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ABSTRACT
Background: Lung adenocarcinoma (LUAD) is a highly heterogeneous cancer type with a poor prognosis. Accurate subtype

identification can help guide its treatment. The traditional subtype identification methods using a single‐omics approach make

it difficult to comprehensively characterize the molecular features of LUAD. Identification of subtypes through multi‐omics

association strategies can effectively supplement the shortcomings of single‐omics information.

Methods: In this study, we used the Generative Adversarial Network (GAN) to mine transcriptomic, proteomic, and epige-

nomic information and generate an integrated data set. The newly integrated data were then used to identify LUAD immune

subtypes. In the improved GAN (MOGAN) method, we not only integrated multiple omics datasets but also included the

interactions between proteins and genes and between methylation and genes. Thus, we achieved effective complementarity of

multi‐omics information.

Results: Two subtypes, MOGANTPM_S1 and MOGANTPM_S2, were identified using immune cell infiltration analysis and the

integrated multi‐omics data. MOGANTPM_S1 patients displayed higher immune cell infiltration, better prognosis, and sen-

sitivity to immune checkpoint inhibitors (ICIs), while MOGANTPM_S2 had lower immune cell infiltration, poorer prognosis,

and were insensitive to ICIs. Therefore, immunotherapy was more suitable for MOGANTPM_S1 patients in clinical practice. In

addition, this study developed a LUAD subtype diagnostic model using the transcriptomic and proteomic features of five genes,

which can be used to guide clinical subtype diagnosis.

Conclusions: In summary, the MOGAN method was applied to integrate three omics data types and successfully identify two

LUAD immune subtypes with significant survival differences. This classification method may be useful for LUAD treatment

decisions.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited and is not used for commercial purposes.

© 2025 The Author(s). Cancer Innovation published by John Wiley & Sons Ltd on behalf of Tsinghua University Press.

Abbreviations: GAN, generative adversarial network; ICI, immune checkpoint inhibitor; IDI, integrated discrimination improvement; LUAD, lung adenocarcinoma; MOGAN, multi‐omics‐based
GAN; NRI, net reclassification improvement; PCA, principal component analysis; TIIC, tumor‐infiltrating immune cell; TMB, tumor mutation burden; TME, tumor microenvironment.
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1 | Introduction

According to 2022 global cancer statistics, lung cancer was the most
frequently diagnosed cancer [1]. In China, the incidence of lung
cancer ranks first among cancer types [2]. Lung adenocarcinoma
(LUAD) is the main lung cancer subtype (about 40% of cases) [3],
with high heterogeneity and poor prognosis [4]. Therefore, many
researchers have been committed to identifying ways to classify
LUAD better to guide precise diagnosis, treatment, and drug
development accurately. Because of the high heterogeneity and
complexity of LUAD, traditional histological classification relies on
the subjective judgment of pathologists, limiting its utility in diag-
nosis [5]. Studies have shown that differences in molecular
pathology have an important impact on the clinical characteristics
of the disease [6]. Therefore, an increasing number of molecular
subtypes are being investigated to guide LUAD treatment. For ex-
ample, Shi et al. used gene methylation levels to classify 335 LUAD
patients into seven subtypes, observing significant survival differ-
ences among the groups [7]. Wang et al. divided LUAD into high‐
risk and low‐risk subtypes using immune‐related genes that were
significantly associated with prognosis. The two subtypes exhibited
significant differences in survival rates, with the high‐risk subtype
having a higher tumor mutation burden (TMB) and lower TIDE
scores than the low‐risk subtype [8]. Zhang et al. clustered LUAD
samples into IC1 and IC2 subtypes using CD8+T cell‐related
genes. The IC1 subtype displayed greater sensitivity to immune
checkpoint inhibitor (ICI) therapy, while the IC2 subtype exhibited
a higher TMB and lower immune infiltration scores [9]. However,
most LUAD classification studies use only single‐omics data, lead-
ing to difficulties in comprehensively and systematically explaining
the biological characteristics of LUAD.

The rapid development of biotechnology has enabled re-
searchers to obtain multilayered information from genomes,
epigenomes, transcriptomes, proteomes, metabolomes, and
other molecular characteristics [10]. The integration of multi‐
omics data could more comprehensively reveal the molecular
heterogeneity of tumors and promote precision treatment ap-
proaches. However, multi‐omics studies usually involve com-
plex relationships among multiple variables. Because of the
high‐dimensional nature of these data, such studies usually
require a certain amount of computational resources and
complex algorithms for analysis and interpretation. The most
basic method of integrating multi‐omics data is to directly
merge the standardized data from two or more different omics
types, such as the association analysis of microRNA (miRNA)
expression levels and DNA methylation levels. However, the
results when using this approach have not been ideal [11].
Another common strategy is to analyze each data type inde-
pendently, and then merge them [12]. However, this approach
often leads to unreliable conclusions and creates more chal-
lenges for integrating multi‐omics information.

