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Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) are the pluripotent stem cells (PSCs), derived from
the inner cell mass (ICM) of preimplantation embryos at embryonic day 3.5 (E3.5) and postimplantation embryos at E5.5-E7.5,
respectively. Depending on their environment, PSCs can exist in the so-called naïve (ESCs) or primed (EpiSCs) states. Exposure
to EpiSC or human ESC (hESC) culture condition can convert mESCs towards an EpiSC-like state. Here, we show that the
undifferentiated epiblast state is however not stabilized in a sustained manner when exposing mESCs to hESC or EpiSC culture
condition. Rather, prolonged exposure to EpiSC condition promotes a transition to a primitive streak- (PS-) like state via an
unbiased epiblast-like intermediate. We show that the Brachyury-positive PS-like state is likely promoted by endogenous WNT
signaling, highlighting a possible species difference between mouse epiblast-like stem cells and human Embryonic Stem Cells.

1. Introduction

Pluripotency is the intrinsic, unrestricted, flexible develop-
mental potential of the embryonic cells in a developing
embryo, to give rise to the three embryonic germ layers,
ultimately forming all the cells in an adult organism. This
can be captured in vitro, by deriving pluripotent stem cells
(PSCs) from various developmental stages. The PSCs,
derived from the epiblast of preimplantation mouse embryos
(E3.75-E4.5) are called embryonic stem cells (ESCs) [1–3].
The mESCs can be brought to a so-called ground/naïve state
of pluripotency, using leukaemia inhibitory factor (LIF) that
sustains self-renewal [4, 5], in conjunction with the inhibi-
tion of ERK [2] and GSK3 [6] that simultaneously suppress
differentiation (LIF/2i medium) [7]. The PSCs that are

derived from the postimplantation embryos (E5.5-E7.5) are
called the epiblast stem cells (EpiSCs), which are in a primed
state of pluripotency [1, 8]. The mouse EpiSCs and human
ESCs (hESCs) are conventionally cultured in Activin A and
FGF2 (AA/F2). When the mESCs are exposed to the hESC/E-
piSC condition (AA/F2), they transition to an EpiSC-like
primed state [1, 8–11].

During gastrulation, the pluripotent epiblast cells in the
developing mouse embryo undergo epithelial-mesenchymal
transition (EMT) and migrate through the primitive streak
(PS), forming mesendoderm cells, the common precursors
of mesoderm and endoderm [12]. The epiblast cells that do
not migrate through the PS form the neuroectoderm. Several
signaling pathways play crucial roles in this rearrangement
process, such as TGFβ/activin/nodal, WNT/β-catenin, and
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FGF/ERK/MAPK signaling pathways [13–15]. The collabo-
rative interaction between various transcription factors, such
as the T-box transcription factors (Tbx) T and Eomes with
the key markers of mesoderm and endoderm initiate this dif-
ferentiation process [16–18].

Currently, a range of pluripotent states is being discov-
ered [19, 20], and in spite of the fact that the EpiSCs share
many properties [21] that safeguard their pluripotency, they
possess unique functional and molecular properties that set
them apart [22, 23]. This difference probably reflects on the
transformations that the epiblast cells undergo, based on
their spatiotemporal positions and their environment in the
developing embryo, restricting their developmental potential
to certain lineages. Under the currently known extrinsic
culture conditions, the EpiSCs could possible occur in
heterogeneous metastable states, possessing variable differen-
tiation potentials [24, 25].

The standard hESC culture condition has been
adapted to support mEpiSCs (Activin A and FGF2
(AA/F2)) [1, 8–11], and the same can convert mESCs in
the ground/naïve state of pluripotency to a primed
EpiSC-like state. This study is aimed at understanding
the transition from naïve to primed state of pluripotency,
under the standard hESC/EpiSC condition. In this study,
we show that although this condition matured the mESCs
to distinct primed EpiSC-like states, these states could not
be sustained, but the cells further matured to a PS/mesen-
doderm-like state, highlighting a possible species differ-
ence between mouse and human epiblast-like stem cells.
This also highlights the requirement of additional factors for
the preservation of distinct pluripotency states of the mouse
EpiSCs, in contrast to the requirement of hESCs that could
enhance our capability to differentiate them into any desired
cell type in high proportion.

