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Abstract
Musculoskeletal malignancies are a rare type of cancer. Consequently, sufficient imaging data for machine learning (ML)
applications is difficult to obtain. The main purpose of this review was to investigate whether ML is already having an impact
on imaging-driven diagnosis of musculoskeletal malignancies and what the respective reasons for this might be. A scoping
review was conducted by a radiologist, an orthopaedic surgeon and a data scientist to identify suitable articles based on the
PRISMA statement. Studies meeting the following criteria were included: primary malignant musculoskeletal tumours, machine/
deep learning application, imaging data or data retrieved from images, human/preclinical, English language and original research.
Initially, 480 articles were found and 38 met the eligibility criteria. Several continuous and discrete parameters related to
publication, patient distribution, tumour specificities, ML methods, data and metrics were extracted from the final articles. For
the synthesis, diagnosis-oriented studies were further examined by retrieving the number of patients and labels and metric scores.
No significant correlations between metrics and mean number of samples were found. Several studies presented that ML could
support imaging-driven diagnosis of musculoskeletal malignancies in distinct cases. However, data quality and quantity must be
increased to achieve clinically relevant results. Compared to the experience of an expert radiologist, the studies used small
datasets and mostly included only one type of data. Key to critical advancement of ML models for rare diseases such as
musculoskeletal malignancies is a systematic, structured data collection and the establishment of (inter)national networks to
obtain substantial datasets in the future.
Key Points
• Machine learning does not yet significantly impact imaging-driven diagnosis for musculoskeletal malignancies compared to
other disciplines such as lung, breast or CNS cancer.

• Research in the area of musculoskeletal tumour imaging and machine learning is still very limited.
• Machine learning in musculoskeletal tumour imaging is impeded by insufficient availability of data and rarity of the disease.

Keywords Primary musculoskeletal malignancies . Imaging-driven diagnosis . Diagnostic imaging . Machine learning . Deep
learning

Abbreviations
Acc Accuracy
AI Artificial intelligence
AUC Area under the curve

DL Deep learning
IoU Intersection over union
IQR Interquartile range
ML Machine learning
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MSK Musculoskeletal
SD Standard deviation
SVM Support vector machine

Introduction

Malignant tumours of the musculoskeletal system represent a
group of extraordinarily rare and heterogeneous tumour enti-
ties. For example, malignant bone tumours account for only
about 0.2% of all human malignancies, but they occur more
frequently in children (sixth most common cancer) and ado-
lescents (third most common cancer) [1–3]. In addition to the
pronounced rarity, the mostly unspecific history or clinical
presentation also complicates early diagnosis and often leads
to significant delays [3]. However, undelayed diagnosis is of
paramount importance in musculoskeletal tumours, as the di-
agnostic window also has a direct impact on resectability and
patient survival prognosis [2]. Thus, prompt referral to a spe-
cialised sarcoma centre is crucial when a malignant musculo-
skeletal tumour is suspected. However, delays of more than 12
months sometimes occur in clinical care reality, which can be
explained not least by the fact that a general medical practi-
tioner encounters only about three malignant musculoskeletal
tumours in his/her professional life [4].

Especially the morphologic heterogeneity within musculo-
skeletal tumours complicates imaging entity or malignancy
assessment and even limits the informative value of a biopsy.
In sclerotic, blastic or cartilaginous lesions, as well as in tu-
mours with a large necrotic area, retrieving adequate material
from a biopsy is extremely challenging and requires a high
degree of experience [5]. The rate of biopsy-related complica-
tions that adversely affect biopsy outcome or prognosis is
reported to be 15–20%, with up to 12 times higher rates in
non-specialist institutions [6]. Therefore, the importance of
adequate diagnostic biopsy cannot be overstated in musculo-
skeletal tumours, which is why biopsy is considered the “first
step of therapy” by many experts.

Image interpretation as a part of precision medicine plays
an increasingly important role in the future of orthopaedic
oncology, and novel, more comprehensive and specific ana-
lysis tools are urgently needed, especially for outpatient
clinics with limited experience and resources for detection
and interpretation of rare bone and soft tissue malignancies.
Machine learning (ML) and the subset deep learning (DL)
represent distinct applications of artificial intelligence (AI),
which evolved from pattern recognition and learning theory.
ML is just in its early stages in orthopaedics, and standardised
approaches are not yet established. While complex data ana-
lysis of cancerous tissue through AI and imaging data is al-
ready widely applied for research purposes in some cancers
(e.g. lung, breast or CNS cancer) [7], the application of these
methods in orthopaedic oncology research is still very limited

[8]. The fact that globally no far-reaching structures for sys-
tematic and structured data acquisition have yet been estab-
lished (to the best of our knowledge) and that sarcomas are
very rare and heterogeneous makes modern AI applications,
for which a sufficient and qualitative amount of data is crucial,
considerably more difficult. Although various methods for
dealing with limited datasets have been developed (data aug-
mentation [9], transfer learning [10], data simulation [11]),
there is no way around building up appropriate structures
and networks.