In recent years, deep learning has become an important algo-
rithm for machine learning. This method uses neural networks
composed of hidden layers to perform different operations to
discover complex data representations [13]. For example,
Ahmed et al. employed a Generative Adversarial Network
(GAN) to integrate the gene expression matrix and miRNA
expression matrix, leveraging the regulatory network informa-
tion of miRNAs on genes [14]. Peng et al. considered the crucial

role of genes as bridges between miRNAs and diseases to con-
struct an miRNA‐disease association network. The authors
introduced a gene layer between the miRNA layer and disease
layers, forming a three‐layer network that incorporates disease‐
gene associations and miRNA‐gene associations to enhance the
miRNA‐disease association network [15]. Lee et al. proposed a
deep learning‐based autoencoder method that combined four
omics data types, including mRNA, miRNA, DNA methylation,
and copy number variation (CNV). The model learned repre-
sentative features to distinguish two patient subtypes with sig-
nificantly different survival rates and concordance indices [16].

Transcriptomics‐based analysis is crucial for understanding the
biological processes within cells and intercellular communication,
providing essential information directly related to cellular pheno-
types [17]. Furthermore, DNA methylation regulates gene expres-
sion by recruiting proteins involved in gene suppression or
inhibiting transcription factor binding to DNA [18]. Proteomics
complements other omics technologies, such as genomics and
transcriptomics [19], and provides a more accurate reflection of the
dynamic changes occurring at the cellular, tissue, or organism level
[20]. Therefore, in this study, we aimed to use the GAN method to
integrate transcriptomic, methylation, and proteomic data with
interaction information among them. The newly generated fused
data set was used for LUAD subtype clustering and to explore the
heterogeneity among the different subtypes.

2 | Materials and Methods

2.1 | Omics Data Acquisition and Preprocessing

In this study, RNA sequencing (RNA‐seq) gene expression data,
DNA methylation data, and corresponding clinical information
related to LUAD were obtained from The Cancer Genome Atlas
(TCGA) database [21] (https://portal.gdc.cancer.gov/) using the
UCSC Genome Browser [22]. The RNA‐seq gene expression data
consisted of 510 samples, with a data type of log2 (FPKM+1). To
reduce noise and errors and improve computational efficiency, this
study removed any genes with zero expression across all samples.
Considering the subsequent integration of transcriptomic and pro-
teomic information, only protein‐coding genes were included in this
study. Finally, a total of 18,171 genes were retained for multi‐omics
data integration and subsequent analysis.

The DNA methylation data included 455 samples, with a data
type of β values. Methylation sites with missing values were
filtered out. To ensure the effective integration of methylation‐
gene association information, this study only selected the
methylation sites that could be annotated to genes using the
450k methylation chip annotation file. These annotated meth-
ylation sites may be associated with the expression of annotated
genes. Finally, this study obtained a β value matrix containing
455 LUAD samples and 365,860 methylation sites. For this
methylation matrix, log2 transformation was applied to em-
phasize the relative changes in methylation levels.

The protein expression matrix was obtained from The Cancer
Proteome Atlas (TCPA) database [23] (https://www.tcpaportal.
org/) at Level 3, which encompassed 362 samples.
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By intersecting the three omics datasets, a total of 305 LUAD
samples were obtained for the multi‐omics information integration.

LUAD patient single‐nucleotide polymorphism (SNP) and CNV
data were also obtained from TCGA for mutation analysis.
Three LUAD gene expression datasets, GSE30219 (n= 85),
GSE42127 (n= 133), and GSE31210 (n= 226), were obtained
from the Gene Expression Omnibus (GEO) database [24]
(https://www.ncbi.nlm.nih.gov/geo/) to validate the immune
checkpoint blockade (ICB) response among the subtypes.

2.2 | Omics Interaction Network Construction

For the gene–protein interaction relationships, protein‐protein
interaction (PPI) networks were obtained from the STRING data-
base [25] (https://string-db.org/) and the genome annotation files
were obtained from the GENECODE database (https://www.
gencodegenes.org/). This study derived the gene‐protein interac-
tion relationships by using the gene–protein correspondence and
PPI relationships. An adjacency matrix was then constructed, with
the gene–protein relationships with an interaction recorded as 1 and
those without an interaction recorded as 0. This adjacency matrix
included 9396 genes and 215 proteins.

For the methylation–gene interaction relationships, methylation–
gene regulation scores were calculated using 450k methylation
microarray annotation files obtained from the GEO database.
Because methylation at different gene locations has varied effects,
the gene length should be considered when calculating the meth-
ylation site‐gene regulation score. Many regulatory elements are
present near and upstream of the transcription start site (TSS).
Therefore, methylation occurring in this region has a greater impact
on the gene, leading to a higher methylation score. Methylation
sites upstream of the gene are generally located in the promoter
region (TSS200–TSS1500) [26].

For methylation sites occurring upstream of a gene, the
methylation‐gene regulation score was calculated using
Formula (1):

score = 1 +
|methsite − start|

width
(1)

For methylation sites occurring in the main gene sequence,
the methylation‐gene regulation score was calculated using
Formula (2):

score = 1 −
|methsite − start|

width
(2)

In this context, “width” represents the total length of the gene,
“methsite” represents the methylation occurrence site, and
“start” represents the TSS.

2.3 | Improving the GAN Model

In a previous study, Ahmed et al. constructed a GAN that could
integrate two omics datasets and the interaction network

between them [14]. In this study, we improved this GAN by
adding Generator 2 and Discriminator 2 modules, which en-
abled the integration of three omics data types. During GAN
training, omics data 1 was input into Discriminator 1, and
omics data 2 and the interaction relations between omics data 1
and 2 were input into Generator 1. Generator 1 generated
synthetic data 1 with fusion information and passed it to Dis-
criminator 2. Additionally, omics data 3 and the interaction
relations between omics data 1 and 3 were input into Generator
2. Finally, through various iterations, Generator 2 provided a
new omics data 1 matrix output with multiple omics informa-
tion. Dropout layers were added to both the generator and
discriminator to avoid overfitting, with a dropout rate of 0.3.
The model training epoch was set to 10,000.

