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An association between endometriosis and luteinized unruptured follicle syndrome (LUFs)
has long been identified. Although inactivating mutation of luteinizing hormone/
choriogonadotropin receptor (LHGCR) results in LUFs, whether LHCGR contributes to
promoting LUFs in endometriosis remains elusive. To investigate the effect of LHCGR
signaling in the development of endometriosis-associated LUFs and dissect the
underlying mechanism in vivo mouse endometriosis model was established to measure
the effect on ovarian folliculogenesis. In vitro cultures of primary human GCs collected from
patients undergoing in vitro fertilization were performed and treated with human chorionic
gonadotropin (hCG), dibutyryl cyclic-AMP (db-cAMP), LHCGR or CCAAT/enhancer
binding protein-a (C/EBPa) small interfering RNA to identify the potential mechanisms.
KGN cell line was used to investigate the mechanistic features of transcriptional regulation.
Results showed an increased incidence of LUFs was observed in mice with
endometriosis. The expression of LHCGR was decreased in the GCs of endometriosis
mice. In in vitro cell models, LHCGR signaling increased the expression of C/EBPa and
cyclooxygenase-2(COX-2), while inhibiting C/EBPa mitigated the induced COX-2
expression. Mechanically, C/EBPa bounded to the promoter region of COX-2 and
increased the transcriptional activity under the stimulation of hCG or db-cAMP. Taken
together, this study demonstrated that the LHCGR signaling was reduced in GCs of
endometriosis and resulted in a decrease in gonadotropin-induced COX-2 expression.
Our study might provide new insights into the dysfunction of GCs in endometriosis.

Keywords: endometriosis, luteinized unruptured follicle syndrome, LHCGR, ovulation, COX-2
Abbreviations: C/EBPa, CCAAT/enhancer binding protein-a; cAMP, cyclic adenosine monophosphate; ChIP, chromatin
immunoprecipitation; CL, corpus luteum; COCs, cumulus–oocyte complexes; COX-2, cyclooxygenase-2; db-cAMP, dibutyryl
cyclic-AMP; EGF, epidermal growth factor; GCs, granulosa cells; hCG, human chorionic gonadotropin; ICSI, intracytoplasmic
sperm injection; IVF, in vitro fertilization; JIA, juvenile idiopathic arthritis; LH, luteinizing hormone; LHGCR, luteinizing
hormone/choriogonadotropin receptor; LUFs, unruptured follicle syndrome; NSAIDs, non-steroidal anti-inflammatory drugs;
PGE2, prostaglandin E2; PMSG, pregnant mare serum gonadotropin; siRNA, Small interfering RNA.
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INTRODUCTION

Endometriosis (EMs) is an estrogen-dependent chronic
inflammatory condition that affects women in their reproductive
period and causes infertility and pelvic pain. EMs has long been
identified to have an association with luteinized unruptured follicle
syndrome (LUFs), one of the ovulatory dysfunction subtypes, due to
the intrafollicular endocrine milieu (1, 2). LUFs has been considered
a subtle cause of endometriosis-associated infertility (3). The
incidence of LUFs accessed by laparoscopic examination is 35%
in endometriosis patients, while it is 11% in others (4). Increased
incidence of LUFs is also observed in the animal model with
endometriosis (5, 6). Although the mechanisms of ovulatory
dynamics are similar to inflammatory responses (7), the precise
underlying reasons for LUFs associated with endometriosis
remain uncovered.

It has been observed that the dysregulation of follicle maturation
and ovulation in endometriosis are tightly associated with endocrine
and paracrine factors produced by granulosa cells (GCs) (8). The
cyclooxygenase-2(COX-2)/prostaglandin E2 (PGE2), one of the
major GCs derived factors, plays an essential role in the
maintenance of normal oocyte maturation, follicle rupture and
ovulation (9, 10). Moreover, COX-2 is aberrantly decreased in
endometriosis, which may result in insufficient cumulus
expansion and subsequently lead to impairment of the oocyte
quality (11). However, the regulation mechanism of COX2 in
endometriosis is largely unclear.

COX-2 is considered inducible by gonadotropin and participates
in the regulation of reproduction, in addition, the luteinizing
hormone (LH) surge regulates the expression of COX-2 and
promotes biosynthesis of PGE2 within the ovulatory follicle (12).
The biological activity of LH is mainly mediated by receptor-
mediated signal transduction cascades and activated LH
subsequently provokes the expression of numerous endocrine
factors, either in ovarian granulosa or thecal cells. Therefore,
changes in the LHCGR, which plays a vital role during ovarian
development and corpus luteum function (13, 14) in women, might
impact the correct course of these processes. Recent observations
have demonstrated that abnormal LH signaling may be involved in
the coexistence of anovulation and endometriosis (15). The clinical
observation that patients with endometriosis have dysfunctional
LHCGR expression (16), further suggesting a failure in the
mechanism associated with LH action in the ovulation process.
These observations led us to investigate whether LHCGR involved
in COX-2 induced ovulation disorder.

Despite accumulating evidence exploring the mechanisms
involving normal folliculogenesis and ovulation, the specific
mechanism of LUF syndrome in endometriosis currently has not
been elucidated. In this study, we found that LHCGR expression
decreased in endometriosis granulosa cells. Functional studies in
mice model and primary cultured granulosa cells revealed that
attenuated LH signaling induced ovulatory disorder, mechanically,
the inactivation of LHCGR induced decreased C/EBPa, which
upregulated COX2 expression by binding to its promoter.
Collectively, these results indicated that the decline of LHCGR
may result in LUFs, and this may be associated with endometriosis-
associated infertility.
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MATERIALS AND METHODS

Mice Model of Surgical-Induced
Endometriosis
To improve our understanding of the pathophysiology
underlying this enigmatic disease, animal models have been
employed due to the ethical limitations of performing
controlled studies of infertile women with endometriosis. The
procedures on animals were carried out following institutional
guidelines and the Institutional Animal Care and Use Committee
of Wuhan University approved the experimental protocol
(Approval No. WP2020-08005).

