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A B S T R A C T

Background and purpose: The emergence of synthetic CT (sCT) in MR-guided radiotherapy (MRgRT) represents a 
significant advancement, supporting MR-only workflows and online treatment adaptation. However, the lack of 
consensus guidelines has led to varied practices. This study reports results from a 2023 ESTRO survey aimed at 
defining current practices in sCT development and use.
Materials and methods: An survey was distributed to ESTRO members, including 98 questions across four sections 
on sCT algorithm generation and usage. By June 2023, 100 centers participated. The survey revealed diverse 
clinical experiences and roles, with primary sCT use in the pelvis (60%), brain (15%), abdomen (11%), thorax 
(8%), and head-and-neck (6%). sCT was mostly used for conventional fractionation treatments (68%), photon 
SBRT (40%), and palliative cases (28%), with limited use in proton therapy (4%).
Results: Conditional GANs and GANs were the most used neural network architectures, operating mainly on 1.5 T 
and 3 T MRI images. Less than half used paired images for training, and only 20% performed image selection. 
Key MR image quality parameters included magnetic field homogeneity and spatial integrity. Half of the re
spondents lacked a dedicated sCT-QA program, and many did not apply sanitychecks before calculation. Se
lection strategies included age, weight, and metal artifacts. A strong consensus (95%) emerged for vendor neutral 
guidelines.
Conclusion: The survey highlights the need for expert-based, vendor-neutral guidelines to standardize sCT tools, 
metrics, and clinical protocols, ensuring effective sCT use in MR-guided radiotherapy.

1. Introduction

The introduction of synthetic computed tomography (sCT) in clinical 

practice has advanced radiotherapy (RT) workflows by enabling more 
accurate and patient-specific treatment planning. Traditionally, CT has 
been integral to treatment planning, providing electron density data 
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crucial for accurate dose calculations. Magnetic resonance imaging 
(MRI), on the other hand, offers superior soft-tissue contrast but lacks 
the electron density information that CT provides. This advancement 
with sCT has led to enhanced precision in dose delivery, reduced reli
ance on traditional CT imaging, and streamlined workflows that 
improve staff efficiency and reduce overall treatment costs. This tech
nique represents a shift in radiotherapy, particularly in integrating MRI- 
only workflows, which allows for better soft-tissue contrast and more 
accurate tumor targeting. The integration of sCT addresses these chal
lenges by combining the strengths of both CT and MRI, thereby opti
mizing treatment planning and delivery [1–6].

The transition to sCT, while innovative, requires careful consider
ation during the commissioning and implementation phases, as it 
eliminates the use of the gold-standard CT from the RT workflow. This 
shift necessitates rigorous validation and quality assurance to ensure 
that MRI-only workflows can achieve the same or improved levels of 
accuracy and safety [7]. The development and clinical implementation 
of sCT is a complex process, hindered by the lack of guidelines necessary 
for its consistent and effective use in clinical settings. This absence of 
standardization has led to considerable variability in practices between 
institutions [8–11]. Such discrepancies are mainly attributed to the 
multidisciplinary nature of sCT development, which involves medical 
physicists, engineers, and clinical end-users, each bringing different 
perspectives and methodologies.

As a result, there is a need for sCT practices standardization, and a 
unified approach is essential to ensure the optimal and safe use of this 
technology in patient care. To address these challenges, a working group 
arising from the 2022 European Society for Radiotherapy and Oncology 
(ESTRO) Physics Workshop launched a comprehensive survey on the use 
of sCT in MRI-only RT, involving experts from various fields. The pri
mary goal of this survey was to outline the current landscape of sCT 
usage within MRI-only RT, to provide a detailed snapshot of the tech
nical development and clinical application of sCT. This comprehensive 
overview serves as a foundational step toward identifying key areas 
where standardization is necessary. Although the survey itself does not 
establish standardized guidelines, it highlights critical aspects that 
require uniformity and lays the groundwork for future discussions and 
the development of vendor-neutral guidelines and operational pro
tocols. These efforts will ultimately support the creation of practical 
guidelines and protocols that can standardize sCT practices across 
different clinical settings.