To address the issues of mode collapse and training difficulty in
the GAN, this study adopted the WGAN architecture as the
fundamental structure for both the generator and discriminator.
Additionally, Wasserstein distance was employed to quantify
the difference between the generated data and real data. The
Wasserstein distance was computed using Formula (3):

W P P E x y( , ) = inf ~ ~ [‖ − ‖]r g r π P P x y γ( , ) ( , )r g (3)

where Pr and Pg represent the probability distributions of the
real data and generated data, respectively; x represents a real
sample; y represents a generated sample; π(Pr, Pg) is the joint
probability distribution of all (x, y) pairs.

The discriminator consisted of three fully connected layers,
with a learning rate of 5 × 10−5. For the discriminator, the goal
was to maximize the score of real values and minimize the score
of generated values. The loss function was as Formula (4):

L D G x D x= ( ( )) − ( )D (4)

The generator consisted of four fully connected layers, with a
learning rate of 5 × 10−6. For the generator, the goal was to
maximize the score of generated values. Therefore, the loss
function was as Formula (5):

L D G x= − ( ( ))G (5)

In these equations, D represents the discriminator, G represents
the generator, x represents the real value, G(x) represents the
generated value, and D(x) represents the discriminator's score
on the original expression matrix.

2.4 | Multi‐Omics Data Fusion and Subtype
Clustering

The fusion of the three omics data types went through two
GANs. First, the preprocessed RNA‐seq gene expression matrix,
protein expression matrix, and gene–protein interactions were
input into the GAN. After five iterations of generation, a gene
expression matrix containing proteomic and transcriptomic
information was generated. Subsequently, the methylation
signal value matrix, gene expression matrix integrating
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proteomic‐transcriptomic information, and methylation‐gene
regulation score matrix were input into the GAN again. After
five iterations, the new gene expression matrix fusing the pro-
teomic, transcriptomic, and epigenomic information was gen-
erated. To evaluate the reliability of the newly generated gene
expression data, a K‐nearest neighbors (KNN) classifier model
was constructed using the EGFR mutation information of the
patients [27] as labels, with the classifier performance indicator
area under the receiver operating characteristic curve (AUC)
values used to evaluate its fusion performance. Unsupervised
clustering of LUAD samples was subsequently performed using
RNA‐seq gene expression data fused with multi‐omics [28] to
distinguish the different LUAD disease subtypes using 50 cycles
to ensure the stability of the clusters.

2.5 | Evaluation of Subtype Identification Results

The −log10 p and number of significant clinical parameters
were used to evaluate the performance of different methods. We
employed the log‐rank test to assess if there were significant
differences in survival among the various subtypes, then
transformed the resulting p to −log10. A higher value of this
metric indicated a more significant difference in survival rates
among the subtypes.

Additionally, we examined the number of significant clinical
parameters associated with each subtype. Seven clinical
parameters were tested, including age (over 65 years old),
gender, smoking status, overall stage, T stage, N stage, and M
stage. The chi‐square test was used to determine the associa-
tions between these parameters and the subtypes. Fisher's exact
test was applied for parameters that did not meet the chi‐square
test conditions. Finally, we counted the number of clinical
parameters that were significantly associated with each subtype.

2.6 | Statistical Analysis

All statistical analyses were performed using R software
(https://www.r-project.org/, version 4.2.2). Differences between
non‐normally distributed variables were analyzed using the
Mann–Whitney U test for two groups of continuous variables
and with the chi‐square test for noncontinuous variables. The R
package Survival [29] was used to perform survival analysis,

Kaplan–Meier survival curves were generated to show differ-
ences in survival, and the log‐rank test [30] was used to assess
the significance of survival time differences between the two
groups. All statistical p are bilateral and were considered sta-
tistically significant when p< 0.05, if not otherwise stated.

3 | Results

3.1 | Generation and Evaluation of Fused Data
Using Multi‐Omics‐Based GAN (MOGAN)

The GAN developed by Ahmed and colleagues could only fuse two
types of omics data. Here, we improved this GAN to allow it to fuse
three types of omics data, aiming to complement the information
from multi‐omics analyses. The upgraded GAN structure, referred
to as MOGAN, is shown in Figure 1. The omics datasets 1 and 2
were subjected to the first round of GAN fusion, resulting in the
generation of a data set that follows the distribution of omics data
set 1. Therefore, this data set could be considered as a pseudo‐real
omics data set 1. Subsequently, we performed the second round of
GAN fusion between the pseudo‐real omics data set 1 and omics
data set 3. This process would generate a gene expression matrix
that combines all three omics datasets. In the MOGAN, the gene
expression matrix, protein expression matrix, and DNAmethylation
signal matrix were respectively incorporated into omics data-
sets 1, 2, and 3 (Figure 1). Additionally, the gene–protein
interaction relationships and methylation‐gene regulatory
scores were input into the generator to facilitate the fusion of
the three sets of omics information.