2. Materials and Methods

2.1. Mouse ESC Lines. The experiments were carried out
using the mouse embryonic stem cells (mESCs) from
C57BL/6N background, having fluorescent reporters for
Brachyury (T) and Sox2 [26]. Mouse bacterial artificial
chromosomes (BACs) containing the part of the mouse
genome comprising the locus of the specific gene (BACs
RP24-530D23 (T) and RP23-249O15 (Sox2) containing
∼180-230 kb of the C57BL/6 mouse genome surrounding
the respective loci), by Red/ET recombineering (GeneB-
ridges) [27]. Shortly, the start codon (ATG) of T or Sox2
was replaced with mCherry or Venus coding sequence,
followed by the rabbit b-globin polyadenylation signal
and an FRT-site flanked hygromycin selection cassette,
driven by the Pgk promoter. 5mg of the modified BAC
was linearized with the restriction enzyme PI-SceI (NEB)
and electroporated into 3 × 106 ESCs. After selection in
ES cell medium containing hygromycin (150mg/ml),
clones were picked, expanded, and checked by PCR for
BAC integration. For details, refer [26].

2.2. Cell Culture and Differentiation. ESCs and EpiSCs were
cultured according to standard conditions [24]. For naïve

conversion, the feeder-free mESCs were seeded on fibro-
nectin- (3-5 ng/ml) (Merck-Millipore; Calbiochem) coated
plates in N2B27 medium containing LIF, PD0325901
(1μM) (Axon Medchem, Axon 1408), and CHIR99021
(GSK3β inhibitor) (3μM) (Axon Medchem, Axon 1386)
(2i medium) [7]. The next day, the cells were refed with
the 2i medium. After the small dome-shaped colonies were
seen, the medium was changed to N2B27 medium supple-
mented with Activin A (20ng/ml) and FGF2 (10ng/ml)
(AA/F2). The AA/F2 treatment was continued for 6 days,
while the medium is replaced with fresh AA/F2 medium
every day.

2.3. Whole Transcriptome Data Analysis. RNA sequencing
was carried out with 80 ng of total RNA. After quantifica-
tion and quality assessment (details in [24]), the RNA-seq
library was prepared from total RNA using the ScriptSeq
Complete Kit (Human/Mouse/Rat)—Low Input (SCL24H)
(Illumina), according to manufacturer’s instructions. The
prepared sequencing library was eventually sequenced on
Illumina HiSeq 2000 for 2350 cycles (paired-end), follow-
ing the standard protocol. The RNA-seq sequencing reads
were mapped to the mouse genome (mm10) using TopHat
(version 2.0.11) [28]. Cuffdiff was then used to calculate
the normalized FPKM (fragments per kilobase per million
mapped read) values for genes in all samples [29]. The
results were filtered by removing genes with FPKM values
lower than 1 in all samples, which were then used for fur-
ther analysis (R statistical program) (http://www.r-project
.org). The RNA-seq data has been deposited in the
ArrayExpress database (E-MTAB-3784).

2.4. Real-Time PCR Analysis. Total RNA was isolated using
RNeasy Micro and Mini Kits (Qiagen), followed by quantifi-
cation using NanoDrop (Life Technologies) (unsorted cells)
or Qubit fluorometer (Invitrogen) (sorted cells). The
unsorted cells were directly lysed with the RLT buffer in
the cell-culture wells, after rinsing once with PBS. An extra
step of DNase I (Roche, Basel, Switzerland, https://www.roche-
applied-science.com) treatment was carried out in order to
avoid genomic DNA contamination. RNAwas quantified using
the spectrophotometer from either NanoDrop Technologies
(unsorted cells) or Qubit (Invitrogen, Carlsbad, CA, http://
www.invitrogen.com) (FACS-sorted cells). Reverse transcrip-
tion was performed with the M-MLV reverse transcriptase
(Promega) and Oligo-dT primers (Invitrogen) (Table S3).
Quantitative reverse transcriptase PCR (qRT-PCR) was done
using GoTaq qPCR Master Mix (Promega) with the help of
validated gene-specific primers on StepOnePlus Real-Time
PCR System (Life Technologies, Rockville, MD, https://www
.lifetech.com). Data analysis was accomplished using the ΔΔCt
method, with the housekeeping genes, Pmm2 and Gapdh
and/or Actb for normalization.

