophages die naturally at a rate 𝑑./& 	or due to 415 

the clearing of dead cells (exhaustion) [65] at rate 𝛿./,B.  416 
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 Inflammatory macrophages are produced by three distinct pathways (acting individually or in 417 

concert): 1) stimulated tissue-resident macrophages 𝑎$,./, (2) GM-CSF-dependent monocyte 418 

differentiation, with maximal production 𝑝.,C  and half effect 𝜖C,., and (3) IL-6-dependent monocyte 419 

differentiation, with maximal production rate 𝑝.'!," and half-effect 𝜖0,.'!. We assumed that 420 

inflammatory macrophages die naturally at rate 𝑑.'! or from clearing dead cells at a rate	𝛿./,B .  421 

 We have previously shown that endogenous cytokine concentrations are far from quasi-422 

equilibrium at homeostasis [66]. Therefore, to describe the pharmacokinetics and pharmacodynamics 423 

of cytokine binding and unbinding, we leveraged the framework established in Craig et al. [66] (Figure 424 

1C) for IFN (𝐹1 and 𝐹A), IL-6 (𝐿1 and 𝐿A), GM-CSF (𝐺1 and 𝐺A), and G-CSF (𝐶1 and 𝐶A). In its 425 

general form, this pharmacokinetic relationship is expressed as 426 

 𝑑𝑌A
𝑑𝑡 = 𝑌DEFG − 𝑘523𝑌A − 𝑘1(𝑋𝐴 − 𝑌1)(𝑌A)HIJ + 𝑘A𝑌1 , 2 

 𝑑𝑌1
𝑑𝑡 =   − 𝑘234𝑌1 + 𝑘1(𝑋𝐴 − 𝑌1)(𝑌A)HIJ − 𝑘A𝑌1 3 

where 𝑌A and 𝑌1 are free and bound cytokines, 𝑌DEFG is the rate of endogenous cytokine production, 𝑘1 427 

and 𝑘A	are the respective binding and unbinding rates, 𝑘234 is the internalization rate of bound cytokine, 428 

and 𝑘523 is the elimination rate. Here,	 𝑃𝑂𝑊 is a stoichiometric constant, 𝐴 is a scaling factor and 𝑋 is 429 

the sum of all cells modulated by the cytokine with  430 

 𝑋𝐴 = 𝑝̂𝑌.J𝐾103𝑋. 4 

where 𝑝̂ is a constant relating the stoichiometry between cytokine molecules and their receptors, 𝐾 is 431 

the number of receptors specific to each cytokine on a cell’s surface and 103 is a factor correcting for 432 

cellular units (see Eqs. S19-S22). The molecular weight was calculated in the standard way by dividing 433 

the cytokine’s molar mass (𝑀𝑀) by Avogadro’s number (𝑌.J = MM/6.02214 × 10K().  434 

 We considered unbound IL-6 (𝐿A) to be produced from productively infected cells, 435 

inflammatory macrophages, and monocytes, with bound IL-6 (𝐿1) resulting from binding to receptors 436 

on the surface of neutrophils, CD8+ T cells and monocytes. Unbound GM-CSF (𝐺A) was assumed to be 437 

produced from inflammatory macrophages and monocytes and bind to receptors on monocytes to 438 

create bound GM-CSF (𝐺1). GM-CSF can be produced by CD8+ T cells [67], but this was excluded 439 

because it was insignificant to the full system’s dynamics. Unbound G-CSF (𝐶A) is secreted by 440 

monocytes, with bound G-CSF (𝐶1) produced via binding to neutrophil receptors. Lastly, because 441 

unbound type I IFNs (𝐹A) are known to be produced by multiple cell types in response to viral 442 

infection, including lymphocytes, macrophages, endothelial cells and fibroblasts [62], we modelled its 443 
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unbound production from infected cells, infiltrating/inflammatory macrophages, and monocytes, and its 444 

binding to receptors on both CD8+ T cells and infected cells (Figure 1B). 445 

 The pharmacokinetics and pharmacodynamics of G-CSF on neutrophils (𝑁) were taken directly 446 

from Craig et al. [66]: 447 

 𝑑𝑁
𝑑𝑡 = h𝑁DEFG∗ + i𝜓+=>? − 𝑁DEFG∗ k

𝐶1, − 𝐶1,∗

𝐶1, − 𝐶1,∗ + 𝜖M,+
l𝑁" .	 