To evaluate the newly generated multi‐omics fusion data, a KNN
classifier was constructed to predict the EGFR mutation status of
the patients. The performance of the generated data was assessed by
comparing its AUC values with those of the original data in the
classifier. The fusion data of the three omics (transcriptomic, pro-
teomic, and epigenomic) had the highest AUC value compared
with the original gene expression data and gene expression data
fused with only the proteome or epigenome. The AUC results are
presented in Figure 2, which also demonstrated that the multi‐
omics fusion gene expression data could more accurately charac-
terize the molecular state of the disease.

While delving into the model prediction capabilities, the AUC
value was a pivotal evaluation metric. However, when we

FIGURE 1 | MOGAN architecture combining three types of omics data. MOGAN, multi‐omics‐based generative adversarial network.
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focused on the nuanced improvements in model performance,
especially when enhancing the models by introducing new
variables or different datasets, net reclassification improvement
(NRI) and integrated discrimination improvement (IDI)
emerged as indispensable supplementary tools. These two
indices displayed high sensitivity and intuitive interpretability
in clinical settings. This provided a unique perspective for
evaluating the magnitude of model improvements, thereby
facilitating a comprehensive and profound understanding of the
models from multiple dimensions. The calculations of the NRI
and IDI values are shown in Table 1. When compared with the
fusion of transcriptomic data with either proteomic or epige-
nomic data alone, the three omics fusion data exhibited sig-
nificantly better performance for both NRI and IDI.

3.2 | Identification of LUAD Immune Subtypes
Using the Fused Multi‐Omics Data

The tumor microenvironment (TME) is closely related to tumor
development, recurrence, and metastasis. Tumor‐infiltrating
immune cells (TIICs) are key immune biomarkers in the TME
that play a crucial role in tumor growth and progression, patient
prognosis, and immunotherapy response [31, 32]. This study

used a gene expression matrix integrating multi‐omics infor-
mation to identify immune subtypes in LUAD. The ssGSEA
algorithm and immune gene sets were used to calculate the
abundance of 28 TIIC types. Subsequently, the NMF clustering
method was applied to the immune cell abundance matrix,
resulting in the identification of two immune subtypes in
LUAD: MOGANTPM_S1 (n= 117) and MOGANTPM_S2
(n= 188). The optimal number of cluster selections is shown in
Figure 3a. The two LUAD subtypes can be clearly distinguished
in the three‐dimensional principal component analysis (PCA)
scatter plot (Figure 3b). There was a significant difference in
patient prognosis for these two subtypes, with the overall sur-
vival rate of MOGANTPM_S1 patients being significantly better
than that of MOGANTPM_S2 patients (Figure 3c, Log‐rank test,
p= 0.041).

Furthermore, to compare the clustering results of the orig-
inal gene expression data with those of the threeomics fused
gene expression data, we performed a similar analysis on the
original gene expression matrix. This also identified two
subtypes: T_S1 and T_S2. The PCA results for T_S1 and
T_S2 are shown in Supporting Information S1: Figure S1. A
Venn diagram illustrating the clustering differences
between the two matrices is shown in Figure 4a. Among the
305 samples, the sample classification consistency rate
between the original gene expression matrix and three
omics data fusion matrix was 71.1% (217/305). The classi-
fications of the remaining 88 samples were different.
In the original gene expression matrix, 50 samples belonged
to cluster T_S1 but were classified as MOGANTPM_S2 in
the three omics data fused matrix (referred to as
MOGANTPM_S2‐T_S1). Similarly, there were 38 samples in
the original gene expression matrix belonging to cluster
T_S2, but were classified as MOGANTPM_S1 in the fused
matrix (referred to as MOGANTPM_S1‐T_S2, Supporting
Information S1: Table S1). We believe that the proteome and
methylome information impacted the clustering results,
making the results of some original gene expression data
inconsistent with those of the fusion data. Next, PCA
dimensionality reduction and visualization were performed
on the classification results of MOGANTPM_S2‐T_S1,
MOGANTPM_S1‐T_S2, MOGANTPM_S1‐T_S1, and MOG
ANTPM_S2‐T_S2 with the protein expression matrix and
methylation signal value matrix (Figure 4b,c). In the protein
expression matrix clustering results, the discrimination
between MOGANTPM_S2‐T_S1 and MOGANTPM_S1‐T_S1
was higher than that between MOGANTPM_S2‐T_S1 and
MOGANTPM_S2‐T_S2. The discrimination between MOG
ANTPM_S1‐T_S2 and MOGANTPM_S1‐T_S1 was higher
than that between MOGANTPM_S1‐T_S2 and MOGAN
TPM_S2‐T_S2 (Figure 4b). To some extent, this indicated
the successful integration of the proteomic data. In the
methylation signal value matrix PCA results (Figure 4c), the

FIGURE 2 | AUC analysis for integrating data from different

sources. The receiver operating characteristic curves were compared for

the original transcriptomic data and the fusion of different omics data

using the GAN with EGFR classification. AUC, area under the receiver

operating characteristic curve; GAN, generative adversarial network.

TABLE 1 | Clinical characteristic differences in LUAD patients.