2. Materials and methods

In April 2023, an online survey consisting of 98 questions was 
distributed to all ESTRO members. The survey was structured into four 
sections, each focusing on distinct technical aspects of sCT generation 
algorithms and their clinical applications (Table 1 and Supplementary 
Materials).

The first section of the survey is composed of 9 questions aimed at 
capturing the overall patterns of sCT use. This section identified the 
MRI/MRI-Linac devices available in each institution and their potential 
applications for MRI-only RT and treatment adaptation.

The second section, comprising 19 targeted questions, was designed 
for developers. Notably, this section focused solely on in-house deep 
learning-based sCT algorithms, excluding commercial solutions. This 
section explored the technical development of sCT algorithms, starting 
with the MRI data used as input and its associated device-specific QA. 
Details on the training sets, including the paired/unpaired image ap
proaches, image selection, preprocessing, and the number of acquisition 
devices involved, were collected. This section also inquired the sizes of 
the training, validation, and test sets. Furthermore, it delved into the AI 
based network architecture and training strategies, including fine-tuned 
hyperparameters, data augmentation, and overfitting prevention tech
niques, as detailed specified in literature [7–10].

The third section of the survey examined sCT usage across five 

primary anatomical regions: pelvis, brain, thorax, head-and-neck, and 
abdomen, consisting of 11 questions per site that focused on clinical 
commissioning, routine quality assurance (QA), and usage patterns. 
Specifically, this section assessed the accuracy and performance of sCT 
by analyzing both intensity-based and dosimetry-based metrics. 
Intensity-based metrics, including Mean Absolute Error (MAE) and 
Mean Error (ME), were used to quantify the accuracy of sCT images in 
Hounsfield units (HU) compared to reference CT images, with MAE 
reflecting the overall error and ME highlighting any systematic biases in 
sCT generation. Additionally, dosimetry-based metrics, such as dose 
volume histograms (DVH) and gamma indices (and details on metrics 
like threshold, and if local or global), were employed to evaluate the 
dose distribution accuracy and spatial agreement between sCT and 
reference CT images. Only the two anatomical sites with the highest 
number of responses along all questions in the section are reported in the 
results. The fourth and final section focused on the clinical imple
mentation of sCT. It assessed operational standards and QA practices to 
ensure the efficacy and safety of sCT use in patient care. Additionally, it 
gathered information on specific tumor sites and treatments involving 
sCT generation. The survey finally investigated exclusion criteria as well 
as the rate of patients who cannot benefit from MR-only RT because of 
failure to generate a sCT.

The survey was designed to reach both clinical users and developers. 
The target audiences vary throughout the survey (see Table 1), and some 
questions can only be answered by developers, while all others can be 
answered by all participants.

3. Results

By June 2023, a total of 100 centers participated in the survey, but 
only 98 answers were included in the final analysis after excluding two 
responses due to incompleteness and inconsistencies. These exclusions 
were necessary to ensure the accuracy and reliability of the analysis. 
Response rates varied across the four sections and reflected diverse 
clinical experiences (8 % MRgRT, 40 % MRI-only workflow, 12 % both) 
and roles either as developers (10 %), clinical users who are not de
velopers (55 %), or both (9 %).

3.1. Section 1 (General Information)

The survey results indicated that 46 % of respondents reported 
having one MRI scanner in their institution, 18 % reported having two, 
10 % had three, and 26 % had more than three MRI scanners. The ma
jority (94 %) used these MRI scanners for RT purposes, among which 64 

Table 1 
Survey sections and associated investigation topics.