Five-week-old female C57BL/6 mice (Vital River Laboratory,
China) were housed under well-controlled conditions (12 h light/
12 h dark cycle maintained at a temperature of 22–25°C). After a
week of acclimation, mice were injected with 17 b-estradiol
(Sigma-Aldrich, E2758) (3 mg/mouse, s.c.) for 1 week, then the
endometriosis model was conducted by autologous
transplantation of uterine tissue (17). Briefly, after euthanized,
the left uterine horns were isolated. Obtained uterine tissue was
cut into three equal-sized parts as implants, auto-transplanted
was performed around three arteries of the intestinal mesentery.
Sham-operated control mice (sham) were subjected to the same
steps, but no implant was sutured to the intestinal mesentery. To
allow the recuperation and development of endometriotic
implants, the subsequent experiment began after 3 weeks.

Superovulation, Oocyte Collection and
Sample Harvest
After 3 weeks, mice were superovulated with 5 IU pregnant mare
serum gonadotropin (PMSG) (Solarbio, P9970) followed 48 h
later by 5 IU human chorionic gonadotropin (hCG) (LIVZON,
China) to induce follicle development and ovulation. When
mimicking the poor response to LH surge of ovary in vivo, the
mice were treated with full-dose PMSG (5IU) followed by half-
dose hCG (2.5 IU) to trigger ovulation. Ovarian tissues for
follicular morphology were collected before superovulation or
48 h after PMSG administration. Granulosa cells for gene
expression analysis were isolated at different times after hCG
administration (0, 2, 4, and 8 h). To exam the number of
ovulated oocytes, ampullae were collected at 14–16 h after
hCG injection and then secured to release the clutch of
cumulus–oocyte complexes (COCs). For morphology analysis
of the post-ovulatory ovary, the samples were collected at 24 h
after hCG administration.

H&E Staining and Immunohistochemistry
For follicle counting, ovaries from each group were collected at 14–
16 h after hCG injection and hematoxylin and eosin (H&E) staining
was performed as described previously (18). Briefly, the right ovaries
were fixed in 4% paraformaldehyde, routinely paraffin-embedded,
then cut thoroughly into sections of 5-mm thickness followed by
staining. In every fifth section, follicles containing oocytes with a
visible nucleus were counted and properly classified into different
follicle stages (19). The number of luteinized unruptured follicle and
corpus luteum (CL) were also recorded.
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Mice ovaries were collected as mentioned above and
Immunohistochemistry was performed on formalin-fixed
paraffin-embedded sections using immunoperoxidase staining
kit (PV-9001, ZSGB-BIO, Beijing, China) according to the
procedure of the manufacturer. After deparaffinized and
rehydrated, antigen retrieval was carried out with sodium
citrate. Approximately 3% hydrogen peroxide was used to
eliminate the activity of endogenous peroxidase. The sections
were then treated with bovine serum albumin (BSA) blocking,
followed by incubation with primary antibody for LHCGR
(19968-1-AP; 1:200 dilution; Proteintech), C/EBPa (18311-1-
AP; 1:200 dilution; Proteintech), COX-2 (ab15191; 1:200
dilution; Abcam) and corresponding secondary antibody. The
omission of the primary antibody served as a negative control.
The H-score was processed and calculated as described
previously (20). We used the following equation: H-score = ∑
Pi (i), where i was the intensity of staining with a value of 1, 2, or
3 (weak, moderate, or strong, respectively) and Pi was the
percentage of stained cells for each intensity, varying from 0
to 100%.

Human Granulosa Cell Collection and KGN
Cell Line Culture
The study protocol was approved by the Institutional Review
Board (No. 2018047). Human GCs were obtained from patients
undergoing in vitro fertilization (IVF)/intracytoplasmic sperm
injection (ICSI) treatment due to tubal factor or male subfertility
at the Reproductive Medical Center of Zhongnan Hospital. After
controlled ovarian hyperstimulation, 10,000 IU hCG was
administered to trigger ovulation. The follicular fluid was
immediately collected and centrifuged for 10 min at 2,000 rpm
after oocyte pick-up. Then the pellet was resuspended in an
enzymatic solution to digest clusters of cells. GCs were highly
isolated through Percoll density gradient and red blood cells were
removed using lysis buffer. The cell pellet was resuspended in
DMEM/F12 medium (Gibco) supplemented with100 U/ml
penicillin, 100 µg/ml streptomycin, and 10% (v/v) fetal bovine.
The cells were then seeded at a density of 2 × 105 cells/ml in a 6-
well plate and incubated for 3 days at 37°C in humidified
atmosphere with 5% CO2. The media was replenished every 24
h. To mimic the effect of LH and cAMP in vivo, we used hCG (10
IU/ml; LIVZON, China) and dibutyryl-cAMP (db-cAMP, 1 mM;
HY-B0764A, MedChemExpress, USA) respectively to stimulate
cells and further cultured for stated hours in vitro according to
previous studies (21). KGN cell line was cultured in DMEM/F12
medium as mentioned above.