The main purpose of this reviewwas to investigate whether
ML can already substantially support image interpretation of
musculoskeletal (MSK) malignancies with a focus on diag-
nostic tasks and what the respective reasons for this might be.

Materials and methods

Eligibility criteria

A scoping review of the literature was performed to identify
ML applications in imaging of musculoskeletal malignancies
based on the PRISMA statement [12]. Studies meeting the
following criteria were included in this review:

& Primary malignant musculoskeletal tumours
& Application of machine learning or deep learning
& Imaging data or data retrieved from images
& Human or preclinical
& Written in English
& Original research articles

The following focus led to the exclusion of articles for this
review:

& Metastases
& Histological data
& Secondary bone/soft tissue tumours
& Lymphoma
& Myeloma
& Benign, intermediate
& Review articles

Articles that contained benign or intermediate lesions but
focused primarily on e.g. the detection of malignant lesions
were included. In contrast, articles that did not contain data on
malignant lesions were excluded. The focus was on malignant
lesions because of their clinical relevance and difficulty in
accurate assessment.

In December 2021, a thorough literature search through
MEDLINE (PubMed), CENTRAL (Cochrane Library) and
LISTA (EBSCO) was conducted. Grey literature was not

7174 European Radiology (2022) 32:7173–7184



considered. For the systematic search, the following search
terms were used without any filters or limits:

((Artificial Intelligence) OR (Deep Learning) OR
(Machine Learning)) AND (malignant) AND (tumour
OR neoplasmOR cancer) AND (musculoskeletal OR sar-
coma OR bone OR (soft tissue)) AND (imaging OR ra-
diographic OR (computer-assisted) OR (image
interpretation))

Study titles were reviewed and evaluated by an MSK radi-
ologist, an orthopaedic surgeon and a data scientist at our
institution using the above selection criteria. All discrepancies
were resolved by consensus. The results were summarised,
and duplicates were discarded. All articles were initially
screened for relevance by title and abstract to assess the inclu-
sion criteria. The three authors independently performed a
careful reading of the studies and extracted the data. The fol-
lowing information was extracted from each article: title, au-
thor, year of publication, tumour entity group, number of pa-
tients, malignancy, imaging modality, algorithm, model, task,
applied metric, outcome label and if or if not focused on di-
agnosis. For the synthesis, studies with diagnosis-oriented
tasks were further examined by retrieving the scores of the
most commonmetrics and the number of class labels to assess

the number of samples per class and illustrate a potential re-
lationship between these parameters through linear analysis
and a correlation coefficient. The level of evidence is level V.

Statistical analysis

Continuous data is reported as mean with standard deviation
(SD) or median with interquartile range (IQR), and the respec-
tive interval. Discrete data was reported as incidence and per-
centage share per entity. Due to the heterogeneous nature and
the limited amount of data, a non-parametric test was chosen to
calculate a correlation coefficient for metric values and number
of samples per class label for the diagnosis-oriented studies.

Results

Selection and methodological characteristics

The first search resulted in 480 references in the databases
mentioned above. One duplicate was discarded and 38 articles
subsequently met the eligibility criteria (Fig. 1) [8, 10, 13–51].
Table 1 displays the final selection of articles with authors and
continuous and discrete parameters. Final articles were pub-
lished between 1994 and 2021. All 38 articles addressed an

Number of articles found on 

MEDLINE (PubMed) 

478

Number of articles after applying

inclusion criteria on titles:

72

Number of final articles:

38

Excluded after screening titles:

407

Excluded after screening abstracts:

34

Removed duplicates:

1
Number of articles after searching

through databases:

479

Number of articles found on 

CENTRAL (Cochrane):

1

Number of articles found on 

LISTA (EBSCO):

1

Number of articles after applying

inclusion criteria on abstracts:

38
Excluded after screening full-texts:

0

Fig. 1 Selection process
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application of ML or DL with imaging data of MSK malig-
nancies. Three review articles were found and excluded from
statistical analysis [8, 14, 25]. 75.7% (28) of the studies were
conducted retrospectively, 8.1% (3) were conducted prospec-
tively and 16.2% (6) did not clearly state the study design.
60.5% (23) of the studies focused on bone, while 39.5%
(15) focused on soft tissue tumours. 50.3% of the cases in-
cluded were from patients with benign tumours, 3.0% were
from patients with intermediate tumours, 37.4% were from
patients with malignant tumours, 5.4% were from patients
with metastases, 3.6% were from patients without tumours
(healthy) and 0.5% did not provide any information. Further
details are reported in Tables 2 and 3.