5 

Neutrophil recruitment of bone marrow reservoir neutrophils (𝑁") was modelled to occur via the bound 448 

fraction of G-CSF [68] (𝐶1, = 𝐶1(𝑡)/(𝐴M𝑁(𝑡))) at rate 𝑁DEFG∗  which increases towards its maximal 449 

value 𝜓+=>? as a function of increasing G-CSF. During the acute phase of inflammation, endothelial 450 

cells produce IL-6 leading to the attraction of neutrophils [69]. This was modelled as recruitment with 451 

maximal rate 𝑝+,0 and half-effect parameter 𝜖B,0. Neutrophils die at rate 𝑑+. 452 

 Monocytes (𝑀) are recruited by bound GM-CSF [70], similar to neutrophils (Eq. 5), with bone 453 

marrow monocytes (𝑀") recruited at a homeostatic rate 𝑀DEFG
∗ . In the presence of GM-CSF, this rate 454 

increases towards 𝜓.=>? .		Monocytes are also recruited by the presence of infected cells at a maximal 455 

rate of 𝑝.,$ with half-effect 𝜖$,., and subsequently disappear through differentiation into inflammatory 456 

macrophages (as above) or death at rate 𝑑.. 457 

 CD8+ T cells are recruited through antigen presentation on infected cells as a function of 458 

infected cell numbers at rate 𝑝-,$ The constant delay (𝜏-) accounts for the time taken for dendritic cells 459 

to activate, migrate to the lymph nodes, activate CD8+ T cells, and the arrival of effector CD8+ T cells 460 

at the infection site. CD8+ T cell expansion occurs in response to bound IFN at a maximal rate 𝑝-,, 461 

with half-effect 𝜖,,-, and CD8+ T-cell exhaustion occurs with high concentrations of IL-6 [16, 17], with 462 

half-effect 𝜖0,-, and apoptosis occurs at rate 𝑑-. All variable and parameter descriptions are provided in 463 

Table S1. 464 

Estimating early infection dynamics (‘viral model’) 465 

 To begin estimating parameter values from data, we set all immune populations and cytokine 466 

concentrations in the full model (Supplementary Information Eqs. S1-S22) to zero (𝑀/" = 𝑀/$ =467 

𝑀 = 𝑁 = 𝑇 = 𝐿A = 𝐿1 = 𝐺A = 𝐺1 = 𝐶A = 𝐶1 = 𝐹A = 𝐹1 = 0). This gives 468 

 𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 𝑑#𝑉, 

6 

 𝑑𝑆
𝑑𝑡 = 𝜆@ m1 −

𝑆 + 𝐼 + 𝐷
𝑆=>?

n 𝑆 − 𝛽𝑆𝑉, 7 
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 𝑑𝐼
𝑑𝑡 =

𝛽𝑆(𝑡 − 𝜏$)𝑉(𝑡 − 𝜏$)𝜖,,$
𝜖,,$ + 𝐹1

− 𝑑$𝐼, 
8 

 𝑑𝐷
𝑑𝑡 = 𝑑$𝐼 − 𝑑B𝐷. 