2.5. Fluorescence-Activated Cell Sorting (FACS). The cells
were gently rinsed with phosphate-buffered saline (PBS)
and detached using ice cold trypsin. In a neutralization with
cold knockout DMEM-F12, the cells were quickly (30
seconds) spun down at high speed (10,000 rpm) and
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resuspended in cold knockout DMEM-F12 and immediately
placed on ice. The cells were then sorted on FACS Aria II
(Becton Dickinson, Franklin Lakes, NJ, https://www.bd
.com) directly into RLT buffer containing β-mercaptoetha-
nol, followed by total RNA isolation using the RNeasy Micro
Kit (Qiagen, Hilden, Germany, http://www1.qiagen.com)
and processed further.

2.6. Immunoblotting and Immunocytochemistry. Standard
procedures were followed for these assays (details in [24])
with the suitable antibodies (Table S4). The cells were
initially rinsed with PBS, before immunoblotting and
immunocytochemistry.

For immunoblotting, after adding the lysis buffer (con-
taining protease inhibitor and phosphatase inhibitor (Phos-
Stop, phosphatase inhibitor cocktail Easypack, Roche)), the
cells were scraped off and lysed further, after placing on ice,
to preserve the phosphorylation status of the proteins.
Western blot data were quantified using ImageJ, a Java-
based image analysis package. H3 and Actb served as
controls.

For immunocytochemistry, the cells in monolayer cul-
ture were washed with PBS and fixed with 4% paraformalde-
hyde. After permeabilization, primary and secondary
antibody staining were carried out. Visualization was done

using a confocal microscope (LSM510 Meta, Zeiss), and fur-
ther analysis was performed using the software, AxionVision
(Zeiss).

3. Results

3.1. Human ESC/EpiSC Culture Condition Leads Naïve ESCs
to Distinct EpiSC-Like States. LIF/2i (LIF, PD0325901 (MEK
inhibitor) and CHIR99021 (GSK3β inhibitor)), under
defined conditions, can maintain mESCs in their naïve state
of pluripotency [4, 5, 7] and AA/F2 (Activin A and FGF2)
can transform them into a primed-like state [1, 8, 10]. A time
course analysis for 3 days was performed to understand this
transition of pluripotency states (Figure 1(a)). Round,
dome-shaped colonies, characteristics of naïve ESCs, were
observed when the mESCs were grown in LIF/2i. Upon
AA/F2 exposure, mESCs gradually lost their dome-shaped
morphology and grew as flat colonies. Expression of Rex1 is
one of the hallmarks of the ground state [30]. Among the
Oct4/Sox2/Nanog triumvirate, Oct4 and Sox2, defined as
the core-pluripotency factors, are required for both the
acquisition and maintenance of pluripotency [31], whereas
Nanog is required only for the acquisition of pluripotency
[32, 33]. AA/F2 treatment led to a decrease in the expression
of Rex1 andNanog right from the first day, Sox2 from second
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Figure 1: Human ESC/EpiSC culture condition leads naïve ESCs to distinct EpiSC-like states. (a) Brightfield images of the indicated samples
(scale bars 100 μm). mESCs were brought to naïve state with LIF/2i (LIF+2i (PD0325901+CHIR99021)), followed by AA/F2 treatment. This
treatment results in morphological changes from round dome-shaped to flat colonies. (b) Principal component analysis (PCA) of the
indicated samples. (c) Heat map, based on Pearson’s correlation coefficient. AA/F2 treatment for different durations led naïve ESCs to
primed EpiSC states that differed from each other and the PSCs that were compared here.
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Figure 2: Continued.
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day still retaining the expression of Oct4 [31, 34, 35] till 3
days, showing the developmental advancement of the cells
during the treatment (Figures 2(a), 2(b), 2(e), and 2(f), S1,
Table S1). While Nanog expression is restricted exclusively
to the nascent epiblast, Oct4 and Sox2 are ubiquitously
expressed in the morula and blastocyst in all the cells of the
inner cell mass (ICM), till the hypoblast segregates [36].
Whole transcriptome data revealed that the naïve-specific
genes were downregulated, and the primed genes were
induced during the treatment (Figures 2(a) and 2(b),
Table S1). However, PCA and hierarchical clustering
showed that the AA/F2-2D and AA/F2-3D cells were not
only distinct from each other, but also from both the naïve
ESCs and the EpiSCs (Figures 1(b)–1(d), S1, Table S1). This
is a time when a spectrum of pluripotent states is being
discovered [19, 20], and the mEpiSCs can be derived from
E5.5 to E7.5 embryos that are similar in several molecular
characteristics [21] and may also differ in the expression
status of certain genes [22]. Taken together, our results
demonstrate that the primed EpiSC-like states that were
derived by the exposure of naïve ESCs to AA/F2 are
distinct from each other and from the EpiSCs used in this
study. The EpiSCs used here have been derived from early
postimplantation E5.5 mouse embryos [9].