Small Interfering RNA (siRNA)
and Transfection
For gene silencing experiments, human GCs were transfected
with 50 uM small interfering (siRNA) oligonucleotides against
LGCGR, C/EBPa or negative control (NC) siRNA (Huzhou
Hippo Biotechnology Co., Ltd.) using lipofectamine 3000
transfection reagent (Invitrogen, USA) according to the
instructions provided by the manufacturer. The specific
sequences of target genes were as follows: si-LHCGR, 5′-UGC
Frontiers in Endocrinology | www.frontiersin.org 3
CUU CAA AGU ACC UCU UAU TT-3′ (sense) and 5′-AUA
AGA GGUACUUUGAAGGCA TT-3′ (antisense); si-C/EBPa,
5′-GGA GCU GAC CAG UGA CAA UTT-3′ (sense) and 5′-
AUU GUC ACU GGU CAG CUC CAG-3′ (antisense); si-
LHCGR scrambled NC, 5′-GUC AUU AUC CUU UCG CAC
UAA dTdT-3′(sense) and 5′-UUA GUG CGA AAG GAU AAU
GAC dTdT-3′ (antisense); si-C/EBPa scrambled NC, 5′-GGU
AAC GGG ACC GAC UUA AdTdT-3′ (sense) and 5′-UUA
AGU CGG UCC CGU UAC CdTdT-3′ (antisense). For further
experiments which were focused on the mechanisms of signal
pathways, the cells were incubated with or without db-cAMP or
hCG for further 24 h after 24 h of transfection (22).

RNA Isolation and Quantitative Real-Time
PCR (qRT-PCR)
Total RNA was extracted with an RNA extraction kit (RN0302,
Aidlab, China). RNA (1 ug) was reverse transcribed with a cDNA
Synthesis Kit (R212-01, Vazyme, China). Quantitative real-time
PCR (qRT-PCR) was performed using ChamQ SYBR qPCR
Master Mix (Q311-02, Vazyme, China) and a CFX96 PCR
system machine (Bio-Rad Laboratories, USA). Each reaction
was performed with a total volume of 20 ml, consisting of 2×
ChamQ SYBR qPCR Master Mix (10 µl), 5’- and 3’-primer (0.4
µl, respectively), cDNA (1 µl), and ddH2O (8.2 µl). With the
following primers: LHCGR: 5′-TCC TTT CCA GGG AAT CAA
TC-3′ (sense) and 5′-GGC CGG TCT CAC TCG AC-3′
(antisense); C/EBPa: 5′-CAC GAA GCA CGA TCA GTC
CAT-3′ (sense) and 5′-CGG AGA GTC TCA TTT TGG CAA
G-3′ (antisense); COX-2: 5′-TAA GTG CGA TTG TAC CCG
GAC-3′ (sense) and 5′-TTT GTA GCC ATA GTC AGC ATT
GT-3′ (antisense); GAPDH: 5′-CTG TTC GAC AGT CAG CCG
CATC-3′ (sense) and 5′-GCG CCC AAT ACG ACC AAA TCC
G-3′ (antisense). Data analysis was performed using Bio-Rad
CFX manager system, using GAPDH as a reference transcript.
Western Blot Analysis
Whole-cell protein extract was lysed and isolated from cultured
cells or mouse ovaries. After measuring protein concentrations
using a BCA Protein Assay Kit (P0010, Beyotime, China), equal
amounts of denatured protein were separated by electrophoresis
in 10% SDS polyacrylamide gels and transferred to polyvinyl
difluoride membranes (Millipore, Billerica, USA), which were
then saturated with blocking buffer for 1 h. After that, the
membranes were incubated with rabbit polyclonal anti-
LHCGR (19968-1-AP; 1:1,000 dilution; Proteintech), rabbit
polyclonal anti-CEBPa (8178; 1:1,000 dilution; Cell Signaling),
or rabbit polyclonal anti-COX2 antibodies (ab 15191; 1:1,000
dilution; Abcam) O/N at 4°C. The blots were incubated with
HRP–conjugated anti-rabbit IgG for 1 h. Peroxidase activity was
detected using the ECL system (Touch Imager, e-Blot, China).

Immunofluorescence
After treatment for stated hours in vitro, cells were fixed with
paraformaldehyde. Then, the cells were treated with 0.5% Triton
solution to encourage intracellular labeling. Cells were next
May 2022 | Volume 13 | Article 853563
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blocked with 5% BSA for 1–2 h at RT and incubated with
primary antibody against CEBPa (8178; 1:200 dilution; Cell
Signaling) O/N at 4°C. Secondary antibody incubation was
performed at RT for 60 min. Cells were washed and treated
with antifade mounting medium, which contains DAPI (P0131,
Beyotime, China).

Luciferase Reporter Assays
The effect of C/EBPa on the transcriptional activity of COX-2
promoter was determined by analyzing the dual-luciferase
activities using a commercial assay kit (E2920, Promega, USA).
The expression construct used for luciferase-based assays was
pcDNA3.1 C/EBPa (NM_004364) while reporter construct used
was pGL3-PTGS2 promoter (−1.2 kb/+137). KGN cells were co-
transfected with the indicated plasmids with the help of
lipofectamine 3000 transfection reagent (Invitrogen, USA) as
previously described (23). The samples were lysed at 48 h after
transfection, detection of luciferase activity was conducted.
Firefly luciferase measurements were normalized to
Renilla luciferase.

