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Politècnica de València, 46022 Valencia, Spain

*Corresponding authors: E-mails: pablo.carbonell@manchester.ac.uk and r.a.le-feuvre@manchester.ac.uk

Abstract

The increasing demand for bio-based compounds produced from waste or sustainable sources is driving biofoundries to
deliver a new generation of prototyping biomanufacturing platforms. Integration and automation of the design, build, test
and learn (DBTL) steps in centers like SYNBIOCHEM in Manchester and across the globe (Global Biofoundries Alliance) are
helping to reduce the delivery time from initial strain screening and prototyping towards industrial production. Notably, a
portfolio of producer strains for a suite of material monomers was recently developed, some approaching industrial titers,
in a tour de force by the Manchester Centre that was achieved in less than 90 days. New in silico design tools are providing
significant contributions to the front end of the DBTL pipelines. At the same time, the far-reaching initiatives of modern
biofoundries are generating a large amount of high-dimensional data and knowledge that can be integrated through auto-
mated learning to expedite the DBTL cycle. In this Perspective, the new design tools and the role of the learning component
as an enabling technology for the next generation of automated biofoundries are discussed. Future biofoundries will operate
under completely automated DBTL cycles driven by in silico optimal experimental planning, full biomanufacturing devices
connectivity, virtualization platforms and cloud-based design. The automated generation of robotic build worklists and the
integration of machine-learning algorithms will collectively allow high levels of adaptability and rapid design changes
toward fully automated smart biomanufacturing.
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1. Next-generation smart biomanufacturing

As the global demand for bio-based products and materials
steadily increases (1), a new generation of automated smart bio-
manufacturing laboratories is transforming the industry.
Traditionally, metabolic engineering projects have been done
manually, often involving trial-and-error. Today, biomanufac-
turing is moving to replace some of the chemical industry pro-
cesses through more sustainable bio-based solutions for
production not only of fine and specialty chemicals but also of

commodity compounds. Biofoundries are facilities for engineer-
ing biology that aim to make such processes more efficient, sys-
tematic and standardized through the application of the
Design/Build/Test/Learn cycle (2), similar to other manufactur-
ing industries. Process automation is required in order to reach
competitive time frames from initial strain screening and proto-
typing to scale up. Automated design for biomanufacturing is a
central piece of such an approach that takes place in the initial
steps of the biomanufacturing project (Figure 1). Whilst auto-
mated design has received some interest from the community
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(3), it is still not fully integrated due to the breadth and com-
plexity of biological design (4), and the lack of appropriate
standards for data exchange and standardized input and output
formats (5). At the other end of the design, build, test and learn
(DBTL) cycle, automated learning has been hindered so far be-
cause of the lack of rich datasets, i.e., big data, for training the
models and the lack of interlab data in the cloud repositories
allowing the gathering of information from diverse contexts (6).
Here, we discuss how ongoing integration of automated design
and learning will boost future biomanufacturing technologies,
allowing rapid on-demand production of bespoke bio-based
chemicals in smart biomanufacturing foundries.

Smart manufacturing is a technology that responds in real-
time to meet changing demands (7). Biofoundries operating un-
der the principle of smart biomanufacturing should meet the
changes in the supply network for raw feedstocks as well as for
synthetic genetic parts from DNA foundries; respond agilely to
customers changing needs; and ensure productivity, quality,
delivery and flexibility. However, meeting such demands is a
challenging endeavor because of the reproducibility issues that
have plagued bioproduction technologies (8) and because of the
often low performance of fermentation processes in terms of
titer, rates and yield and across different scales and process
modes (9). Such issues are now being addressed through
laboratory automation, standardization of protocols and com-
munication between equipment. Using sensors and wireless
technologies (10), cloud laboratories are being established
worldwide (8) and production lines can be shared between bio-
foundries. Notably, the Global Biofoundries Alliance (11) is an
initiative that is facilitating the collaboration between partners
across the world. Several working groups are advancing towards
better standardization and interoperation of software for con-
trolling production processes and resource planning.