9 

We also assumed there were no resistant cells (𝑅 = 0) due to the absence of an IFN equation. This 469 

resulted in a simplified ‘viral model’ that considers only virus (𝑉) infection of susceptible cells (𝑆) 470 

which creates infected cells (𝐼) after 𝜏$ days, which the die through lysis, creating dead cells (𝐷). 471 

Type I interferon dynamics during early infection (‘IFN model’) 472 

 To study infection dynamics driven uniquely by IFN, we extended Eqs. 6-9 by introducing the 473 

IFN mechanisms from Eqs. S1-S22, i.e. setting other cytokine and immune cell populations to zero 474 

(𝑀/" = 𝑀/$ = 𝑀 = 𝑁 = 𝑇 = 𝐿A = 𝐿1 = 𝐺A = 𝐺1 = 𝐶A = 𝐶1 = 0), giving 475 

 𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 𝑑#𝑉, 

10 

 𝑑𝑆
𝑑𝑡 = 𝜆@ m1 −

𝑆 + 𝐼 + 𝑅 + 𝐷
𝑆=>?

n 𝑆 − 𝛽𝑆𝑉, 11 

 𝑑𝐼
𝑑𝑡 =

𝛽𝑆(𝑡 − 𝜏$)𝑉(𝑡 − 𝜏$)𝜖,,$
𝜖,,$ + 𝐹1

− 𝑑$𝐼, 
12 

 𝑑𝑅
𝑑𝑡 = 	𝜆@ m1 −

𝑆 + 𝐼 + 𝑅 + 𝐷
𝑆=>?

n𝑅 +
𝛽𝑆𝑉𝐹1
𝐹1 + 𝜖,,$

, 
13 

 𝑑𝐷
𝑑𝑡 = 𝑑$𝐼 − 𝑑B𝐷, 

14 

 𝑑𝐹A
𝑑𝑡 = 𝜓,

DEFG +
𝑝,,$𝐼
𝐼 + 𝜂,,$

− 𝑘523$𝐹A − 𝑘1$i(𝑇
∗ + 𝐼)𝐴, − 𝐹1k𝐹A + 𝑘A$𝐹1 , 

15 

 𝑑𝐹1
𝑑𝑡 = 	−𝑘234$𝐹1 + 𝑘1$i(𝑇

∗ + 𝐼)𝐴, − 𝐹1k𝐹A − 𝑘A$𝐹1 , 
16 

where cells become resistant (𝑅) through IFN (𝐹A and 𝐹1). The parameter 𝜓,
DEFG was introduced to 476 

account for the production of IFN by macrophages and monocytes not explicitly modelled in this 477 

reduced system but included in the full system (i.e. 𝑝,,. and 𝑝,,./ in Eq. S17). Previously-fit 478 

parameters were then fixed to their estimated values (Table S1) and the value of 𝜓,
DEFG was determined 479 

by solving 𝑑𝐹A/𝑑𝑡	 = 0 at homeostasis (i.e. 𝑉 = 𝐼 = 0), giving 𝜓,
DEFG = 0.25. 480 

Model calibration and parameter estimation 481 

 Model parameters (Table S1) were obtained either directly from the literature, through fitting 482 

effect curves (Eqs. S24-S25) or sub-models (Eqs. S26-S56) to in vitro or in vivo data, or by calculating 483 
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the value that ensured that homeostasis was maintained (Eqs. S57-S70) in the absence of infection. All 484 

fitting procedures were performed using MATLAB 2019b functions fmincon or lsqnonlin [71].  485 

 Initial concentrations of all unbound cytokines (𝐿A,N, 𝐺A,N, 𝐶A,N and 𝐹A,N), susceptible cells, 486 

resident macrophages, monocytes, neutrophils, and CD8+ T cells (𝑆N, 𝑀/",N, 𝑀N, 𝑁N and 𝑇N) were 487 

estimated from plasma and lung tissue concentrations in humans. Parameters for cytokine binding and 488 

unbinding kinetics (Eqs. 2-4), such as the molecular weight (𝑀𝑀), binding sites per cell (𝐾), 489 

binding/unbinding rates (𝑘1 and 𝑘A), internalization rates for GM-CSF, G-CSF and IFN (𝑘234), and 490 

cytokine clearance rates (𝑘523), were estimated both from experimental measurements and previous 491 

modelling work. The stoichiometric constants 𝑃𝑂𝑊 and 𝑝̂ were both equal to 1 for all cytokines, 492 

except for G-CSF for which 𝑃𝑂𝑊 = 1.4608 and 𝑝̂ = 2 as previously estimated by Craig et al. [66]. 493 