3.2. Human ESC/EpiSC Culture Condition Matures the
ESCs Further to Primitive Streak-Like (PS-Like) State. The
changes in pluripotency genes by three days coincided
with the induction of T, Eomes, and Fgf8, and the genes

were expressed in the PS (Figures 2(a)–2(e), Table S1). At
protein level, the induction of T was low, which could be
attributed to a probable delay between transcription and
translation. At this point (AA/F2-3D), no significant
induction of any of the lineage-specific markers, mesoderm
(Foxf1, Gata6, Osr1, Tbx6, and Msgn1), endoderm (Sox17),
neuroectoderm (Pax6 and Sox1), or primitive endoderm
(Sox7) had occurred (Figure 2(c), Table S1). The EpiSCs
derived from late postimplantation embryos (E7.5) have
reduced neural induction potential and express T and OCT4
[22]. Therefore, AA/F2 treatment for 3 days matured ESCs
from the naïve pluripotency to a more matured primed
EpiSC-like state.

EpiSCs are routinely maintained using AA/F2 [1]. To
know if this condition will maintain the converted EpiSC-
like cells, the AA/F2 treatment was continued for 6 days. This
led to the downregulation of the core pluripotency factors,
Oct4, Sox2, and Nanog (Figures 2(b), 2(d), and 2(e),
Table S1), and significant induction of the PS genes, Fgf8
and T (Figures 2(c)–2(e)). Taken together, although the
EpiSC culture condition matures the naïve ESCs to a
primed-like state, the continuous exposure of this condition
for six days transforms these cells into a PS-like or
mesendoderm-like state.