Chromatin Immunoprecipitation Assay
After treatment with hCG or db-cAMP, KGN cells (2 × 107) were
collected and processed as described previously (24). Briefly, cells
were washed and fixed in 1% formaldehyde for 15 min then
cross-linking was terminated using 0.125 M glycine. Then the
chromatin immunoprecipitation (ChIP) assay was performed to
determine whether CEBPa interacts with the putative binding
site in COX-2 promoter using a Simple ChIP Kit (56383, Cell
Signaling) according to the protocols of the manufacturer.
Approximately 1% of the chromatin fragments were stored at
−20°C to be used later for input for normalization. For each
immunoprecipitation (IP) reaction, every 5 ug chromatin sample
was incubated with 4 ug CEBPa antibody (18311-1-AP,
Proteintech) O/N at 4°C or with 1 ul IgG antibody (2729,
CST) as a negative control for nonspecific IP. The primers for
the COX2 promoter used in ChIP-PCR analyses were as follows:
5′-TCTAGGAAGCCTTTCTCCTCCT-3′ (sense) and 5′-
TGATCCACGCTCTTAGTTGAAAT-3′ (antisense). The
resulting signals were normalized to input values, with the
IgG-negative control values subtracted as background.

Statistical Analysis
Data were calculated as percentages or ratios relative to the
corresponding negative controls, presented as means ± SEM, and
were appropriately analyzed by ANOVA, or unpaired t-test with
GraphPad Prism (Version 8.1.1, California). Values of P <0.05
were considered statistically significant.
RESULTS

The Presence of LUFs in Mice With
Surgical-Induced Endometriosis
After confirming the induction of surgical-induced
endometriosis three weeks after the operation, we initially
Frontiers in Endocrinology | www.frontiersin.org 4
collected the ovaries and evaluated the impact of endometriosis
on the general morphology and ovarian reserve (Figures 1A, B).
The anatomical observation indicated both morphology and
ovarian weight were similar between EMs and sham mice.
Counts of primary, secondary and antral follicles in the
endometriosis model (78.00 ± 9.72, 46.67 ± 9.14, and 16.00 ±
2.00, respectively) were comparable to those of sham-operated
mice (84.00 ± 11.24, 44.33 ± 10.33, and 16.67 ± 2.94, respectively)
(Figure 1C). These results suggested that endometriosis mice
presented similar healthy follicles to sham mice.

Ovarian responsiveness to gonadotropins was further
evaluated to examine if folliculogenesis and ovulation are
affected by endometriosis. Firstly, ovaries were collected 48 h
after PMSG treatment when follicles developed to preovulatory
stage (Figure 1D). Quantification of ovarian follicles indicated
that the number of preovulatory follicles showed no significant
differences in animals of both groups (7.33 ± 1.50 in sham vs.
7.17 ± 1.94 in EMs). Subsequently, the number of ovulated
oocytes was assessed after a superovulation protocol to further
investigate whether ovulation was affected by endometriosis
(Figure 1E). After 16 h of hCG administration, fewer
cumulus–oocyte complexes (COCs) were released in EMs mice
compared to that in sham-operated mice (9.12 ± 2.31 in EMs vs.
13.67 ± 1.37 in sham), indicating the ovulatory capacity was
compromised in endometriosis mice.

During ovulation, the follicle ruptures and oocyte is released,
the remaining GCs and theca cells under the influence of LH are
luteinized to form a corpus luteum (CL). EMs ovaries showed
increased luteinized unruptured follicles (Figures 1F, G),
characterized by the oocytes destined for ovulation becoming
entrapped in preovulatory follicles or corpora lutea within a full
investment of luteinized granulosa cells. These observations
established that, in endometriosis, LUFs leads to reduced
ovulation and abnormal CL formation, and it may be a cause
of endometriosis-associated infertility.

Attenuated Responsiveness of LHCGR to
its Ligand Leads to LUFs in Endometriosis
To uncover the mechanism responsible for LUFs, we mimicked
the poor response to LH surge of ovary in vivo by treating the
mice with full-dose PMSG (5I U) followed by half-dose hCG (2.5
IU) to trigger ovulation. Although similar trends had been
observed in full-dose hCG mice occurred in sham mice, the
EMs mice displayed a significant reduction of ovulatory oocytes
and more frequent incidence of LUFs after administration of half
dose of hCG in vivo (Figures 2A, B). Moreover, the expression
pattern of LHCGR protein in the GCs collected at different time
points after hCG administration was determined by Western
blotting (Figure 2C). The results showed that LHCGR protein
levels were lower in the GCs of EMs mice in the early ovulatory
phase compared with controls, the reduced trends even lasted to
late ovulatory phases. IHC staining confirmed that the intensity
of LHCGR staining appeared weaker and sporadic in GCs of
hCG-primed (0 and 8 h) EM mice than that in sham mice
(Figures 2D, E). These results suggested that decreased LHCGR
induces a poor response to LH surge and therefore contribute to
May 2022 | Volume 13 | Article 853563
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the pathogenesis of LUFs. More importantly, the dysfunction
presents before endogenous LH surge.

LHCGR Modulates COX-2 Expression in
Human Granulosa Cells
LH signaling primes many key ovulatory genes in granulosa cells.
To further look into the mechanism responsible for LUFs, we
first investigate whether LHCGR is involved in the expression of
ovulation-related genes (25–27). The qRT-PCR analysis indeed
showed that the expression levels of known genes, such as
VEGFA, COX-2, AREG, and EREG were significantly
diminished in the human GCs of LHCGR knockdown than
those of the negative control (NC) (Figure 3A). We further
analyzed the gene expression between EMs and sham mice. Both
VEGFA and COX-2 were significantly decreased in the GCs of
EMs mice (Figure 3B). Since abnormal COX-2 function is also
associated with ovulation failure (28), these observations led us
to investigate the correlation between LH signaling and COX-2.