Neutrophil and monocyte reservoir dynamics, monocyte differentiation, macrophage activation, and 494 

CD8+ T cell recruitment and expansion parameters were primarily estimated from previous 495 

mathematical modelling studies. Immune cell death rates were taken directly from the literature or 496 

estimated from recorded half-lives using Eq. S23.  497 

 The rates of virus production, decay, infectivity, and infected cell lysis (𝑝, 𝑑# , 𝛽 and 𝑑$ 498 

respectively) were then estimated by fitting Eqs. 6-9 to viral load measurements from SARS-CoV-2 499 

infection in macaques [41] where eight adult rhesus macaques inoculated with 4 × 107	TCID50/ml 500 

(3 × 10' genome copies/ml) SARS-CoV-2 [41] (Table S1). Viral loads below 1 copy/ml were 501 

assumed to be negligible. Estimated parameters for viral decay and cell lysis (𝑑# and 𝑑$) were used as 502 

an upper bound for parameter values in the full model.  503 

 A subset of parameters was obtained through fitting sigmoidal effect curves (Eqs. S24-S25) 504 

curves to in vitro and in vivo experiments. These include the half-effect neutrophil concentration for 505 

epithelial cell damage, the half-effect concentrations for monocyte production and differentiation 506 

through GM-CSF signalling (𝜖C,. and 𝜖C,./!; Figure S1). Other parameters obtained through effect 507 

curves were the half-effects for IL-6 production by monocytes (𝜂0,.), the effect of IL-6 on monocyte 508 

differentiation (𝜖0,.) and the half-effect of IFN on CD8+ T cell (𝜖,,-) and IL-6 on CD8+ T cell 509 

expansion (𝜖0,-) (Figure S2). 510 

 These parameters were then fixed, and remaining parameters were estimated by fitting time-511 

dependent sub-models of Eqs. S1-S22 to relevant data. The proliferation rate of epithelial cells (𝜆@), the 512 

internalization rate of IL-6 (𝑘234"), and the rate of neutrophil induced damage were fit to corresponding 513 

time-series measurements using exponential rate terms (Figure S2). Clearance and phagocytosis of 514 

infected cells and extracellular virus by inflammatory macrophages (𝛿$,./ and 𝛿#,./) were fit to in 515 
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vitro experiments (Figure S2). Production of IFN by macrophages (𝑝,,./) was obtained by fitting to 516 

data measuring IFN-α	production (Figure S3). The parameters regulating the rate of the resident 517 

macrophage pool replenishment (𝜆./ and 𝜖#,./) were estimated from in vivo observations of resident 518 

macrophages during influenza virus infection (Figure S3). GM-CSF production by monocytes 519 

(𝑝C,.; 	𝐅𝐢𝐠𝐮𝐫𝐞	𝐒𝟑), IFN production by infected cells (𝑝,,$), and IL-6 production by infected cells and 520 

macrophages (𝑝0,$ and 𝑝0,./) were all obtained from fitting reduced versions of Eqs. S1-S22 to in vitro 521 

experiments [47, 48, 72, 73] (Figure S4).  522 

 Lastly, any remaining parameters values were obtained by ensuring that homeostasis was 523 

maintained in absence of infection (Figure S5). Parameters calculated from homeostasis include the 524 

half-effect monocyte concentration for G-CSF production (𝜂M,.), the production rate of IL-6 and GM-525 

CSF by inflammatory macrophages (𝑝0,./ and 𝑝C,./), the production rate of monocytes by GM-CSF 526 