3.3. Epithelial-Mesenchymal Transition Occurs during
Maturation to the PS-Like State. Epithelial-mesenchymal
transition (EMT) and the migration of pluripotent epiblast
cells through the PS facilitate the formation of mesoderm
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Figure 2: Human ESC/EpiSC culture condition matures the ESCs further to a primitive streak-like state. (a) Expression levels of the
specific pluripotency-associated genes in the indicated samples. AA/F2 treatment led to the induction of primed pluripotency genes
and downregulation of PGC and naïve pluripotency genes. (b) Analysis of pluripotency genes in AA/F2-treated cells in the indicated
samples. Gapdh and Pmm2: housekeeping genes. Rex1, Sox2, and Nanog were downregulated, and Oct4 expression was retained.
Error bars: mean ± SD (n = 2); ∗p ≤ 0:05, ∗∗p ≤ 0:01, ∗∗∗p ≤ 0:001, and ∗∗∗∗p ≤ 0:0001 (p ðRex1Þ = 0:0107, pðSox2Þ = 0:0421, and pðOct4Þ =
0:0029) (Student’s t-test). (c) Heat map showing the expression status of lineage-specific markers in the indicated samples in comparison
with naïve mESCs. PS markers are induced in AA/F2-3 days (3D). (d) Analysis of EpiSCs (Fgf5) and PS markers (T and Fgf8) in the
indicated samples. Fgf5 and Fgf8 were induced right from 1D, and by 6D, the PS marker T was also highly induced. Error bars: mean ± SD
(n = 3); ∗p ≤ 0:05, ∗∗p ≤ 0:01, ∗∗p ≤ 0:001, and ∗∗∗∗p ≤ 0:0001 (pðFgf8Þ = 0:0070 and pðTÞ = 0:0235) (Student’s t-test). (e) Western blot
analysis of the indicated markers in the indicated samples. Six days of AA/F2 treatment led to high protein expression of the
PS/mesendoderm markers T and Eomes and downregulation of Sox2. (f) Representative immunostainings of the indicated proteins in the
indicated samples (scale bars 100μm).
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and endoderm progenitors [12]. Brachyury (T) is required
for EMT and PS induction [37, 38] and is stimulated by the
collaborative cross talk between FGF and WNT signaling
[24, 39]. β-Catenin regulates PS induction by promoting
SMAD2/3 activity [39, 40]. By 6 days of AA/F2 exposure,
T, Eomes, and Fgf8 were highly induced (Figures 2(c)–
2(e)), when SMAD2 was phosphorylated and β-catenin
phosphorylation inhibited (Figure 3(a), S2A), reflecting on
the active status of TGFβ/activin/nodal and canonical
WNT signaling pathways. This coincided with a modest
downregulation of the epithelial marker E-cadherin
(CDH1) (Figures 3(b) and 3(c), S2D). We also found higher
induction of AKT and total ERK in AA/F2-6D cells
(Figure S2B-S2C). The epithelial cells in the epiblast express
CDH1 which is repressed during PS formation, which in
turn induces EMT [41]. Overall, the continued EpiSC
condition for 6 days promotes EMT, a crucial process that
occurs during PS formation.

3.4. Continuous Exposure to the hESC/EpiSC Condition
Draws the PSCs towards Posterior Mesoderm and Endoderm
Lineages. During early development, the cardiac mesoderm
and endoderm arise from the anterior PS, whereas somitic
and extraembryonic mesoderm originate from the poste-
rior PS [42, 43]. AA/F2 treatment for 6 days resulted in
the upregulation of endoderm (Sox17 and Gata6) and pos-

terior mesoderm markers (Tbx6 and Msgn1) (Figures 4(a)
and 4(b), S3), reflecting on a mixed population of cells. In
the epiblast, while high activin/nodal signaling supports
endoderm differentiation [18, 44], WNT/β-catenin sup-
ports posterior PS genes [45]. Both these pathways were
active in the AA/F2-6D cells (Figure 3(a)), and at this
stage, T was highly expressed (Figures 2(c)–2(e)), with
considerable population of the cells expressing T
(Figure 4(c)). However, the neuronal (Sox2, Pax6, and
Sox1), lateral mesoderm (Foxf1), and the intermediate meso-
derm (Osr1) (Figure 4(a)) genes were not noticeable
expressed then. Endogenous WNT signaling in EpiSCs
induces loss of pluripotency, with increase in the proportion
of T-positive cells and differentiation tendency towards
definitive endoderm [46]. Analysis of the sorted T-positive
cells revealed that they expressed the epiblast (Fgf5), the pos-
terior mesoderm (Fgf8, T, Msgn1, and Tbx6), and the endo-
derm (Foxa2 and Sox17) markers (Figure 4(d)). The
pluripotency markers, Nanog and Sox2, were downregulated.
In contrast, majority of the AA/F2-3D cells that were in the
EpiSC-like state expressed Sox2 and there were no T-positive
cells among them. This highlights the importance of early
passaging of EpiSCs that might be able to avoid their further
maturation towards PS/mesendoderm-like state in order to
establish stable cell lines. These observations summarize that
the continuous AA/F2 treatment leads the naïve PSCs to a
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Figure 3: Epithelial-mesenchymal transition occurs during maturation to the PS-like state. (a) Western Blot analysis of the markers involved
in WNT and TGFβ signaling pathways in the indicated samples (relative quantification graph: Figure S2A). Activin/nodal (pSMAD2)
and WNT (active β-catenin) signaling were highly active by 6 days of AA/F2 treatment, compared to 3 days. Actb: control. (b) Western
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bars 100 μm).