Section Section Description Investigation Topics

1 General information on 
the use of MRI 
Target audience: all

Use of MRI for RT, use of MRI-Linac, MRI- 
only RT and MRgRT

2 Algorithm development 
Target audience: 
developers

MRI data and QA, training set composition, 
patients split into training, validation, and 
test sets, neural network architecture and 
training strategy

3 sCT evaluation 
Target audience: all

Specific to a given anatomical site 
(investigated sites: pelvis, thorax, brain, 
abdomen, head-and-neck), intensity-based 
metrics including the mean absolute error 
and mean error, dosimetry-based metrics 
including dose volume histograms and 
gamma indices

4 sCT clinical 
implementation 
Target audience: all

Sanity check, QA, exclusion criteria

Abbreviations: MRI: magnetic resonance imaging; RT: radiation therapy; MRI- 
Linac: MRI-linear accelerator; MRgRT: MR-guided RT; QA: quality assurance; 
sCT: synthetic CT.
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% have MRI scanners equipped for treatment simulation (flat couch, 
laser). Among responders, 29 % indicated that their institutions were 
equipped with an MRI-Linac, while 39 % had implemented an active 
MRI-only workflow. Most responses (89 %) were from European centers, 
reflecting the survey’s focus on institutions within ESTRO network.

3.2. Section 2 (Algorithm Development)

A total of 19 centers responded to the survey and identified them
selves as developers; 9 of them are both developers and user of sCT al
gorithms. In terms of MRI sequences used for sCT generation, 52 % of 
developers reported a preference for T2-weighted MRI as the primary 
input for their algorithms. T1-weighted images were utilized by 40 % of 
the respondents, indicating a diversity in image preferences depending 
on the specific clinical application and the anatomical site under 
consideration. Regarding the magnetic field strength, 50 % of re
spondents used 3 T MRI scanners, while 30 % relied on 1.5 T scanners, 
and 20 % used 0.35 T scanners. These variations reflect the adaptability 
of sCT algorithms to different imaging environments. The survey high
lighted the magnetic field homogeneity and the spatial integrity as the 
main quality parameters, with 68 % and 79 % of developers respectively 
identifying them as crucial.

An interesting finding was that a quarter of the developers used 
paired images to develop the deep learning model. Furthermore, a 
similar proportion conducted image selection primarily to circumvent 
issues such as metal artifacts, and secondarily to check the anatomic 
correspondence as well as the noise-based images quality. A minority of 
respondents checked and corrected for air pockets (2 responders). De
velopers implemented various preprocessing techniques to enhance the 
quality of MRI data before it was fed into the sCT generation algorithms 
as shown in Fig. 1. In most of the cases (72 %), the images were acquired 
on the same MRI scanner.

The survey responses highlighted a clear preference for generative 
adversarial networks (GAN) with 80 % of developers utilizing this ar
chitecture. The number of 3D image pairs used for training varied 
significantly among respondents, ranging from 70 to 500. Typically, 70 
% of the data was allocated to the training set, while 10 % to 20 % was 

used for both validation and testing. This variation underscores the 
flexibility in data requirements depending on the specific sCT generation 
task and the available datasets. For the hyper-parameters, the learning 
rate, the number of epochs and the batch size were modified by 50 %, 65 
% and 65 % of the respondents. (See Fig. 1). To mitigate the risk of 
overfitting during model training, 50 % of respondents employed early 
stopping, a technique where training is halted once the model’s per
formance on the validation set no longer improves. Other strategies 
included using dropout layers, regularization techniques, and data 
augmentation to enhance model generalization.

3.3. Section 3 (Site-Specific Questions)

The site-specific analysis focused primarily on the pelvis, as it was 
the most frequently reported site with 43 respondents providing detailed 
data. Brain was the second most reported site, with 10 respondents 
contributing to this analysis. While some data for other anatomical sites, 
such as Thorax (6), Abdomen (8), and Head-and-Neck (4) were 
collected, not all respondents answered every required question for 
these sites. This limited the completeness and robustness of the analysis 
for these areas. Consequently, detailed findings are presented for the 
Pelvis and Brain in this paper.

3.3.1. Pelvis site-specific findings
Respondents employed various metrics to evaluate the image quality 

and dosimetric accuracy of sCT. The use of the MAE and the ME, both in 
Hounsfield units (HU), was common, but a significant proportion also 
used other methods like check density in specific ROI, visual inspection, 
or geometric accuracy. Fig. 2 illustrates the different metrics used by 
respondents for evaluating image quality and dosimetric accuracy.