(𝑝.,C), and the half-effect inflammatory macrophage concentration for IFN production (𝜂,,./). For 527 

some parameters it was not possible to obtain an estimation from the literature, and for these we either 528 

set their value equal to an already estimated parameter (𝜖0,+ , 𝑝M,. , 𝑝,,./! , 𝜂C,./,), or qualitatively 529 

estimated it (𝜖$,. , 𝜌).  530 

 For the ‘IFN model’ (Eqs. 10-16), parameters related to virus (𝑝, 𝑑# , 𝛽 and 𝑑$), epithelial cell 531 

proliferation (𝜆@	and 𝑆=>?), and IFN (𝑝,,$ , 𝜂,,$ , 𝑘523$ , 𝑘1$ , 𝐴, , 𝑘A$ and 𝜖,,$) were fixed to those in Table 532 

S1. 533 

Numerical simulations 534 

 All ODE models were solved using ode45 in MATLAB, and delay differentiation equations 535 

(i.e. Eqs. S1-S22) were solved using ddesd in MATLAB. 536 

Sensitivity analysis 537 

 We performed a local sensitivity analysis for the full model (Eqs. S1-S22) by individually 538 

varying each parameter by ±20% from its estimated value and quantifying the effect on the model’s 539 

output. This change was recorded and used to evaluate different metrics representing the inflammatory 540 

response to SARS-CoV-2, namely maximum viral load, maximum number of dead cells, minimum 541 

uninfected tissue, maximum number of inflammatory macrophages, maximum number of CD8+ T cells, 542 

maximum unbound IL-6, maximum unbound IFN, the total exposure (AUC) to type I IFN, number of 543 

days the percent of damaged tissue was >80%, and time of unbound type I IFN peak. We quantified the 544 

fraction of undamaged tissue by (𝑆 + 𝑅)/𝑆=>?. 545 

Virtual patient generation 546 
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 To generate a cohort of 200 virtual patients, we followed techniques similar to those of Allen et 547 

al. [26] and our previous studies [74, 75] wherein individual virtual patients were created by sampling a 548 

parameter set 𝒑 from parameter distributions then simulating the model to verify that each individual’s 549 

trajectory was realistic. A subset of parameters (𝑝./!,0 , 𝑝0,./, 𝑝,,$, 𝑝.,$ , 𝜂,,./, 𝜖,,$, and 𝑝,,.) was 550 

designated as patient-specific after considering the results of the sensitivity analysis and standard 551 

deviations inferred from clinical observations (Supplementary Information). To avoid the inclusion of 552 

unrealistic dynamics, patient parameter sets were then optimized using simulated annealing to ensure 553 

predictions fell within physiological ranges for viral load [41], IL-6 [6, 44], IFN-α [42], and G-CSF 554 

[24] (Figure 7).  555 

 The upper 𝑢2 and lower 𝑙2 bounds for 𝑉, 𝐿A, 𝐹A and 𝐶A were based off these physiological 556 

ranges from Munster et al. [41] (viral loads), Herold et al. [44] (IL-6 concentrations), Trouillet-Assant 557 

et al. [42] (IFN dynamics), and Liu et al. [7] (G-CSF concentrations) as described in Supplementary 558 

Information Section S.6.1. Intervals for each patient-specific parameter set were restricted to four 559 

standard deviations from the mean or zero if the lower bound was negative. Given an initial patient 560 

specific parameter set 𝒑, we used simulated annealing to minimize 𝐽(𝒑), i.e.  561 

 
min
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, 0l	
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where 𝑀2(𝒑) is the model output 𝑖 evaluated at parameter set 𝒑 corresponding to the upper and lower 562 

bound 𝑙2 and 𝑢2 (Figure 7). 563 

 To quantify disease severity for each patient, we introduced an inflammation variable (Ψ) to 564 

account for the combined changes in IL-6 (𝐿A), neutrophils (𝑁), and damaged tissue (𝑆 + 𝑅), each 565 

normalized by the virtual cohort’s average. In this way, Ψ measures an individual’s relative change 566 

from the cohort’s baseline, and quantifies the contributions of IL-6, neutrophils, and tissue damage on 567 

comparable scales. For a given patient 𝑗, the inflammation marker is given by 568 

ΨP =
max
4
(𝐿A
P (𝑡))