6 Stem Cells International



Gata6
Sox17
Tbx6

Msgn1
Pax6
Sox1

Foxf1
Osr1
Pmm2

8
EpiSCs 1D 2D 3D 6D

4

Re
la

tiv
e e

xp
re

ss
io

n 
no

rm
al

iz
ed

to
 n

aϊ
ve

 E
SC

s (
lo

g2
)

–4

–8

0

(a)

ESCs 3D 6D
AA/F2

MSGN1
TBX6
SOX17
H3
Actb

(b)

AA/F2-3D
AA/F2-6D

⁎⁎

⁎

Pe
rc

en
ta

ge
 o

f c
el

ls 
(%

)

100

80

60

40

20

0
Sox2 T

(c)

Re
lat

iv
e e

xp
re

ss
io

n 
in

T+
ve

 ce
lls

 (A
A

/F
2-

6D
) n

or
m

al
iz

ed
 to

 n
ai

ve
 E

SC
s (

lo
g 2

)

Sox2
12

8

4

–4

–8

0

Nanog Fgf5 Fgf8 T Tbx6 Msgn1 Foxa2 Shh Sox17 Pmm2

(d)

Figure 4: Continued.
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primed EpiSC-like state, followed by PS- or mesendoderm-
like state, supporting the endoderm and posterior mesoderm
lineages (Figure 4(e)).

4. Discussion

During embryo development, cells in the epiblast undergo
several systematic changes in pluripotency and part of it
can be mimicked in vitro. Mouse ESCs can be brought to a
ground/naive state of pluripotency using LIF, along with
the inhibitors of ERK and GSK3 [7] (2i medium). The stan-
dard hESC culture condition has been adapted to support
mEpiSCs (Activin A and FGF2 (AA/F2)), and the same can
convert mESCs in the ground/naïve state of pluripotency to

a primed EpiSC-like state [1, 8–11]. The current study dem-
onstrates that the exposure of mESCs in the ground state of
pluripotency to the AA/F2 transitions them through distinct
primed-like EpiSC states, and prolonged exposure of this
condition leads them to a PS-like state that had active
WNT and activin/nodal signaling and expressed T, Eomes,
posterior mesoderm, and endoderm markers (Figure 4(e)).
They did not express neuronal markers.

T and Eomes together promote the upregulation of pos-
terior mesoderm and endoderm markers [18, 47] and are
induced by FGF, WNT/β-catenin, and activin/nodal/TGFβ
signaling, with a negative impact on pluripotency and neural
markers [9, 18]. Moreover, the endogenous WNT signaling
in EpiSCs under hESC culture condition which causes loss

Pre-implantation blastocyst

Post-implantation blastocyst

Gastrulation

E 3.5 E 4.5  E 5.6 E 5.7 E 5.5 

ICM

Epiblast
PE

PS

Node

Naive ESCs EpiSCs-like cells PS-like cells
2 - 3 days 3 days

AA/F2 AA/F2
LIF/2i

(e)