Narrative review of best studies

Several studies have presented novel and interesting
implementations. However, we would like to highlight two
studies that, in our opinion, provide very intriguing frame-
works. Liu et al [35] demonstrated a ML-DL fusion model
that integrates not only imaging but also clinical data to assess
the malignancy of tumours. This approach is similar to the
diagnostic procedure a radiologist would use to diagnose
MSK lesions. A second noticeable study was published by
von Schacky et al [42]: they presented a multi-task DL model
that shows the potential of state-of-the-art DL by simulta-
neously detecting, segmenting and classifying image data.
To classify the DL results in the context of “man vs. machine,”
they were also compared with the results of radiologists of
different experience levels demonstrating strengths and limi-
tations of DL with limited data.

In-depth investigation of diagnosis-oriented tasks

Twenty-seven (71.1%) of the studies were diagnosis-oriented
and mainly aimed at classification tasks [10, 13, 15, 16, 18,
19, 22, 23, 26, 28, 29, 32–37, 39, 40, 43–49, 51]. A median

accuracy (Acc) of 0.88 with an interval of [0.71; 0.99] was
found. For the area under the curve (AUC), the median result-
ed in 0.92 with a corresponding interval of [0.64; 0.98]. For
the number of labels, a median of 2 with an interval of [2;3]
was found. Further details are shown in Table 4.

Figure 2 demonstrates the findings of a linear analysis of
the metric values Acc and AUC on the vertical axis and the
quotient of total number of cases and number of labels per
class (= mean number of samples per class). Further, a corre-
lation coefficient for each metric and the mean number of
samples per class was calculated. The number of studies ex-
amined is limited, and the data found show considerable het-
erogeneity. Subsequently, a Spearman’s rank-order correla-
tion coefficient, which is a measure for linear correlation be-
tween two datasets and does not assume that both datasets are
normally distributed, was applied.We chose |ρ| > 0.5 to infer a
significant direct or indirect correlation between two parame-
ters for this study. The correlation coefficient for Acc and
AUC against the mean number of samples per class resulted
in ρ = − 0.204 / ρ = − 0.153, respectively. Therefore, both
results represent no significant correlation coefficient.

Discussion

The most important finding of the presented review was that
imaging-driven diagnosis for MSK malignancies does not yet
experience significant impact byML applications and this has
several reasons associated with data.

The main issue might be the availability of data. In most
research institutes, a systematic and structured collection of
quality data does not yet seem to take place or has only re-
cently been introduced. This can be derived from the fact that
datasets in general are comparably small and dataset size is not
increasing yet. Consequently, even if according patient data is
existing, this does not necessarily imply data is present in a
format, validity, accessibility, consistency and completeness

Table 2 Continuous parameters with interval, median, mean IQR, and standard deviation

Continuous parameters

Parameter Interval Median IQR Mean Std

Year of publication [1994; 2021] 2020 3 2018 6

Number of patients/cases [1; 1565] 132.0 180.5 292.0 392.0

Healthy [0; 381] 0.0 0.0 10.6 62.6

Benign [0; 1061] 38.0 154.2 154.8 248.3

Intermediate [0; 169] 0.0 4.6 9.3 32.0

Malignant [12; 478] 69.5 79.5 115.1 113.4

Metastases [0; 317] 0.0 4.3 17.1 60.4

IQR interquartile range, std standard deviation
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feasible for data science. In addition, sarcomas are a very rare
entity of cancer, which does not allow for fast gathering of
sufficient prospective data. Terenuma et al [41] developed a
technique to obtain multiple images from a single patient,
which is from a data science perspective very intriguing, but
does not provide enough data for a clinical application and is
not generally transferable to any other study. Several mathe-
matical techniques to cope with limited data have emerged
(e.g. transfer learning [10], data augmentation [9]).
However, these techniques can at this point only support an
AI task, but not solve the issue of limited data. For rare