1
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where 𝑛 is the total number of patients in the cohort, and 𝐿A
P , 𝑁P , 𝑆P, and 𝑅P are the unbound IL-6, 569 

neutrophils, and susceptible and resistant epithelial cell count, respectively.  570 
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 571 
Figure 7. Algorithm for generating virtual patients. Parameters in the model were first obtained through 572 
fitting to data (Table S1). 1) Parameters relating to macrophage, IL-6 and IFN production 573 
(𝑝(!!,- , 𝑝-,(! , 𝑝&," , 𝑝(," , 𝜂&,(! , 𝜖&,", and 𝑝&,() were generated from normal distributions with mean equal to 574 
their original fitted values and standard deviation informed by experiment observations (see Section S6.1). 2) 575 
The model evaluated is then evaluated on this parameter set to obtain 𝑦(𝑡, 𝑝). 3) A simulated annealing 576 
algorithm is then used to determine a parameter set that optimises the objective function 𝐽(𝑝)	(Eq.16). 4) 577 
Optimizing the objective function provides a parameter set for which the patient response to SARS-CoV-2 will 578 
be within the physiological ranges. This patient is then assigned to the cohort and this process is continued until 579 
200 patients have been generated. Physiological ranges are noted in the bottom box for viral load [41], IFN [42], 580 
IL-6 [44] and G-CSF [7].  581 

Statistical analyses 582 

The Pearson correlation coefficient (R) was used to measure the degree of interaction between two 583 

variables, with a significance level of 𝛼 < 0.05 indicating rejection of the hypothesis that there is no 584 

relationship between the observed variables. In addition, we used two-sample two-sided t-tests (number 585 
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of patients < 40) and z-tests (number of patients ≥ 40) at the α < 0.05 significance level to test the 586 

hypothesis that there were no differences between sample means. 587 
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 791 
Supporting information captions 792 
 793 
Supplementary Information file. 794 
Figure S1. Effects of neutrophils on lung epithelial cells, GM-CSF on monocyte production and 795 

differentiation, the relationships between monocytes and CD4+ T cells with IL-6, and the 796 
influence of IFN on T cell expansion. A) Using the measurements by Knaapen et al.22, the 797 
inhibitory effect curve E	(Eq. S25) was fit to the cell viability of RLE cells under various 798 
concentrations of H2O2. B) The stimulatory effect curve E	(Eq. S24) was fit to the dose response 799 
measurements of blood monoculture cells (3 × 10(cells/dish) with various concentrations of 800 
murine recombinant GM-CSF (IU/ml)18. C) The stimulatory effect curve E	(Eq. S24) was fit to 801 
measurements for the monocytic myeloid cell count as a function of GM-CSF.17 D) Eq. S27 fit 802 
to time course data of IL-6 production from monocytes38. E) IL-6 stimulation of monocyte 803 
differentiation to macrophages modelled by the inhibitory effect curve E (Eq. S24) fit to the 804 
percentage of CD14+ cells (macrophages) as a function of the number of fibroblasts measured 805 
by Chomarat et al.16. F) Stimulatory effect curve E (Eq. S24) for IFN-γ stimulation on CD8+ T 806 
cells fit to measurements of the signalling in CD8+T cells for varying doses of IFN-γ19. Data 807 
(black) is plotted as either circles (D & E) or mean and standard deviation error bars (A-C&F); 808 
solid blue line: corresponding fit. 809 

Figure S2. Dynamics of IL-6 on T cell expansion, epithelial cell growth, IL-6 internalization, 810 
neutrophil-induced damage, and macrophage phagocytosis. A) Effect curve (Eq. S24) for 811 
the IL-6 effect on T cell expansion fit to measurements CD4+ T cells from dilutions of IL-6 by 812 
Holsti and Raulet21. B) Exponential growth curve fit to the growth of A549 cells2 C) The 813 
internalization rate of IL-6 (Eq. S30) fit to the fraction of internalized IL-647. D) Exponential 814 
decay fit to cell viability after H2O2 administration24. E) The macrophage clearance of apoptotic 815 
material (Eqs. S31-S33) was fit to the percentage of macrophages that had engulfed material 816 
over 25 hours27. F) The phagocytosis rate of extracellular virus by macrophages was obtained by 817 
fitting Eqs. S34-S35 to the uptake of virus by macrophages measured by Rigden et al.23. Data 818 
(black) is plotted as either circles (A & F) or mean and standard deviation error bars (B-E); solid 819 
blue line: corresponding fit. 820 