Figure 4: Continuous exposure to the hESC/EpiSC condition draws the PSCs towards posterior mesoderm and endoderm lineages. (a) qRT-
PCR analysis of the indicated lineage-specific genes in the indicated samples. Gapdh and Pmm2: housekeeping genes. The endoderm (Gata6
and Sox17) and posterior mesoderm (Tbx6 and Msgn1) markers were induced by 6 days. The neuroectoderm (Pax6 and Sox1), lateral
mesoderm (Foxf1), and intermediate mesoderm (Osr1) genes were not expressed. (b) Western blot analysis of the mesoderm (Msgn1 and
Tbx6) and endoderm (Sox17) proteins in the cells treated with AA/F2 for the indicated durations. The posterior mesoderm (Msgn1 and
Tbx6) and endoderm (Sox17) proteins were expressed by 6 days of the treatment. (c) Flow-cytometric analysis of the fraction of Sox2+ve
and T+ve cells after 3 and 6 days of AA/F2 treatment. Error bars: mean ± SD (n = 2); ∗p ≤ 0:05 and ∗∗p ≤ 0:01 (pðSox2Þ = 0:0070 and pðTÞ
= 0:0098) (Student’s t-test). By 6 days of treatment, the count of Sox2-expressing cells was very low, and almost half the proportion of the
cells expressed the PS marker, T. (d) Analysis of the indicated genes in the FACS-sorted T+ve cells from the AA/F2-6D-treated cells. The
T-expressing cells expressed early markers of PS, mesoderm, and endoderm. (e) A model that summarizes the major finding of this study.
The mESCs were converted to naïve state of pluripotency (represent the pluripotent embryonic cells in the E3.5-E4.5 developmental
stages) using the 2i medium (LIF/2i). AA/F2 treatment for 2 to 3 days led these cells to a primed state of pluripotency (may represent the
pluripotent epiblast cells in the E5.5-E7.5 developmental stages). This study shows that the continued treatment of AA/F2 for 6 days led to
the enrichment of cells expressing the genes of the primitive streak, mesoderm (primarily, posterior mesoderm), and endoderm (may
represent the pluripotent epiblast cells and PS/mesendoderm cells in the E6.5-E7.5 developmental stages).
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of pluripotency and WNT inhibition could prevent this,
reflecting on possible species-specific difference in the culture
conditions of mouse and human [46, 48–50]. Although the
hESC/EpiSC condition (AA/F2) matured the mESCs to
primed states, we show that these states could not be sus-
tained, but the cells further matured to a PS/mesendoderm-
like state that had higher WNT signaling active, compared
to the intermediate EpiSC-like states (AA/F2-2D and
AA/F2-3D). This highlights the requirement of additional
factors such as WNT inhibitors, for the preservation of
primed pluripotent states of the mouse EpiSCs, in contrast
to the requirement of human ESCs [46, 48–50].

Although the AA/F2-treated cells showed primed-like
features by both 2 and 3 days of induction, they were different
from each other and also from the EpiSCs derived from early
postimplantation stage (E5.5) [9]. The 3-day AA/F2-matured
EpiSC-like cells, in addition to the pluripotency genes (Oct4,
Sox2, and Nanog), also expressed T, Eomes, and Gsc. These
characteristics resemble the features of the EpiSCs derived
from late postimplantation embryos that express T [22].
The EpiSCs can be derived from mouse postimplantation
embryos at various embryonic stages (E5.5–E7.5) that in
spite of being similar in several primed-state characteristics
[21], also differ among each other [22]. The emerging theory
from recent studies is that among pluripotent or progenitor
cells in the epiblast, there could be a wide range of molecular
states having specific underlying molecular signatures. This
heterogeneous population of epiblast cells having diverse
differentiation capacities could depend on slightly different
extrinsic culture conditions for maintenance that confer
their pluripotent or multipotent properties [51], and a
majority of this information still remains undefined. For
instance, the different durations of AA/F2 led ESCs to dis-
tinct pluripotent states that yielded different proportions of
presomitic mesoderm cells [24]. At present, the naïve and
primed states of pluripotency are the only well-defined states
in human and mouse that are interconvertible and can be
maintained under defined in vitro conditions. The in vitro
conditions used to maintain ESCs could influence the
gene-expression state and cell populations within the culture
largely [52, 53]. Different populations of EpiSCs, distinct
from ESCs, that are interconvertible in vitro, such as Brachy-
ury or Oct4 positive or negative, can coexist, whereby the
Oct4+ve cells still can retain the chimera-forming ability
[54, 55], which shows that they are totipotent. Although
there have been attempts to capture totipotency in vitro
[56, 57], the exact conditions that maintain such a state are
still unknown [58]. Under the currently known extrinsic
culture conditions, possibly, the EpiSCs could occur in het-
erogeneous metastable states, possessing variable differentia-
tion potentials [24, 25], even to extraembryonic lineages,
such as trophoblast [1, 8, 59–62]; [63–66]. The different
states could be preserved or interconvertible with ease, by
mere manipulation of signaling pathways. The discovery of
the 3i: (PD184353, PD173074/SU5402, and CHIR99021,
respectively) and later 2i (CHIR99021 to inhibit GSK3β
and PD0325901 to inhibit MEK1/2) media by Austin Smith
and colleagues (Ying et al. 2008) increased the ESC deriva-
tion efficiency in nonpermissive mouse and rat strains, such