Automated optimization of the processes is becoming possi-
ble through robotic fermentation platforms, where growing con-
ditions can be highly monitored and controlled in a parallelized

fashion with early consideration of scale up (12). The wealth of
big data that current omics techniques provide allow the real-
time analysis of proteomics, transcriptomics and metabolomics
data. However, high-throughput screening can be a limitation
for certain classes of molecules, for instance, if no biosensor
exists. Powerful machine-learning algorithms in combination
with automation can then be used to exploit the data and pre-
dict new interventions for process optimization (13). In recent
years, the number of applications of machine learning into bio-
technological processes has notably increased thanks to a new
generation of algorithms such as deep learning as well as the
deployment of easy-to-use development frameworks (14). Deep
learning algorithms are a family of neural networks methods
where layers are generalized and organized in complex archi-
tectures such as convolutional networks. For instance, deep
learning was applied by Wu et al. (15) to assist the directed evo-
lution of an enzyme in order to produce the two enantiomers of
a new-to-nature carbene Si-H insertion reaction. Sampling the
combinatorial sequence space by directed evolution alone
would have been too expensive, but machine-learning models
trained on tested variants provided a faster method by allowing
its computational exploration (16). Similarly, deep learning has
been applied to biological sequence data (10) in order to perform
functional prediction. Amidi et al. (17) used 3D convolutional
networks, a class of deep learning algorithms, to classify
enzymes by their EC class in the entire PDB database based on
spatial structure. Machine learning has been applied to different
strategies for metabolic engineering (18), for instance, Costello
and Martin (19) combined machine learning with multiomics
data (proteomics and metabolomics) to predict the kinetic
model of engineered metabolic pathways. In yet another exam-
ple, Opgenorth et al. (20) used the data produced in the
first Design/Build/Test/Learn cycle to train several machine-
learning algorithms and to suggest protein profiles for a second
cycle that would increase production. Similarly, the cell-free
iPROBE platform for prototyping and rapid optimization (21)

Figure 1. In silico design driven by automated learning from real-time data directs experimental planning for smart biomanufacturing.
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implemented a neural network to predict beneficial combina-
tions of biosynthetic enzymes in a pathway. Several examples
also exist of the application of machine learning to synthetic
biology, such as in the prediction of success of rapid synthesis
of long DNA fragments (22) the lab-of-origin of the engineered
DNA (12), or in the design of simultaneously stable single-guide
RNAs for CRISPR interference (23), context-aware DNA design in
translational regulation for limonene production in Escherichia
coli (24), as well as in other strategies for the design of gene
circuits (25).

2. In silico design tools for biomanufacturing

As a major contributor to the new fully automated pipeline par-
adigm, the concerted orchestration of a growing ecosystem of in
silico design tools is undeniably transforming metabolic engi-
neering into a biomanufacturing technology. For some years de-
sign tools were considered as simply assistants for individual
tasks, but the current view is that integrated in silico tools should
underpin the automated pipeline for the design stage of smart
biomanufacturing. The first task of metabolic pathway design
automation is the selection of chemical targets. Generally,
targets are imposed by external partners such as customers in-
terested in commercializing the bio-based version of some
compound of interest like a natural product, a pharmaceutical
or a material building block, to name a few. Another consider-
ation in the development of sustainable industrial systems is
the use of sustainable feedstocks or utilization of waste prod-
ucts in a bid to reduce resource consumption (including reliance
on precious metals and decreasing petrochemical consumption)
and greenhouse gas emissions, this is increasingly important in
the bid to mitigate climate change and ensure clean growth (26).
Recently, several proposals have appeared trying to rationalize
automating the target selection in the same fashion as in the
chemical industry. Life cycle and techno-economic analyses
(27) are critical steps used to assess the potential economic via-
bility of production by microbial fermentation of the target from
raw materials at an industrial plant scale, as well as assessing
the value of new chemical production routes that circumvent
existing intellectual property (28). Whilst these are at present
mostly performed manually they show potential for achieving
automated target selection (29).