To determine the effect of LH signaling on COX-2, human
GCs were stimulated with 10 IU/ml hCG to mimic the in vivo
induction. The expression pattern of COX-2 in the human GCs
collected at different time points after hCG administration was
determined (Figures 3C, D). As expected, hCG treatment
induced the expression of COX-2 in levels of mRNA and
proteins at 24 h, and the levels remained appreciable even at
36 h after hCG treatment (Figures 3C, D). To reveal the
functional role of LHCGR involved in the expression of COX-
2 during the periovulatory period, RNA interference (RNAi)
Frontiers in Endocrinology | www.frontiersin.org 5
approach was employed to knock down LHCGR transcripts in
the presence or absence of hCG. The knockdown of LHCGR per
se, rather than negative control, recapitulated the hCG induced
COX-2 upregulation (Figures 3E, F).These results revealed that
LHCGR is involved in the hCG-induced upregulation of COX-2
expression in human GCs.

We further assess the expression of COX-2 during ovulation,
granulosa cells were collected at different time points after hCG (0,
2, 4, and 8 h) treatment for analysis (Figure 3G). COX-2 protein of
the granulosa cells from EMs mice were significantly decreased
compared to sham mice. IHC staining for COX-2 showed that
COX-2 was mainly localized to granulosa and theca cells of
dominant follicles during both early and late ovulatory phases,
and abundant COX-2 was found at 8 h after hCG priming, whereas
little staining was observed in EMsmice (Figure 3H). Therefore, we
conjecture that the endometriosis-related abnormal actions of
LHCGR modulate downregulation of COX-2 in GCs, then results
in reduced ovulation with impaired follicle rupture.

LHCGR Regulates COX-2 Expression
Through C/EBPa Protein
We further sought to identify underlying mechanisms of the
LHCGR-induced COX2 upregulation. There is evidence
indicating the expression and functional activation of C/EBP
family members is essential for events associated with
reproduction (29, 30). We reasoned that C/EBPa may participate
in the LHCGR-induced COX2 expression. Accordingly, Western
blot was conducted to investigate the expression pattern of C/EBPa
A B D

E F G

C

FIGURE 1 | EMs mice with ovulatory dysfunction and LUFs. (A, B) Ovarian morphology and weights of EMs and sham mice. ns, no significance. (C) Average
number of each follicle classes per ovary (every fifth section of serially sectioned ovaries was counted; n = 6, each group). ns, no significance. (D) Number of
preovulatory follicles per ovary (n = 6, each group). (E) Number of ovulated oocytes per mouse (n = 6, each group). *P < 0.05 (Student’s t-test). ns, no significance.
(F) Representative H&E-stained ovarian tissue sections depicting unruptured follicle and normal CL. Asterisk denoted normal CL after ovulation. Arrows pointed to
the trapped oocytes within CLs. Scale bars, 100 mm. (G) The percentage of luteinized unruptured follicle for all CLs. The values were the mean ± SEM. *P < 0.05
(Student’s t-test).
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in granulosa cells collected at different time points after hCG
administration and the results showed that C/EBPa was
diminished in EMs mice (Figure 4A). IHC staining showed that,
after PMSG administration (48 h), follicles were either mature or in
the process of ovulation, C/EBPa was expressed in the granulosa
and theca cells of superovulatedmouse ovaries. After treatment with
hCG, the protein level was significantly increased. Interestingly, C/
EBPa staining in the EMs mice appeared to be attenuated in the
granulosa cells (Figure 4B).

The results demonstrated that hCG escalated the expression of
C/EBPa in granulosa cells after 24 h in both mRNA and protein
levels (Figures 4C, D). We also confirmed that hCG significantly
induced C/EBPa expression in the nuclei of human
GCs (Figure 4E).

Consistently, knockdown of LHCGR affected the basal levels
of C/EBPa expression; it also further significantly diminished the
hCG-induced C/EBPa expression (Figures 4F, G). These results
provided evidence that C/EBPa may involve in regulation by
LHCGR signaling in human GCs. To further substantiate our
observation, siRNA-mediated down-regulation of endogenous
C/EBPa was employed, and we found that the expression of
Frontiers in Endocrinology | www.frontiersin.org 6
COX-2 was down-regulated after knockdown endogenous C/
EBPa in GCs (Figures 4H–J).

To interrogate the bona fide regulation of C/EBPa on COX-2,
dual-luciferase reporter assay using KGN cells was conducted and
the results showed that C/EBPa was sufficient to operate as a
transactivator of COX-2 transcription since the luciferase activity of
cells transfected with COX-2 wild-type reporter plasmid (COX-2-
wt) was strongly improved after co-transfected with C/EBPa-
overexpression (C/EBPa-oe) plasmid in a dose-dependent
manner (Figure 4L). These results indicated that C/EBPa
activated the transcription of COX-2. To address the potential
binding region of C/EBPa in the COX-2 promoter region, a
bioinformatics analysis was conducted by JASPAR database
(http://jaspar.genereg.net/), a putative C/EBPa-binding site
located at position −416/−403 of the COX-2 promoter was
identified (Figure 4K). The results of dual-luciferase reporter
assay verified that the luciferase activity in cells co-transfected
with COX-2 mutant reporter plasmid (COX-2-mut) and
C/EBPa-oe plasmid was not altered (Figure 4L). Furthermore,
ChIP-PCR assays were conducted to validate the molecular
interaction between C/EBPa and the identified biding site in
A