In the evaluation of gamma criteria indices, most participants (60 %) 
used a 2 %/2mm criterion, while 25 % employed a 3 %/3mm criterion, 
and only 15 % opted for a 1 %/1mm criterion. When considering 
acceptance criteria, 90 % of users adhered to a 95 % gamma passing 
rate, with just 10 % accepting a 90 % passing rate. For low-dose eval
uation, the most common threshold was 10 %, used by 50 % of partic
ipants, followed by 20 % (35 %), 30 % (10 %), and higher thresholds 

Fig. 1. Insights from developers: parameters considered crucial for image quality before training (a); preprocessing steps used by developers, multiple choice allowed (b); 
parameters tuned during the training and validation of the NN (c); strategy used to prevent overfitting during the training (d). Abbreviations: SNR: signal to noise ratio; 
Intensity std: Histogram intensity standardization.
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(>50 %) being relatively rare (5 %). Lastly, when choosing between 
global or local gamma criteria, 65 % of the respondents preferred local 
criteria, while 35 % utilized global criteria.

3.3.2. Brain site-specific findings
A total of 10 participants shared responses on the use of sCT in brain. 

Fig. 3 shows the most interesting results regarding sCT validation met
rics, which were slightly different from the pelvis site (Fig. 3.). The use of 
the MAE and the ME was common, but a significant proportion also used 
other methods like check density of the brain or only dosimetric 

evaluations. Fig. 3. illustrates the different metrics used by respondents 
for evaluating image quality and dosimetric accuracy.

In the evaluation of gamma criteria indices, most participants (80 %) 
used a 2 %/2mm criterion, while 20 % employed a 3 %/3mm criterion. 
When considering acceptance criteria, 80 % of users adhered to a 95 % 
gamma passing rate, with just 20 % accepting a 90 % passing rate. For 
low-dose evaluation, the most common threshold was 10 %, used by 60 
% of participants.

Fig. 2. Metrics used to evaluate the image quality and the dosimetric accuracy.

Fig. 3. Details of Gamma Criteria and pass rates.
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3.4. Section 4 (sCT implementation into clinics)

The survey revealed that 50 % of the respondents reported the 
absence of a dedicated sCT QA program in their institutions. This finding 
is highlighting the need for more standardized and robust QA practices 
across institutions to ensure the safe and effective implementation of sCT 
in clinical workflows. When implemented, QA strategies vary among 
respondents: from QA on MRI images to recalculation on CBCT, to visual 
inspection.

Most of the respondents (60 %) reported applying specific selection 
criteria before enrolling patients in an MRI-only workflow. These 
criteria included factors such as patient age, the presence of metal im
plants, and anatomical considerations (primarily based on body mass 
index) that may affect the accuracy of sCT generation. The survey 
revealed that the presence of metal implants was the most applied cri
terion, considered by 70 % of respondents, followed by patient weight 
(40 %) and age (30 %). Other factors, including patient position, were 
also noted but to a lesser extent.

Despite these selection criteria, a significant proportion of patient
s—ranging from 1 % to over 40 %, depending on the institution—were 
deemed unsuitable for sCT-based treatments and instead required con
ventional CT-based workflows.

The survey results indicate that sCT is predominantly used for con
ventional fractionation treatments (>5 fractions), with 68 % of re
spondents reporting its use in this context. In contrast, 40 % of 
respondents reported using sCT for hypofractionated stereotactic body 
radiotherapy (SBRT), which involves fewer fractions and higher doses 
per fraction. The lower utilization in SBRT may reflect the higher pre
cision required in these treatments, where the accuracy of sCT must be 
rigorously validated to ensure patient safety. These findings suggest that 
while sCT is well-integrated into conventional fractionation workflows, 
its application in hypofractionated treatments may require further 
development and validation. Less experiences are reported in case of 
palliative treatments or particle therapy (25 % and 5 % respectively). 
Sanity checks, which include visual inspections of body contour and 
artifacts, were performed by less than half of the respondents (46 %). 
This low percentage suggests that more rigorous protocols for sanity 
checks are needed to ensure the accuracy and safety of sCT-generated 
images. Implementing standardized sanity checks across institutions 
could mitigate the risk of errors in MRI-only workflows, further 
enhancing the reliability of sCT in clinical practice. A compelling 95 % of 
respondents emphasized the need for vendor-neutral international 
guidelines for sCT use. From answers emerged also the need for dedi
cated phantoms for end-to-end test from MRI to Linac, simplified 
workflows, and specific topics like robust fiducial detection to improve 
image guidance.