Moreover, the bio-based production of chemical targets
requires the identification of viable routes. It is possible that a
natural biosynthetic pathway exists, but it might have been op-
timized through evolution in a different host (30). Therefore,
even when routes are available, it is often preferable to select
enzymes from different sources. A more ambitious effort con-
sists of looking for alternative pathways other than the natural
one or the engineered ones reported in the literature. To that
end, retrosynthetic analysis is performed (31). Several computa-
tional platforms for retrobiosynthesis exist (32, 33), such as
BNICE (33), GEM-Path (34), RetroPath 2.0 (35), PathPred (36) or
Cho et al. (37). Each one differs from the others on their unique
computational representation of reactions and the way
predicted pathways are ranked. However, there is a sizable gap
between the virtually huge number of alternative routes that
can be computationally predicted and the few that because of
limitations in the total number of experimental runs to be
performed would finally be tested in the laboratory. Because of
this challenge, retrosynthetic algorithms have been increasingly
refined with the hope of becoming ‘smarter’ and therefore
capable of providing routes that are the closest to the expert

suggestions. Using state-of-the-art machine-learning algo-
rithms such as deep learning, it has been shown recently that
automated retrosynthetic analysis for synthetic chemistry can
beat the experts (38). Retrosynthetic analysis for biosynthesis,
i.e. bioretrosynthesis, is more challenging because it needs to
combine chemical reaction knowledge with enzyme biocataly-
sis expertise. Despite this complexity, recent progress using
reaction rules with associated scores is helping in narrowing
down the search to the most promising routes (39), as exempli-
fied in RetroPath2.0 (35).

When performing pathway selection, it would be of little use
to select one of the predicted pathways through retrosynthesis
if enzymes with the required efficiency cannot be found for in-
dividual steps of the pathway. Enzyme selection can be done
based on homology, i.e. by performing a BLAST search of homo-
logs, as performed by EC-Blast (40) and then selecting them
either because of their reported activity in databases like
BRENDA or any diversification approach. Moreover, the search
can be complemented by looking for reactions that are similar to
the target reaction. This is the strategy developed by Selenzyme
(41), which is well-fitted for annotating retrosynthetic searches
that are based on reaction rules. This tool provides key informa-
tion about enzymes based on several criteria such as a reaction
and sequence similarity; phylogenetic distance between source
organism and host strain; sequence conservation; and other rele-
vant properties. Other sources of information for the enzyme se-
lection include structural analysis of the ensemble of homologs
and prediction and identification of active sites and beneficial
mutations. Enzymes can be screened for efficiency, and directed
evolution (42) is generally then used in order to evolve variants
with improved efficiency with respect to the native counterpart
by defining the set of amino acid regions in the enzyme sequence
to be mutated in order to improve its functionality. Such a pro-
cess can be automated by using technologies like deep learning
(15, 43). Several methods based on deep learning have been pro-
posed for enzyme sequence design, for instance, to classify
enzymes by EC number based on sequence (44, 45) or in enzyme
engineering (46).

In silico enzyme selection is generally followed by genetic
parts selection, both at transcription and translation levels.
Transcriptional selection typically involves promoter design
(47) using tools such as SelProm (48) or ePathOptimize (49),
which has been applied to the violacein pathway. Translation
design tools like the RBS Calculator (50) and RBSDesigner (51)
are facilitating the bottom-up genetic circuit design. Tools are
also guiding the design of smart combinatorial genetic circuit li-
braries like RedLibs (52) and PartsGenie (53) as well as auto-
mated circuit design such as include Cello (3), which can
automatically compute the circuit implementing the desired
logic function. All of these tools combined together with the
increasingly more efficient high-throughput capabilities of
smart biomanufacturing platforms, are nowadays optimized
by the design of experiments (DoE) approaches (54). Through
the optimal experimental design, smart biomanufacturing
platforms can rapidly develop high producer titers based on a
reduced set of experimental runs. The optimal design will gen-
erally follow the strategy of assuming simple models and rela-
tionships between the factors for rapid prototyping and
identification of main factors among gene variants, promoters
and other genetic parts. Those main identified factors can be
then explored in depth through focused combinatorial librar-
ies in order to model complex interactions through machine-
learning algorithms.
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3. The future of biomanufacturing is smart

Microbial strain engineering for on-demand production of
chemicals is a major focus of biomanufacturing foundries that
are developing automated pipelines that are agnostic to the
target compound (2). Ultimately, the suite of fully automated
design protocols would be integrated in the pipelines to allow
seamless transition from chemical target to automated genera-
tion of build workflows. In addition, the development of
cloud-based platforms would allow the remote implementation
of design stages that feed into distributed (or distant) wet-lab fa-
cilities with experimental data automatically feeding back into
learning steps for optimized re-design and iterative cycles for
optimization (8, 55). Broadening the portfolio of design tools and
providing access will allow the sharing of capabilities and the
development of virtual in silico design. However, the wide
uptake of design platforms will depend on the standardization
of biological engineering and ensuring that these tools are ac-
cessible to the non-expert user.