Table 3 Discrete parameters with incidence and percentage share per
entity

Discrete parameters

Parameter Entity Σ %

Study design

Retrospective 28 75.7%

Prospective 3 8.1%

Unknown 6 16.2%

Task

Classification 33 80.5%

Segmentation 6 14.6%

Object detection 2 4.9%

Model

AlexNet 1 1.9%

LogitBoost 2 3.8%

Support vector machine 14 26.4%

U-Net 1 1.9%

Efficient-Net 2 3.8%

Logistic regression 2 3.8%

Adaboost 1 1.9%

Random forests 12 22.6%

VGG19 1 1.9%

k-nearest neighbour 1 1.9%

Neural network 4 7.5%

LASSO 1 1.9%

VGG16 2 3.8%

Decision tree 2 3.8%

XGBoost 1 1.9%

Inception v3 2 3.8%

SegNet 1 1.9%

Mask RCNN 1 1.9%

Generalised linear model 1 1.9%

ResNet-50 1 1.9%

Diagnosis oriented

Yes 27 71.1%

No 11 28.9%

Outcome label

Segmented tumour 6 14.6%

Tumour entities 7 17.1%

Tumour occurrence 1 2.4%

Histopathological grading 5 12.2%

Radiotherapy response 2 4.9%

Chemotherapy response 3 7.3%

Malignancy 15 36.6%

Staging 1 2.4%

Prognosis 1 2.4%

Tumour group

Bone tumour 23 60.5%

Soft tissue tumour 15 39.5%

Table 3 (continued)

Discrete parameters

Parameter Entity Σ %

Imaging modality

MRI 22 55.0%

CT 7 17.5%

X-ray 10 25.0%

US 1 2.5%

Radiomic data

Yes 16 42.1%

No 22 57.9%

Algorithm

Supervised 37 97.4%

Unsupervised 1 2.6%

Reinforcement 0 0.0%

Applied metric

Accuracy 29 25.4%

Sensitivity 25 21.9%

Specificity 23 20.2%

AUC 28 24.6%

Jaccard index 1 0.9%

Intersection over union 2 1.8%

Dice score 6 5.3%

LASSO Least Absolute Shrinkage and Selection Operator

Table 4 Continuous parameters of diagnosis-oriented studies with
interval, median, mean and standard deviation

Continuous parameters of diagnosis-oriented parameters

Parameter Interval Median IQR Mean std

ACC [0.71; 0.99] 0.88 0.07 0.87 0.07

AUC [0.64; 0.98] 0.92 0.14 0.88 0.09

Number of labels [2; 3] 2 0 2.19 0.39

IQR interquartile range, std standard deviation

7180 European Radiology (2022) 32:7173–7184



diseases, building networks and databases on a national or
even international basis might be a future solution. Another
reason might be the considerably limited amount of research
in the field of orthopaedic oncology, which can again partly be
explained by insufficient data. With the respectively adapted
search term, more than 1300 articles can be found for lung
malignancies and even more than 2200 articles for breast ma-
lignancies, while only 480 articles were detected for MSK
malignancies (initial search, each in December 2021). ML in
general is still in its infancy, but more so in MSK and ortho-
paedic oncology.

A further finding was presented by synthesising the rela-
tionship of number of cases and number of labels per class
against the metric values. In the research field of AI, it is
common knowledge that the amount of data has profound
impact on the model performance [10, 11, 52]. Nonetheless,
Fig. 2 tells a different story. The median number of samples
per class resulted in 75 and 59.3% of the diagnosis-oriented
studies had less than 100 samples per class. Further, the mean
metric scores of studies with fewer than 100 samples per class
(Acc 0.86, AUC 0.89) were slightly higher than those of stud-
ies with more than 100 samples per class (Acc 0.85, AUC
0.86), as indicated by the linear regression lines in Fig. 2.
This would suggest that less data leads to higher results. One
explanation for these unexpected results could be the class
imbalance: several studies developed models to classify tu-
mour malignancy, for example [15, 18, 19, 22, 26, 28, 32,
33, 35, 36, 39, 40, 44, 45]. Benign MSK tumours occur more
often than malignant MSK tumours, which results in a class
imbalance in the dataset. Such an imbalance can lead to spu-
riously highmetric values, especially for AUC. A detailed and
interdisciplinary interpretation of results with regard to

composition of data is crucial. Another issue associated with
limited datasets and class imbalance is that specific classes of
data might be sparse. Therefore, overfitting may occur, result-
ing in suboptimal results.