Transcriptome+Proteome Transcriptome+Epigenome Transcriptome+Proteome+Epigenome

IDI 0.072 0.019 0.117

NRI 0.401 0.296 0.514

Abbreviations: IDI, integrated discrimination improvement; LUAD, lung adenocarcinoma; NRI, net reclassification improvement.
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discrimination between MOGANTPM_S2‐T_S1 and MOG
ANTPM_S1‐T_S1 was higher than that between MOG
ANTPM_S2‐T_S1 and MOGANTPM_S2‐T_S2. The discrim-
ination between MOGANTPM_S1‐T_S2 and MOGA
NTPM_S1‐T_S1 was higher than that between MOGA
NTPM_S1‐T_S2 and MOGANTPM_S2‐T_S2. Therefore, we
speculated that the proteomic information played a more
important role than methylation information in the multi‐
omics data integration.

3.3 | Benchmark Between the Different
Algorithms

The robust cancer subtype clustering results are expected to be
significantly correlated with patient prognosis and clinical char-
acteristics. To assess our subtype identification results, our method
was compared with seven previously published subtype identifica-
tion methods (Figure 5). iClusterPlus [33], LRAcluster [34],
moCluster [35], SNF [36], Subtype‐DCC [37], Subtype‐GAN [38],
and Subtype‐WELSR [39] were employed as benchmark algorithms

against MOGAN. Among them, iClusterPlus, LRAcluster,
moCluster, and SNF have been commonly used for integrating
multi‐omics data to cluster cancer subtypes. Subtype‐DCC, Subtype‐
GAN, and Subtype‐WELSR are usually used for deep learning
techniques. Subtype‐WESLR adopted a weighted ensemble strategy,
integrating multiple subtype clustering methods. Subtype‐DCC
achieved joint optimization of feature expression and clustering by
introducing contrastive learning in both the sample space and
clustering space. Subtype‐GAN used an encoder to reduce the
dimensionality of multi‐omics data, a decoder to reconstruct multi‐
omics inputs, and a discriminator to ensure that the posterior dis-
tribution of the shared layer vectors conformed to a Gaussian
distribution.

Here, we found that the −log10 p of the MOGAN method was
significantly superior to the iClusterPlus, LRAcluster, moClus-
ter, SNF, and Subtype‐WELSR methods, but inferior to the
Subtype‐DCC and Subtype‐GAN methods (Figure 5a). For
identifying clinically significant parameters associated with
subtypes, MOGAN has four (the same as LRAcluster). This is
less than the five for SNF and Subtype‐WELSR, but more than

FIGURE 3 | Identification of LUAD molecular subtypes using the multi‐omics fused data. (a) Relationships between the Coefficient, Dispersion,

and Silhouette Coefficients and the number of clusters. (b) Principal component analysis of the MOGANTPM_S1 and MOGANTPM_S2 LUAD

subtypes. (c) Kaplan–Meier survival curves showing the overall survival of patients in the MOGANTPM_S1 and MOGANTPM_S2 subtypes. LUAD,

lung adenocarcinoma; MOGAN, multi‐omics‐based generative adversarial network.
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iClusterPlus (one), moCluster (one), Subtype‐GAN (one), and
Subtype‐GAN (two) (Figure 5b).

Subtype‐DCC and Subtype‐GAN outperformed the MOGAN
method in the −log10 p evaluation but had fewer significant
clinical indicators. Similarly, SNF and Subtype‐WELSR had

certain advantages when assessing significant clinical in-
dicators, but their −log10 p were significantly lower than that of
the MOGAN method. In both evaluation metrics, MOGAN
ranked above average and achieved a certain balance, indicating
that the LUAD subtypes identified by the MOGAN method
have a certain degree of clinical significance.

FIGURE 4 | Clustering results comparison between the original and integrated gene expression data. (a) Venn diagram illustrating the

overlap and differences in sample clustering between the original gene expression matrix and fusion matrix of threeomics data. (b)

Dimensionality reduction visualization of clustered different samples at the proteomic data level. (c) Dimensionality reduction visualization

of clustered different samples at the methylation data level. T_S1 represents the clustering result of the original gene expression matrix as S1,

T_S2 represents the clustering result of the original gene expression matrix as S2, MOGANTPM_S1 represents the clustering result of the

threeomics fusion matrix as S1, and MOGANTPM_S2 represents the clustering result of the threeomics fusion matrix as S2. MOGAN, multi‐
omics‐based generative adversarial network.
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3.4 | Clinical Features of the LUAD Immune
Subtypes

In addition, the age, gender, stage, and smoking status distri-
butions were compared between the two immune subtypes
(MOGANTPM_S1 and MOGANTPM_S2). The results showed
that MOGANTPM_S1 was predominantly composed of elderly
individuals (age≥ 65 years), whereas MOGANTPM_S2 had a
higher proportion of young people (p= 0.008). There were also
significant differences in the gender distribution and smoking
status between the two subtypes, with a higher proportion of
male patients and smokers in MOGANTPM_S2 (p= 0.018 and
0.022, respectively). For detailed patient information, please
refer to Table 2.