D

B C

E

FIGURE 2 | Decreased responsiveness of LHCGR to its ligand in endometriosis. (A) Average number of ovulated oocytes following superovulation protocols with a
different dose of hCG (n = 6, each group). *P < 0.05 (two-way ANOVA). (B) The percentage of luteinized unruptured follicle for all CLs tracked per ovary. *P < 0.05,
**P < 0.001 (two-way ANOVA). (C) Western blotting of LHCGR protein expression in GCs of EMs and sham mice at different time points after hCG administration (0,
2, 4, and 8 h). GAPDH was used as a sample loading control. * P < 0.05, **P < 0.001 (Student’s t-test). (D, E) Immunohistochemical H-score and representative
images of immunohistochemical staining for LHCGR in the GCs from EMs and sham mice after PMSG-priming (48 h). Scale bar, 100 mm. **P < 0.001 (Student’s t-
test).
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COX-2 promoter in KGN cell line collected 24 h after treatment
with hCG (Figure 4M). The result unveiled that the
immunoprecipitation of the C/EBPa antibody-enriched DNA
fragments containing identified binding sites, demonstrating
CEBPa was strongly bound to the promoter region upstream
from the transcriptional start site of COX-2 gene.

Further experiments showed that hCG-increased expression
of COX-2 was attenuated by knock down of C/EBPa in human
granulosa cells (Figures 4N–P). Characterization of C/EBPa
Frontiers in Endocrinology | www.frontiersin.org 7
showed the same pattern of expression. These results suggest
that C/EBPa plays an important role in hCG-induced COX-2
expression in human GCs.

cAMP Modulates the Activity of C/EBPa
to Stimulate COX-2 Transcription In Vitro
Cognate receptor of LH is G-protein coupled receptor that is
predominantly mediated by activation of adenylate cyclase and
cAMP-dependent mechanisms in ovarian follicle growth and
A B

C E

D

H

F

G

FIGURE 3 | COX-2 involved in the hCG-induced ovulation is downregulated in EMs granulosa cells. (A) qRT-qPCR analysis of expression of ovulation-related genes VEGFA,
PGF, COX-1, COX-2, AREG, EREG, MMP-2, and MMP-9 in human GCs treated with nontargeting negative control siRNA (NC) or LHCGR siRNA.**P < 0.001 (Student’s t
-test). (B) qRT-PCR analysis of ovulation-related gene expression in GCs of EMs and sham mice after PMSG-priming (48 h). *P < 0.05, **P < 0.001 (Student’s t -test).
(C) Human GCs were treated with10 IU/ml hCG for 0, 12, 24, and 36 h, the protein levels of COX-2 were examined by Western blot. (D) The mRNA levels of COX-2 in hCG-
treated human GCs at different time points were analyzed by qRT-PCR. *P < 0.05, **P < 0.001 (ANOVA). (E, F) Human GCs were transfected with 50 nM siRNA against
LHCGR for 24 h and then treated with 10 IU/ml hCG for another 24 h. The mRNA and protein levels of COX-2 were analyzed. *P < 0.05 (ANOVA). (G) Western blotting of
COX-2 during ovulation in GCs from EMs and sham mice.*P < 0.05 (Student’s t -test). (H) Immunohistochemical H-score and representative images of immunohistochemical
staining for COX-2 in the GCs from EMs and sham mice after PMSG-priming (48 h). Scale bar, 100 mm. **P < 0.001 (Student’s t -test).
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FIGURE 4 | C/EBPa is necessary for hCG-induced COX-2 expression in granulosa cells. (A) Western blotting of C/EBPa during ovulation in GCs from EMs and
sham mice. (B) Representative images of immunohistochemical staining for C/EBPa in the GCs from EMs and sham mice after PMSG-priming (48 h). Scale bar, 100
mm. (C, D) The protein and mRNA levels of C/EBPa in hCG-treated human GCs at different time points were analyzed by Western blot and qRT-PCR, respectively.
**P < 0.001 (ANOVA). (E) hCG-treated (24 h) human GCs were analyzed by immunofluorescence to identify the subcellular localization and protein expression levels
of C/EBPa (red). Nuclei were stained with DAPI (blue). Magnification: ×100. Scale bar, 50 mm. (F, G) Human GCs were transfected with negative control siRNA or
LHCGR siRNA and then treated with hCG. The mRNA and protein levels of C/EBPa were analyzed. NC, negative control. *P < 0.05 (ANOVA). (H–J) Human GCs
were transfected with negative control siRNA or C/EBPa siRNA. The expression of indicated genes and protein was analyzed by qRT-PCR and Western blot. **P <
0.001 (Student’s t -test). (K) Predicted C/EBPa-binding site in the promoter region of human COX-2 . TSS, transcriptional start site; Fw primer, forward primer; Rev
primer, reverse primer. (L) KGN cells were cotransfected with C/EBPa-overexpressing plasmid vectors, and luciferase reporter constructs harboring the COX-2
promoters, along with a Renilla luciferase construct for internal control. Firefly luciferase (Luc) activity was normalized to Renilla activity. Data are shown as mean ±
SEM and expressed as fold increase in firefly luciferase activity compared with empty vector (PGL-basic). *P < 0.05, **P < 0.001 (Student’s t-test). (M) KGN cells
were left untreated or stimulated with hCG for 24 h. ChIP assays were performed using anti-C/EBPa antibody or isotype control antibody (IgG). qRT-PCR was used
to determine C/EBPa occupancy at the potential biding site under the conditions tested. **P < 0.001 (Student’s t-test). (N–P) Human GCs were transfected with
negative control siRNA or C/EBPa siRNA and then treated with hCG. The expression of indicated genes and protein was analyzed by qRT-PCR and Western blot.
**P < 0.001 (ANOVA).
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maturation (31). As C/EBPa is identified with both constitutive
and cAMP inducible activities (32), we next examined whether
COX-2 expression was mediated through a cAMP-
regulated pathway.