Figure S3. Monocyte expansion and type I IFN production by monocytes, alveolar macrophage 821 
replenishment after viral infection, and GM-CSF production by monocytes. A) Eq. S37fit 822 
to time course of proliferation of monocytes in culture42. B) Fit of Eqs. S38-S39 to the 823 
production of IFN-α by monocytes after 24 hours with RSV as a function of the number of days 824 
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of pre-culturing (1, 2, 4 or 7)43. C) Correlation between infectious virus titre and RT-PCR copy 825 
number for influenza A and B measured by Laurie et al.88 The relative TCID50 compared to the 826 
RNA copies is plotted for each virus strain and the mean as a black dashed line. D-E) Fit of Eqs. 827 
S40-S42 to viral loads87 and alveolar macrophages from experimental influenza infections. F) 828 
The production of GM-CSF from stimulated monocytes was recorded by Lee et al.40 Using a 829 
simplified version of the full model (Eqs. S43-S46), we obtained the production rates for 830 
monocytes and GM-CSF. Data (black) is plotted as either circles/stars (B&F) or mean and 831 
standard deviation error bars (A,D-E); solid blue line: corresponding fit. 832 

Figure S4. Production of IFN and IL-6 by infected cells and macrophages. A) Concentration of 833 
IFN-𝛽 released by alveolar epithelial cells in response to stimulation with influenza virus 834 
recorded at 8, 16 and 24 hours41. B-C) IL-6 production by infected cells in response to A) H5NA 835 
and B) H7N9, measured by Ye et al.36 Data (black) is plotted as mean and standard deviation 836 
error bars with the corresponding fit (Eqs. S51-S54) in solid blue. D) IL-6 production by 837 
macrophages (Eq. S56) in response to stimulation with LPS of varying dosage sizes. Shibata et 838 
al. 37 measured the production of IL-6 for different dosages of LPS and fitting the production 839 
rate to this data to obtain 𝑝0,.! , 𝜂0,.!. 840 

Figure S5. Homeostatic disease-free system regulation. A) To confirm that parameters in the model 841 
represented realistic immunocompetent individuals in the disease-free scenario, Eqs. S1-S22 842 
were simulated where VN = 0 and parameters were given by the homeostasis Eqs. S57-S70. The 843 
initial concentration of G-CSF was perturbed and compared to simulations of the model at 844 
homeostasis. Simulations at homeostasis are represented by solid lines (purple) and perturbed 845 
simulations as dashed lines (pink). B) The maximum residual between variables and their initial 846 
conditions at day 50 was measured to confirm that the system was stable for perturbations in all 847 
immune cells and cytokines. 848 

Figure S6. Model validation against human cytokine measurements during SARS-CoV-2 849 
infection. A) IFN dynamics of the reduced model (Figure 3 Main Text) overlaid with patient 850 
IFN-𝛼2 plasma concentrations from Trouillet-Assant et al.70 The solid line (purple) represents 851 
the unbound IFN dynamics from the reduced model (Eqs. 27-33). Individual patient IFN-𝛼2 852 
measurements are plotted as grey circles. Normal IFN-𝛼2 concentration in healthy volunteers 853 
are indicated by a grey area. B-F) Mild and severe dynamics (Eqs. S1-S22) corresponding to 854 
simulations in Figure 4 Main Text and Figure S7 overlaid with measurements from the 855 
literature with solid lines: mild disease dynamics; dashed lines: severe disease dynamics. B-C) 856 
Plasma IFN-𝛼 and IL-6 in COVID-19 critically ill patients (n=26) obtained by Trouillet-Assant 857 
et al.70 overlaid with mild and severe unbound IFN (𝐹A(𝑡)) and mild and severe unbound IL-6 858 
(𝐿A(𝑡)). D) IL-6 levels in patients requiring and not requiring mechanical ventilation obtained 859 
by Herold et al.91 overlaid with mild and severe unbound IL-6 dynamics. E-F) IL-6 and G-CSF 860 
plasma concentration obtained by Long et al.92 in symptomatic “S” and asymptomatic “AS” 861 
COVID-19 patients overlaid with corresponding mild and severe model dynamics. 862 