3.5 | Tumor Genomic Variations in the LUAD
Immune Subtypes

To investigate the mutational differences between the two LUAD
immune subtypes, significant mutation genes (SMG) were analyzed
using the TCGA‐LUAD whole‐exome sequencing data (Figure 6a).
Genes such as MUC16 and TTN had a higher mutation frequency
in MOGANTPM_S2 compared with MOGANTPM_S1 (Chi‐square
test, p<0.001), with missense mutations being the main mutation
type in LUAD patients. To further investigate the gene mutation
differences between the LUAD immune subtypes, bar charts were
used to display the top 20 genes with the highest mutation fre-
quencies between MOGANTPM_S1 (Figure 6b) and MO-
GANTPM_S2 (Figure 6c). Among them, SMGs exhibited a higher

mutation frequency in MOGANTPM_S2 compared with MO-
GANTPM_S1 (Figure 6c). Notably, the driver gene EGFR in LUAD
had a high mutation frequency in MOGANTPM_S1 (20.15%, Fig-
ure 6b), while its mutation frequency in MOGANTPM_S2 was
significantly lower (9.74%; Chi‐square test, p=0.008). However,
common LUAD driver genes, such as ALK, HER2, and ROS1, had
low mutation frequencies in both subtypes. Moreover, MO-
GANTPM_S2 exhibited a significantly higher TMB compared with
MOGANTPM_S1 (Figure 6d,Mann–Whitney U test, p=3.3 × 10−7),
which may be associated with the enhanced immune response of
the patients. However, there was no significant difference in sur-
vival between the high‐TMB and low‐TMB groups (Supporting
Information S1: Figure S2, Log‐rank test, p=0.33), indicating that
TMB was not an independent prognostic marker, which was con-
sistent with previous research findings [40].

In addition, the CNVs in MOGANTPM_S2 were significantly
higher than those in MOGANTPM_S1 (Mann–Whitney U test,
p= 1.1 × 10−5). Analysis of local chromosomal CNVs revealed
significant amplifications in the 14q13.3 region in MO-
GANTPM_S1 and the 1q21.3, 1q22, 14q13.1, and 14q13.3
regions in MOGANTPM_S2 (false discovery rate [FDR] < 0.05).
Conversely, significant deletions were observed in the 1p13.2,
9p21.3, and 13q12.11 regions in MOGANTPM_S1, as well as in
the 9p21.3 region in MOGANTPM_S2 (Figure 6e,f; FDR< 0.05).
One of the significantly amplified loci in MOGANTPM_S2,
1q21.3 (SETDB1) is known to be involved in tumor immune
evasion processes [41], potentially contributing to the sub-
optimal response to immunotherapy in MOGANTPM_S2
patients.

FIGURE 5 | The performance of MOGAN and seven other clustering methods. MOGAN was compared with seven other multi‐omics data

clustering methods, including iClusterPlus, LRAcluster, moCluster, SNF, Subtype‐DCC, Subtype‐GAN, and Subtype‐WELSR. (a) The −log10 p of the

eight methods. (b) The number of significant parameters of the eight methods. MOGAN, multi‐omics‐based generative adversarial network.
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3.6 | Immune Microenvironment Differences in
the LUAD Immune Subtypes

The ESTIMATE algorithm was used to assess the immune cell
infiltration and tumor purity heterogeneity of the two subtypes.
MOGANTPM_S1 had significantly higher stromal and immune
scores than MOGANTPM_S2 (Figure 7a,b, Mann–Whitney U
test, p< 2.2 × 10−16). Additionally, the abundance of infiltrating
immune cells in the two subtypes was evaluated using an
immune gene set and the ssGSEA algorithm. The ssGSEA
results revealed that MOGANTPM_S1 exhibited higher levels of
immune cell infiltration (Figure 7c), suggesting that the MO-
GANTPM_S1 subtype might respond better to immunotherapy.
However, the infiltration levels of Gamma delta T cells, Memory
B cells, and CD56dim natural killer cells were higher in MO-
GANTPM_S2 compared with MOGANTPM_S1. To further
evaluate the prognostic value of TIICs, we conducted a survival
analysis using different immune cell types. The results showed
that higher infiltration levels of Activated B cells (Log‐rank test,
p= 0.022) and Macrophages (Log‐rank test, p< 10−4) were
associated with a better prognosis. In contrast, higher infiltra-
tion levels of Effector memory CD4 cells (Log‐rank test,
p= 0.026) and Gamma delta T cells (Log‐rank test, p= 0.002)
were associated with a worse prognosis (Figure 7d).

3.7 | Building a Diagnostic Model for the LUAD
Immune Subtypes

As described earlier, we used transcriptome‐proteome‐
methylation integrated data to classify the LUAD subtypes,
finding that gene expression and protein expression con-
tributed greatly to the classification identification. We then
planned to use these two omics data types to construct a

LUAD subtype diagnostic model for clinical subtype classi-
fication. The MOGANTPM_S1 and MOGANTPM_S2 sub-
types were compared at the gene and protein levels, with the
results shown in Figure 8a. Generally, gene expression was
positively correlated with protein abundance, so signifi-
cantly different genes and proteins were concentrated in the
third and seventh quadrants (logFC of transcript > 0.25 and
logFC of protein > 0.5; logFC of transcript < −0.25 and
logFC of protein < −0.5). Five genes were ultimately iden-
tified: PRKCB, MYH11, CCNB1, CCNE1, and FOXM1
(Figure 8a). A subtype diagnostic model using logistic
regression was constructed using these five genes to predict
the subtype of patients. To enhance the robustness of this
model, 40% of the samples were used for training and 60%
for model validation. The AUC value of the model in the
validation set was 0.8562 (Figure 8b), with an accuracy
value of 0.8099 and an F1‐score of 0.7578, allowing it to
effectively distinguish the LUAD immune subtypes. The
confusion matrix of the model in the validation set is shown
in Supporting Information S1: Table S2.