4. Discussion

The survey revealed significant variation in sCT practices among 
institutions, highlighting the need for standardized, vendor-neutral 
guidelines to ensure consistent quality assurance and effective clinical 
integration. Despite the relatively limited number of responses, these 
results are representative given the early adoption stage of MRI-only 
workflows, particularly considering that sCT technology has only been 
available since 2016 and there are around 180 MRI-Linacs installed 
globally. As these technologies becomes more widespread, the number 
of users is expected to grow.

The transition from CT to sCT presents technical and QA challenges, 
as highlighted in recent studies [2,7,8–11], emphasized the need for 
robust QA practices in MRI-only workflows, reflecting the broader 
challenge of ensuring sCT reliability. Our survey confirmed this, with 60 
% of respondents lacking a dedicated sCT QA program, underscoring the 
need for comprehensive testing and patient-specific QA protocols.

Deep learning algorithms, particularly GANs, have proven effective 
in generating sCT, with 80 % of developers favoring GANs over U-Nets 

consistent as widely reported also in literature [12–38]. However, the 
interpretability and reliability of these models, especially for new pa
tient characteristics, remain areas of active research. Emerging archi
tectures such as transformers and diffusion models are beginning to 
show promise in medical imaging applications, including sCT genera
tion, and may soon surpass GANs as the state-of-the-art in this domain 
[39,40].

A multidisciplinary approach is essential for sCT development and 
implementation, as highlighted by the collaborative spirit of the ESTRO 
Physics Workshop 2022. Open questions remain about the roles within 
this multidisciplinary team where medical physicist should be respon
sible [41]. The survey also revealed that 60 % of respondents apply 
specific patient selection criteria, such as age and metal implants, 
underscoring the need for backup CT workflows. However, sCT usage is 
still limited to certain treatments, with only 68 % using it for conven
tional fractionation, and fewer for hypofractionated SBRT or other 
therapies. Additionally, sanity checks are performed by less than half of 
the respondents, indicating the need for more rigorous protocols.

Future research should prioritize the validation of sCT technology 
through multicentric studies. These studies will be crucial in assessing 
the performance and generalizability of sCT across diverse clinical en
vironments, enabling a realistic evaluation of its effectiveness in routine 
practice. Additionally, there is a pressing need to establish shared 
quality assurance (QA) frameworks for the commissioning and periodic 
QA of sCT systems. Standardized QA protocols, developed through dis
cussion among experts, will ensure consistent performance and safety 
across institutions. Another critical future step is the creation of a shared 
dataset that can serve as a benchmark for sCT performance. A well- 
curated, publicly available dataset would allow researchers and clini
cians to test and compare different sCT algorithms under standardized 
conditions, facilitating the development of more robust and generaliz
able models. Such a resource would also support the ongoing refinement 
of sCT technology and help to accelerate its integration into clinical 
practice, as provided for example by 2023 SynthRad Grand Challenge 
[42,43].

This study has several limitations that must be considered when 
interpreting the findings. First, the reliance on self-reported data in
troduces the potential for response bias. Additionally, the geographic 
concentration of respondents, with approximately 90 % from European 
institutions, limits the generalizability of the results to other regions.

The focus on the pelvis and brain does not fully represent sCT use in 
other anatomical sites, and the rapid evolution of technology may 
render these findings outdated. Other limitations are related to more 
technical questions, regarding details on acquisition sequences for NN 
training, or about details in validation metrics, like Gamma Index, that is 
not explained if it 2D or 3D.

This survey highlights the need for standardized, vendor-neutral 
guidelines in the development and clinical use of sCT. The variability 
in current practices underscores the importance of consistent quality 
assurance and robust patient selection criteria. Future efforts should 
focus on practical education, developing commercial tools, and con
ducting studies to evaluate their impact. Achieving consensus on key 
metrics will be crucial for advancing sCT integration into radiotherapy 
workflows.
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