Yet another indication is that problem statements of most
studies do not reflect real clinical scenarios. Most studies aim
at distinguishing two to three specific tumour entities [10, 16,
34, 43, 46–48] or assessing tumour malignancy [15, 18, 19,
22, 26, 28, 32, 33, 35, 36, 39, 40, 42, 44, 45]. If one fed a third
entity to a two-entity classifier, the model would try to fit the
third entity into one of the first two entity classes. While con-
fining a tumour entity from another is an imperative step in
tumour assessment, nonetheless, most sarcoma diagnoses are
incidental findings, and in daily practice, MSK radiologists
and orthopaedic surgeons are first confronted with detecting
a potential sarcoma at all [1, 4, 53].Whereas von Schacky et al
[42] aimed at differentiating various tumour entities, thus
modelling a more realistic clinical scenario, the results were
only moderate. More general models are needed to comply
with clinical needs and difficulties. However, we hypothesise
that this is again very difficult to achieve due to the very
limited amount of data available and probably also closely
related to the distribution of the data. Naturally, the quality
and problems of AI models cannot be assessed by dataset size
and data distribution alone, but data undoubtedly have major
impact on the overall performance and clinical relevance.

No biopsy-focused studies

The most applied outcome labels among the 38 investigated
original research articles were tumour malignancy (15,
36.6%) [15, 18, 19, 22, 26, 28, 32, 33, 35, 36, 39, 40, 42,

Fig. 2 Distribution of final metric
scores against the mean number
of samples per class label

European Radiology (2022) 32:7173–7184 7181



44, 45], tumour entities (7, 17.1%) [10, 16, 34, 43, 46–48] and
segmented tumour (6, 14.6%) [16, 27, 31, 41, 46, 50]. A
distinct finding of this review is that although a biopsy is a
crucial step in the diagnostic process of MSK malignancies,
there is no study focused on radiological images and biopsies.
Retrieving relevant biopsy material—for example, via CT-
guided needle biopsy—is a highly complex task and requires
significant experience. From this, it could be derived that ML
research in the field of MSK malignancies is currently not
mainly oriented on medical needs, but models and research
questions are built around available data. This underlines that
ML is still in its very infancy in MSK tumour research.

MRI and radiomics

MRI is the most popular kind of imaging data for ML analysis
at this point (55.0%, 22). This might be explained by the fact
that MR imaging plays a fundamental role in the assessment
of sarcomas due to superior soft tissue contrast and the desire
to reduce unnecessary radiation dose. But also, from a data
science perspective, this is comprehensible: with one patient,
multiple 2D data samples (or one 3D data sample) are pro-
duced. Additionally, various image planes and weightings are
possible. This suggests that less patients are necessary to ac-
quire more data.

Likewise, radiomics appears to be on demand. 42.1% of
articles (16) utilised radiomic data [15, 17, 19, 21, 23, 27, 28,
33, 34, 37, 43, 45–48, 51], while only 17.5% (7) integrated
CT, 25.0% (10) X-ray and 2.5% (1) US. With radiomics, a
large number of quantitative features can be extracted from
imaging data. These are combined with other patient data and
can be mined with modern techniques of e.g. bioinformatics
and data science. In consequence, the popularity of radiomics
might be associated with the capability to extract additional
information from images and therefore tackle the issue of
small datasets.

Limitations

This review article has several limitations. The major limita-
tion is the early stage of the examined studies. Because ML in
orthopaedic oncology is still in its infancy, most studies are
also at an early stage, making it difficult to examine the impact
of the studies presented and assess their quality. Most studies
were not published until 2021. Further, the mean number of
cases per study is 292. While a limited number of cases is
related to the type of entities studied [53], the number is very
small in the context of ML applications. These facts underline
the early stage of the studies. Another limitation is the overall
heterogeneity of the examined studies. We restricted the tu-
mour entities and the type of data by the eligibility criteria.
However, we did not impose any restrictions on ML algo-
rithms, models, or tasks. Thus, the studies presented three

distinct algorithm types, 20 different models and nine groups
of outcome labels for various tasks.

Conclusion

In conclusion, for a rare disease, there are very limited amounts
of data and no established large-scale networks betweenmultiple
national and international facilities yet. The impact of imaging-
driven ML research in other disciplines is already present [52].
Also, several studies presented in this review demonstrated that
ML can selectively support imaging-driven diagnosis for MSK
malignancies. However, until statistically robust results can be
achieved and clinically relevant models to cope with heteroge-
neous cases an orthopaedic surgeon or MSK radiologist encoun-
ters on a regular basis can be developed, data quality and quantity
have to be improved. An expert radiologist from a specialised
centre has seen thousands of images in his/her professional life
and incorporates meta data as well as other factors into his/her
decision-making process. In contrast, the presented studies only
workedwith 1 [41] up to 1576 [16] casesmostly focusing on one
single kind of data and imaging modality.

The key to bring ML to a level where it can substantially
impact clinical image interpretation in the diagnosis of MSK
malignancies is data: establishing national and international
networks, implementing a systematic and structural data ac-
quisition and finally integrating multimodal data comparable
to expert radiologists.
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