3.8 | Predicting the ICB Responses of the LUAD
Immune Subtypes

ICI therapy is considered to be one of the most successful ap-
proaches in cancer treatment in recent years. However, only a
minority of eligible candidates respond to ICB therapy [42]. The
TIDE algorithm can be used to simulate the tumor immune
escape mechanism and predict patient responses to ICIs. The
TIDE algorithm was used with the TCGA‐LUAD cohort data for
ICB response prediction, with the MOGANTPM_S2 TIDE score
found to be significantly higher than that of MOGANTPM_S1
(Figure 9a,Mann–Whitney U test, p< 2.2 × 10−16). Similarly, we

TABLE 2 | Clinical characteristic differences in LUAD patients.

Clinical information MOGANTPM_S1 MOGANTPM_S2 Total pa

Age (year) 0.008

≥ 65 69 81 150

< 65 46 102 148

Unknown 2 5 7

Gender 0.018

Male 43 95 138

Female 74 93 167

Pathologic stage 0.339

I 69 92 161

II 27 50 77

III 16 37 53

IV 4 8 12

Unknown 1 1 2

Smoke status 0.022

Smoker 72 139 211

Nonsmoker 45 49 94

Abbreviations: LUAD, lung adenocarcinoma; MOGAN, multi‐omics‐based generative adversarial network.
aPearson's chi‐squared test.
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applied the above diagnostic model to the three GEO cohort
datasets and compared the TIDE scores between the two sub-
types. In the GSE30219, GSE42127, and GSE31210 datasets, the
MOGANTPM_S2 TIDE scores were all higher than those of
MOGANTPM_S1 (Figure 9b–d, Mann–Whitney U test,
p< 0.01). This indicates that LUAD patients with the MO-
GANTPM_S2 subtype had a higher risk of immune dysfunction
and immune rejection, suggesting that they may be insensitive
to ICB therapy.

4 | Discussion

As LUAD is a heterogeneous tumor type, it is difficult to
accurately and comprehensively characterize its molecular
features at a single‐omics level. Some researchers have used
deep learning methods to identify subtypes [43, 44] but did not
fully consider the interactions among different omics. There-
fore, we used an improved GAN method to integrate tran-
scriptomic, proteomic, and epigenomic data, as well as the

FIGURE 6 | Mutation landscape of the two LUAD immune subtypes. (a) Overall mutation landscape of the LUAD immune subtypes. (b, c)

Genes with the highest mutation frequencies (TOP 20) in MOGANTPM_S1 and MOGANTPM_S2. (d) The difference in tumor mutation burden

between the MOGANTPM_S1 and MOGANTPM_S2 subtypes. The Mann–Whitney U test was used for statistical comparisons between the two

subtypes. (e, f) Significant amplifications (in red) or deletions (in blue) of chromosomal regions in MOGANTPM_S1 and MOGANTPM_S2. LUAD,

lung adenocarcinoma; MOGAN, multi‐omics‐based generative adversarial network.
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interactions between these omics, to identify LUAD molecular
subtypes. In this study, we constructed an interaction network
between genes and methylation sites and between genes and
proteins for multi‐omics data integration. Subsequently, an
improved GAN (MOGAN) was employed to fuse the multi‐

omics data and interaction network, enabling the representa-
tion of disease multi‐omics landscapes at the molecular level.
We first used the new integrated data set to identify LUAD
immune subtypes, then used the raw gene expression data set to
cluster the subtypes and compared the differences among the

FIGURE 7 | Immune infiltration landscape of the LUAD immune subtypes. (a) The stromal scores of the LUAD immune subtypes using the

ESTIMATE algorithm were statistically significantly different using the Mann–Whitney U test. (b) The immune scores of the LUAD immune

subtypes using the ESTIMATE algorithm were statistically significantly different using the Mann–Whitney U test. (c) Scores of 22 TIIC types in the

MOGANTPM_S1 and MOGANTPM_S2 subtypes. Statistical differences between the two subtypes were assessed using the Mann–Whitney U test

(**p< 0.01; ***p< 0.001). (d) The Kaplan–Meier survival curves of TIICs were significantly associated with patient survival rates. LUAD, lung

adenocarcinoma; MOGAN, multi‐omics‐based generative adversarial network; TIIC, tumor‐infiltrating immune cell.
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datasets. The classification effect of the integrated data set
(AUC= 0.882, IDI = 0.117, NRI = 0.514) was better than that of
other datasets (Figure 2 and Table 1), suggesting a successful
integration of the transcriptomics, proteomics, and epigenomics
data. Additionally, by integrating the multi‐omics information
and applying immune cell infiltration analysis, we identified
two LUAD immune subtypes: MOGANTPM_S1 and MO-
GANTPM_S2. The prognosis of MOGANTPM_S1 patients was
significantly better than that of MOGANTPM_S2 patients, with
the MOGANTPM_S1 stromal and immune scores also being
higher. Most of the examined immune cell types exhibited
higher infiltration levels in MOGANTPM_S1 than in MO-
GANTPM_S2, suggesting that MOGANTPM_S1 patients might
have a more favorable response to immune therapy. However,
the infiltration levels of Gamma delta T cells, Memory B cells,
and CD56dim natural killer cells were higher in MO-
GANTPM_S2, with the reason for this remaining unclear.