as CBA, NOD, and DBA from low or nonexistent to 50–70%
[67–73]. Therefore, it is very crucial to explore the possibil-
ities of maintaining specific states of totipotency or pluripo-
tency in culture, not only to further increase the efficiency of
ESC derivation from any strain and chimera-forming ability,
but also to facilitate studies on placental and early embry-
onic development. More investigation into the specific fac-
tors required for maintaining a particular totipotency or
pluripotency state could enhance our capability to differenti-
ate them into any desired cell type more efficiently, in high
proportion, and our understanding of mammalian embryo
development. This and further research will be vital for
understanding the molecular mechanism of early patterning
in embryogenesis and besides, will ensure that knowledge
will be gained about totipotency, pluripotency, and differen-
tiation into progenitor cells for scientific purpose as well as
regenerative medicine and thereby associated stem cell-
based therapies.
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Supplementary Materials

Figure S1: human ESC/EpiSC culture condition leads naïve
ESCs to distinct EpiSC-like states. (a) Hierarchical clustering
of the indicated samples. The hierarchical clustering indi-
cates that the AA/F2-treated cells were distinct from both
EpiSCs (from early postimplantation E5.5 mouse embryos)
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and ESCs. Figure S2: epithelial-mesenchymal transition
occurs during maturation to the PS-like state. (a) Western
blot analysis (quantification of the Western blot image in
Figure 3(a)) of the indicated proteins in the indicated sam-
ples. The graph indicates the relative expression of the
indicated proteins in AA/F2-6D, with respect to their
expression in AA/F2-3D. Activin/nodal (pSMAD2) and
WNT (active β-catenin) signaling were highly active by 6
days of AA/F2 treatment, compared to 3 days. (b–d). West-
ern blot analysis of the indicated proteins in the cells treated
with AA/F2 for the indicated durations. Actb served as con-
trol. The expression of total AKT and ERK increased by 6
days. There was a slight decrease in the expression of
CDH1. Actb and H3 (Figure 3(b)) served as controls. Figure
S3: Continuous exposure to the hESC/EpiSC condition draws
the PSCs towards of posterior mesoderm. Analysis of the
indicated genes in the cells treated with AA/F2 for the indi-
cated durations. The posterior mesoderm marker Msgn1
was induced by 6 days of treatment, and its expressions were
negligible at earlier states. Table S1: AA/F2 treatment for
three days results in the downregulation of pluripotency
genes and the expression of primitive streak genes. FPKM
(log2) values of pluripotency and lineage-specific genes
(Figures 1(b) and 2(a)). Table S2: Pearson’s correlation coef-
ficients between the samples (Figure 1(d)). Table S3: list of
primers and their sequences (5′-3′) used for qRT-PCR.
Table S4: list of primary and secondary antibodies used for
Western blots and immunocytochemistry. (Supplementary
Materials)
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