Figure S7. Predicting mild and severe COVID-19 dynamics (all model variables). Extension of 863 
results of mild and severe disease dynamics in Figure 4 Main Text. Mild disease (solid lines) 864 
dynamics obtained by using baseline parameter estimates (Tables S1) while severe disease 865 
dynamics (dashed lines) were obtained by decreasing the production rate of type I IFN, pS,T, and 866 
increasing the production of monocytes, pU,T, and their differentiation to macrophages, ηS,U/. 867 
A) Lung cells concentrations (susceptible cells S(t), resistant cells R(t), infected cells I(t), dead 868 
cells D(t) and virus V(t)). Solid black line with error bars indicates macaque data (see Fig. 2 869 
Main Text). B) Immune cell concentrations (resident macrophages M/V(t), inflammatory 870 
macrophages M/T(t), monocytes M(t), neutrophils N(t) and T cells T(t)). C) Bound and 871 
unbound cytokine concentrations (IL-6 unbound LW(t) and bound LX(t), GM-CSF unbound 872 
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GW(t) and bound GX(t), G-CSF unbound CW(t) and bound CX(t), type I IFN unbound FW(t) and 873 
bound FX(t)). 874 

Figure S8. Full analysis of parameters driving COVID-19 severity. A local sensitivity analysis was 875 
performed by varying each parameter ±20% from its originally estimated value and simulating 876 
the model. Predictions were then compared to baseline considering: Maximum viral load 877 
(max(𝑉)), maximum concentration of dead cells (max(𝐷)), minimum uninfected live cells 878 
(min(S+R)), maximum concentration of inflammatory macrophages (max(𝑀!$)), maximum 879 
number of CD8+ T cells (max(𝑇)), maximum concentration of IL-6 (max(𝐿A)), maximum 880 
concentration of type I IFN (max(𝐹A)), the total exposure to type I IFN (𝐹A exposure), the 881 
number of days damaged tissue was >80% (time (𝑆 + 𝑅	)/𝑆=>?)<0.2), and the day type I IFN 882 
reached its maximum (day max(𝐹A)). The heatmaps show the fold change of each metric, where 883 
blue signifies the minimum value observed and red signifies the maximum value observed, or by 884 
the number of days, where light to dark pink signifying increasing number of days from zero. 885 
The most sensitive parameters are shown in Figure 5 in the Main Text. 886 

Figure S9. Cohort dynamics within physiological ranges. Virtual patients were generated so that 887 
viral load, IFN and IL-6 concentration were within physiological ranges obtained in the 888 
literature. The physiological ranges (denoted by open circles) were obtained from A) Munster et 889 
al.96, B) Trouillet-Assant et al. 70, and C) Herold et al. 91. Patient dynamics at discrete time points 890 
are plotted as joined green dots. 891 

Table S1. Parameter values used in the Main Text. Parameters have been grouped into: (a-e) cell 892 
related, (f-k) cytokine related parameters (l) and initial conditions. Relevant references are given 893 
estimated parameters. Parameters obtained through fitting to data in the literature have the 894 
appropriate figure noted in the Info column. Parameters estimated from homeostasis calculation 895 
are denoted by H or qualitatively estimated by E. Parameters whose value was taken from 896 
another parameters estimated has that parameter noted. Viral load is reported as virion copies 897 
and cells have been noted in 108cells. Time t is in days. The final sub-table (m) is a list of the 898 
variables in the model. 899 
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