First, ChIP-PCR assay was conducted to clarify the
enrichment of C/EBPa bound to the COX-2 promoter
(Figure 5A). The interaction was also confirmed by results
obtained in KGN cells treated with db-cAMP (24 h), indicating
that C/EBPa directly binds to the promoter of COX-2 gene to
regulate its expression in a cAMP-dependent manner.

To further determine the role of cAMP, human GCs were
treated with db-cAMP in vitro. The observations showed that db-
cAMP improved C/EBPa expression in the nuclei of human GCs
as well (Figure 5B). Treatment of human GCs with db-cAMP for
24 h significantly induced the expression of C/EBPa and COX-2
(Figures 5C–E). Indeed, knockdown of LHCGR not only
decreased the expression of C/EBPa and COX-2 in basal
treatment, but it also exerted a significant inhibitory effect of
cAMP-induced expression of C/EBPa and COX-2 (Figures 5F–H).
Additionally, knockdown of C/EBPa counteracted the cAMP-
induced COX2 upregulation (Figures 5I–K). Here, we
documented that C/EBPa and COX-2 may be induced by
LHCGR signaling in a cAMP-dependent manner in granulosa
cells. Furthermore, cAMP can promote the transcriptional activity
of C/EBPa.
DISCUSSION

To date, the underlying molecular mechanisms involved in
endometriosis-related LUFs remain largely elusive. COX-2 and its
major derivative product, PGE2, are recognized to be indispensable
factors in the formation of LUFs (9, 33). In this study, we found
deceased LHCGR expression in GCs of mice model. The dysfunction
may further result in inactivation of cAMP-dependent C/EBPa,
which severed as a key transcription factor to regulate COX-2
activation (Figures 6). We demonstrated that endometriosis was
associated with LUFs because of impaired ovulation function and
partially unveiled the underlying mechanism.

LUFs has long been associated with endometriosis in primates
(34), rodents (35), and humans (4). In surgical-induced EMs mice,
we clearly observed evidence of ovulatory dysfunction due to
unruptured follicle which has already developed to preovulatory
stage. Although previous studies have claimed that inhibitors (36)
and environmental endocrine disruptors (37) may play an
important role in impaired ovulation, dysfunctional gene
expression in patients with endometriosis draws focus on the
expression of LHCGR (16). It is indispensable for granulosa cells
to acquire the ability to respond to gonadotropin in follicle
differentiation and maturation. As folliculogenesis proceeds, the
dominant follicle acquires much higher expression of LHCGR, a
gonadotropin-induced G protein–coupled receptor, to allow it to
promote ovulation in response to LH (38). In this study,
superovulation was initially induced by a standard dose of
gonadotropin (5 IU), however, when a lower dose of hCG (2.5
IU) was administered more failed ovulation was observed in EMs
Frontiers in Endocrinology | www.frontiersin.org 9
mice. It was a matter of interest that the increased unruptured
follicles were not found in the sham-operated mice. These results
demonstrate that endometriosis reduces GC response to LH, which
normally peaks before ovulation. Undoubtedly, the induction of the
LHCGR in granulosa cells is a key step in reproductive physiology.
Endometriosis is an estrogen-dependent chronic inflammatory
condition that affects women in their reproductive period. The
local intrafollicular environment and local environment of
peritoneal fluid are immunologically dynamic and links the
reproductive and immune systems. Alterations in ovarian follicle
morphology and function have been documented in affected
women. Nevertheless, we documented that the expression of
LHCGR was decreased in EMs granulosa cells 48 h after PMSG
in this study and it may be a key mediator of endometriosis-
associated LUFs. These observations concurred with previous study
indicating reduced expression of LHCGR is a key observation in
cases of LUFs (39). It is further confirmed by the results obtained in
Lhcgr knockout zebrafish showing increased unruptured follicles
after LH surge (40). Furthermore, the administration of hCG during
gonadotrophin ovulation prevents or treats LUFs (41), while a lower
dose of hCG may induce LUFs (42). It seems that not only an
adequate decrease in intrafollicular prostaglandin but decreased LH
or LHCGR responsiveness contributes to the occurrence of LUFs as
well. Taken together, it is possible that endometriosis induces
attenuation of LHCGR during folliculogenesis. Although the
follicle can develop to the preovulatory stage in a follicle-
stimulating hormone-dependent manner, the endometriosis-
associated pathological states result in decreased responsiveness of
granulosa cells to LH peak and subsequently lead to the occurrence
of unruptured follicle.