Further analysis indicated that the mutation frequency of
MOGANTPM_S1 was lower than that of MOGANTPM_S2, but
the mutation frequency of the LUAD driver gene EGFR was
higher. We speculated that EGFR‐targeted drugs might have
better efficacy in MOGANTPM_S1 patients. In addition, MO-
GANTPM_S1 exhibited a lower TMB and higher levels of
immune cell infiltration, suggesting that there might be inter-
action mechanisms between TMB and immune cell infiltration
in MOGANTPM_S1. Although MOGANTPM_S2 demonstrated
a higher TMB, certain studies have indicated that some patients
may not experience clinical benefits even with a high TMB
[45, 46]. Moreover, MOGANTPM_S2 exhibited a significant
amplification of the 1q21.3 locus (SETDB1), which is associated
with tumor immune evasion processes, which could explain the
poor efficacy of immune therapy in MOGANTPM_S2 patients.
Finally, we used the TIDE algorithm to predict ICB responses in
the two subtypes, with MOGANTPM_S1 patients being more

FIGURE 8 | Diagnostic model construction for the LUAD immune subtypes. (a) Nine‐quadrant plot of differential expression information of the

transcriptome and proteome. The horizontal axis represents the differentially expressed multiplicity of proteins and the vertical axis represents

the differentially expressed multiplicity of genes. The right side shows the high‐expressed proteins, the left side shows the low‐expressed proteins, the

upper portion shows the high‐expressed genes, and the lower portion shows the low‐expressed genes. (b) Working characterization curves of subjects

in the validation set for the LUAD subtype diagnostic model. LUAD, lung adenocarcinoma.

FIGURE 9 | Prediction of immune checkpoint blockade responses for the two LUAD immune subtypes. (a) Box plot of TIDE scores for the

MOGANTPM_S1 and MOGANTPM_S2 subtypes in the TCGA‐LUAD cohort, with statistical differences between the two groups compared using the

Mann–Whitney U test. (b–d) Box plots of TIDE scores for the MOGANTPM_S1 and MOGANTPM_S2 subtypes in the GSE30219, GSE42127, and

GSE31210 cohorts, with statistical differences between the two groups compared using the Mann–Whitney U test. LUAD, lung adenocarcinoma;

MOGAN, multi‐omics‐based generative adversarial network.
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sensitive to ICB therapy. In summary, we identified two LUAD
subtypes, MOGANTPM_S1 and MOGANTPM_S2, with MO-
GANTPM_S1 patients found to have a better prognosis and
potentially more sensitivity to immune therapy.

Furthermore, we constructed a subtype diagnostic
model using logistic regression with the differentially ex-
pressed genes (proteins) between the two subtypes, includ-
ing PRKCB, MYH11, CCNB1, CCNE1, and FOXM1. This
model reliably predicted the immune therapy response for
MOGANTPM_S1 and MOGANTPM_S2 patients in different
datasets. The majority of genes in the subtype diagnostic
model are associated with cancer development. For ex-
ample, protein kinase C beta (PRKCB) belongs to the
protein kinase C (PKC) family, a family of serine/threonine‐
specific protein kinases. PKC family members phosphoryl-
ate a wide variety of protein targets and are involved in
multiple cellular signaling pathways. They also serve as
major receptors for phorbol esters, a class of tumor pro-
moters. PRKCB can reportedly affect the prognosis of LUAD
patients through methylation and immune infiltration [47].
Myosin heavy chain 11 (MYH11) serves as a contractile
protein and converts chemical energy into mechanical en-
ergy through ATP hydrolysis. Low expression of MYH11 can
promote cancer cell metastasis, proliferation, and invasion
[48]. Researchers have found that decreased MYH11 ex-
pression levels are associated with poor prognosis in lung
cancer patients [49]. Cyclin E1 (CCNE1) promotes cell cycle
progression by forming complexes [50] and is associated
with poor prognosis in breast cancer, bladder cancer, and
colorectal cancer patients [51]. Furthermore, CCNE1 may
serve as a biomarker for immune therapy response in cer-
tain types of cancer [52]. Cyclin B1 (CCNB1) promotes the
transition of cells from the G2 phase to the M phase of the
cell cycle [53]. Overexpression of CCNB1 promotes LUAD
progression, while miR‐139‐5 negatively regulates CCNB1 in
LUAD, thereby inhibiting cell proliferation, migration,
invasion, and cell cycle progression [54]. Forkhead box
protein M1 (FOXM1) plays roles in cell cycle progression,
cancer therapy resistance, and metastasis of lung cancer.
High FOXM1 mRNA expression patterns may serve as an
independent biomarker for poor prognosis in LUAD pa-
tients [55]. Additionally, FOXM1 regulates the expression of
PD‐L1, induces cell death, and may serve as a favorable
option for improving LUAD patient prognosis through
ICIs [56].

5 | Conclusions

Overall, this study optimized the previously developed GAN
and successfully integrated three omics data types using the
MOGAN method to identify two LUAD immune subtypes.
Additionally, a subtype diagnostic model was constructed for
clinical subtype detection, with the reliability of the model
being validated at multiple levels. However, this study still had
some limitations. This study included 305 patients from the
TCGA database and 444 patients from the GEO database for
LUAD subtype diagnosis and prognosis prediction. The inclu-
sion of data solely from public databases may have introduced

inherent biases, so further validation using prospective clinical
data is necessary in the future.
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