Towards that end, several initiatives have been proposed in
order to define metrics and assess the capabilities of biofoun-
dries. In one of such initiative, a timed ‘pressure test’ adminis-
tered by the US Department of Advanced Research Projects
Agency (DARPA) consisting on building organisms to produce 10
molecules ran for 3 months in order to assess the foundry (56).
Interestingly, several approaches were applied including retro-
synthetic design and cell-free systems, achieving an outcome of
6/10 targets produced during the performance period. As a re-
cent milestone, the Manchester SYNBIOCHEM Centre focused
its DBTL pipeline on the rapid prototyping of microbial factories
for the biosynthetic production of monomers for enhanced bio-
manufacturing of materials (57). The in silico design phase from
initial target and pathway selection through to the design using
tools such as RetroPath2.0, Selenzyme and PartsGenie and

ordering of DNA parts took �10 days. Over 85 days, more than
160 genetic parts were designed and assembled into 115 unique
biosynthetic pathway constructs and tested for in vivo produc-
tion in E. coli. Targeting chemically diverse industrially relevant
materials building blocks, the Centre’s rapid prototyping capa-
bility successfully produced 17 materials monomers at competi-
tive titers and key intermediates to demonstrate the potential
of biofoundries in leading the sustainable production of next-
generation materials. The ability to produce strains for gateway
chemicals (e.g. flavanones (58)) with broad applications such as
precursors to materials and active pharmaceutical ingredients,
will be a major step forward. One such materials monomer tar-
geted was enantioselective production of mandelic acid, a
monomer for degradable thermoplastics with polystyrene-like
properties (59) that can also serve in its enantiopure form as a
building block for the synthesis of pharmaceuticals (60), with
rapid scale-up delivery of g/l quantities in bioreactor cultures
achieved. Whilst the potential for biobased production of key
compounds has been demonstrated, in order for bio-based
manufacturing to become a reality, the whole ecosystem of pro-
duction needs to be considered with substantial reductions in
the costs of production to become commercially viable
(Figure 2). Important considerations include both upstream and
downstream processes including the development of new more
environmental friendly solvent/extractant systems with
reduced energy consumption and loss (61, 62); greener product
recovery (63) and separation processes (64); choice and cost of
feedstocks and substrates; and the potential to utilize low/zero-
cost waste streams (e.g. lignocellulose and glycerol waste from
biodiesel production), or CO2 (65–67). The engineering of robust
industrial microbial strains for chemicals production at scale
and to reduce the economic burden of biomanufacturing will re-
quire systems level design and implementation of integrated

Figure 2. Biofoundry model for rapid prototyping and smart biomanufacturing based on the automated Design, Build, Test and Learn (DBTL) cycle integrated with

high-dimensional data and the principles of the circular economy. A suite of in silico machine learning-driven BioCAD tools for parts selection, build assembly and ex-

perimental test can leverage the agile circular process for downstream processing (DSP) and production of consumer products in order to achieve sustainable solutions

that utilize renewable/waste feedstocks and replace the use of fossil fuels.
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bioproduction platforms (56). Full techno-economic assessment
will also be important to consider the commercial viability in-
cluding production modes, separation technology and the price
point of target molecules (e.g. commodity vs high value).
Standardization, robotics and automation which will play an
important part (8) in the development of ‘smart biomanufactur-
ing’, are the focus of many research groups around the world,
including the Global Biofoundry Alliance (https://biofoundries.
org). Finally, coupling to ‘greener’ downstream processing (e.g.
(68)) and waste recycling will be essential for the successful de-
livery of a circular biobased economy.
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