Following activation by LH, LHCGR interacts with a
heterotrimeric G-protein (agb), generally Gs, that leads to
increased intracellular biosynthesis of cAMP (43). Persistent
cAMP from internalized LHCGR contributes to transmitting LH
signals inside follicles and ultimately to the oocyte (44).Moreover,
inactivating mutation of LHCGR has been identified in some
women, although follicles of ovulatory size develop fail to ovulate
due to decreased cAMP levels (45). In a word, the LHCGR-
provoked cAMP, which spreads throughout the follicle is critical
to identify the mechanisms involved in the pathogenesis of
unruptured follicles, especially after LH surge. Previous studies
have originally confirmed that cAMP signaling can increase the
transcriptional activity of cAMP-response element-binding protein
(CREB) (46), but recent researches provide compelling evidence
that C/EBPs also serve as cAMP-responsive transcription factors
due to their functionally cAMP-inducible activities (47). Occupying
specific cis-elements in the cAMP response unit (CRU), C/EBPa
has proved to play a critical role in this process (48). In this study,
we found that the attenuation of C/EBPa in endometriosis GCs and
a previous study had clarified C/EBPa loss may cause infertility due
to LUFs (49). Our results further demonstrated that both hCG and
db-cAMP can strongly induce the expression and transcriptional
activity of C/EBPa, and the hCG-induced expression can be
eliminated by LHCGR knock-down. Thus, it is possible that C/
EBPa is hormonally regulated in the ovary and plays an important
role during ovarian follicular development and ovulation.
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FIGURE 5 | Transcriptional activity of C/EBPa is regulated in a Cyclic AMP-Independent manner. (A) KGN cells were left untreated or stimulated with db-cAMP.
ChIP assays were performed using anti-C/EBPa antibody or isotype control antibody (IgG). qRT-PCR was used to determine C/EBPa occupancy at the potential
biding site under the conditions tested. **P <0.001 (Student’s t-test). (B) db-cAMP-treated (24 h) human GCs were analyzed by immunofluorescence to identify the
subcellular localization and protein expression levels of C/EBPa (red). Nuclei were stained using DAPI (blue). Magnification: ×100. Scale bar, 50 mm. (C–E) Western
blotting and qRT-PCR analysis of indicated genes and protein in human GCs after treatment with db-cAMP. *P < 0.05, **P < 0.001 (Student’s t -test). (F–H) Human
GCs were transfected with negative control siRNA or LHCGR siRNA and then treated with 1 mM db-cAMP for 24 h. The expression of indicated genes and protein
was analyzed by qRT-PCR and Western blot. ns, no significance, *P < 0.05 (ANOVA). (I–K) The protein and mRNA levels of C/EBPa and COX-2 in human GCs,
which were treated with 1 mM db-cAMP for 24 h following exposure to siRNAs against C/EBPa. ns, no significance, *P < 0.05, **P < 0.001 (ANOVA).
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Ovulation is a complex process initiated by the preovulatory
LH surge that activates the signal transduction cascades and
provokes the expression of numerous endocrine factors. More
particularly, many studies have highlighted the important role
played by the gonadotrophin-dependent induction of COX-2,
which is a key enzyme required for prostaglandin synthesis in the
periovulatory follicles (50). In fact, using non-steroidal anti-
inflammatory drugs (NSAIDs) would lead to an increase in
LUFs in juvenile idiopathic arthritis (JIA) patients due to the
effect of inhibition of cyclooxygenase (28, 51). Moreover, animal
study has revealed that selective COX-2 inhibitor is a more
potent inducers of LUFs (28). Apart from eutopic and ectopic
endometrium (52), abnormal expression of COX-2 is also found
in cumulus cells of infertile women with endometriosis (53, 54).
Our experiments showed that COX-2 expression was decreased
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in granulosa cells of endometriosis mice. Both C/EBPa and C/
EBPb are expressed in granulosa cells, and are dynamically
initiated by LH and hCG to regulate genes that control
luteinization and ovulation (55, 56). Although C/EBPb is the
known major regulator of the COX-2 gene, C/EBPb-deficient
ovaries lack corpora lutea and fail to down-regulate expression of
COX-2 (32). Therefore, we can speculate that C/EBPa may be
involved in this critical progress in ovary. It is well established
that the expression of C/EBPa is under the positive control of
hCG (57), furthermore, C/EBP-a could serve as a factor
mediating COX-2 expression and PGE2 production (58). As C/
EBPa gene deletion has resulted in moderately reduced
ovulation in mice (49), we further investigated whether C/
EBPa is involved in the effects of hCG and cAMP on COX-2
expression in human GCs. Our results indicated that both cAMP
FIGURE 6 | Model of LUFs in endometriosis. Schematic depiction of the effect of LH signaling in preovulatory granulosa cells in endometriosis. During midcycle LH
surge, attenuated LHCGR deactivating C/EBPa in a cAMP-dependent manner, then the transcription of COX-2 was repressed in granulosa cells. Ultimately, inducing
ovulation failure and oocyte trapped in CLs.
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and hCG stimulation of COX-2 was eliminated by knock-down
of C/EBPa. Using immortalized human granulosa cells, KGN,
we further presented molecular and functional evidence that C/
EBPa is responsible for regulating COX-2 expression by directly
modulating transcriptional activation.

Here, we provide evidence that attenuation of LHCGR in
granulosa cells is involved in the increased incidence of LUFs
in surgical-induced endometriosis mice. In an in vitro cell
model system of human granulosa cells, we identify a
previously unappreciated role for LHCGR activating
transcription factor C/EBPa in a cAMP-dependent manner
to sustain COX-2 expression that is necessary for mature
follicle rupture and ovulation. We showed molecular and
functional evidence that reveals GC dysfunction for the
LHCGR as a central mediator of COX-2 expression and may
result in LUFs in EMs. Clinical studies and samples acquired
from patients are needed in further study to dissect the
pathophysiology of this enigmatic syndrome.
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