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The properties of water can have a strong dependence on the confinement. Here, we consider a water
monolayer nanoconfined between hydrophobic parallel walls under conditions that prevent its
crystallization. We investigate, by simulations of a many-body coarse-grained water model, how the
properties of the liquid are affected by the confinement. We show, by studying the response functions and
the correlation length and by performing finite-size scaling of the appropriate order parameter, that at low
temperature the monolayer undergoes a liquid-liquid phase transition ending in a critical point in the
universality class of the two-dimensional (2D) Ising model. Surprisingly, by reducing the linear size L of the
walls, keeping the walls separation h constant, we find a 2D-3D crossover for the universality class of the
liquid-liquid critical point for L=h^50, i.e. for a monolayer thickness that is small compared to its extension.
This result is drastically different from what is reported for simple liquids, where the crossover occurs for
L=h^5, and is consistent with experimental results and atomistic simulations. We shed light on these
findings showing that they are a consequence of the strong cooperativity and the low coordination number
of the hydrogen bond network that characterizes water.

T
he study of nanoconfined water is of great interest for applications in nanotechnology and nanoscience1. The
confinement of water in quasi-one or two dimensions (2D) is leading to the discovery of new and contro-
versial phenomena in experiments1–5 and simulations4,6,7. Nanoconfinement, both in hydrophilic and hydro-

phobic materials, can keep water in the liquid phase at temperatures as low as 130 K at ambient pressure2. At these
temperatures T and pressures P experiments cannot probe liquid water in the bulk, because water freezes faster
then the minimum observation time of usual techniques, resulting in an experimental ‘‘no man’s land’’8.
Nevertheless, new kind of experiments9,10 and numerical simulations11 can access this region, revealing interesting
phenomena in the metastable state. In particular, Poole et al. found, by molecular dynamics simulations of
supercooled water, a liquid-liquid critical point (LLCP), in the ‘‘no mans land’’, at the end of a first–order
liquid-liquid phase transition (LLPT) line between two metastable liquids phases with different density r: the
high-density liquid (HDL) at higher T and P, and the low-density liquid (LDL) at lower T and P11. The presence of
a LLPT is experimentally observed in other systems12–21, consistent with theoretical models fitted to water
experimental data22–24, and is recovered by simulations of a number of models of water11,25–31 and other anomalous
liquids32–37. Alternative ideas, and their differences, have been discussed38–42, and it has been debated if experi-
ments on confined water in the ‘‘no man’s land’’ can be a way to test these ideas2, motivating several theoretical
works43.

Here, to analyze the thermodynamic properties of water in confinement we consider a water monolayer
between hydrophobic walls of area L2 separated by h < 0.5 nm (Fig. 1). Atomistic simulations7 show that water
under these conditions does not crystallize, but arranges in a disordered liquid layer, whose projection on one of
the surfaces has square symmetry, with each water molecule having four nearest neighbors (n.n.). The molecules
maximize their intermolecular distance by adjusting at different heights with respect to the two walls.

We adopt a many-body model that reproduces water properties31,40,44–50. We simulate , 105 state points, each
with statistics of 5 3 106 independent calculations, for systems with N 5 2.5 3 103, …, 1.6 3 105 water molecules
at constant N, P and T, using a cluster Monte Carlo algorithm46–48, for a wide range of T and P. All quantities are
calculated in internal units, as described in the Methods section.

Results
We calculate the density r ; N/V of the system as function of T along isobars. For a broad range of P, we find a
maximum and a minimum of density along each isobar (Fig. 2a) according to experimental evidences for bulk and
confined water52. These maxima and minima identify, for each P, the temperature of maximum density (TMD)
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and the temperature of minimum density (TminD). The TMD locus
merges the TminD line as in experiments52 and other models53.

At low T a discontinuous change in r is observed for
1wPv0= 4Eð Þ§0:5, where the parameters v0 and E are explained in
the Methods section, as it would be expected in correspondence of
the HDL-LDL phase transition. At very high pressures
(Pv0= 4Eð Þw1) the system behaves as a normal liquid, with mono-
tonically increase of r upon decrease of T.

We estimate the liquid-to-gas (LG) spinodal at Pv0= 4Eð Þv0 for
low T (Fig. 2) as the temperature along an isobar at which we find a
discontinuous jump of r to zero value by heating the system. The LG
spinodal identifies the locus of the stability limit of liquid phase with
respect to the gas phase: at pressures below the LG spinodal in the
P 2 T plane is no longer possible to equilibrate the system in the
liquid phase. The LG spinodal continues at positive pressures ending

in the LG critical point (data not shown). We observe that the TMD
line approaches the LG spinodal, without touching it (Fig. 2). We
recover the LG spinodal also as envelope of isochores (Fig. 2b).

We find a second envelope of isochores at lower T and higher P,
pointing out the liquid-to-liquid (LL) spinodal. Indeed, the two spi-
nodals associated to the LLPT, i.e. the HDL-to-LDL spinodal and the
LDL-to-HDL spinodal, collapse one on top of the other and are
indistinguishable within our numerical resolution. Nevertheless,
we clearly see that isochores are gathering around the points
(TkB= 4Eð Þ*0:06, Pv0= 4Eð Þ*0:5) and (TkB= 4Eð Þ~0, Pv0= 4Eð Þ~1),
where kB is the Boltzmann constant, marking two possible critical
regions (Fig. 2b).

We calculate the isothermal compressibility by its definition KT ;
2(1/ÆVæ) (hÆVæ/hP)T and by the fluctuation-dissipation theorem KT

5 ÆDV2æ/kBTV along isobars, KT(T), and along isotherms, KT(P)
(Fig. 3), where ÆVæ ; V is the average volume and ÆDV2æ the volume
fluctuations. We find two loci of extrema for each quantity KT(T) and
KT(P): one of strong maxima and one of weak maxima. The loci of
strong maxima in KT(T) and KT(P), respectively KsMax

T Tð Þ and
KsMax

T Pð Þ, overlap within the error bar with the LL spinodal. The
maxima KsMax

T Tð Þ and K sMax
T Pð Þ increase in the range of

Pv0= 4Eð Þ[ 0:55; 0:6½ � and TkB= 4Eð Þ[ 0:05; 0:06½ � (Fig. 3), consistent
with the existence of a critical region. The stronger maxima disappear
for Pv0=ð4EÞv0:4.

We find also loci of weak maxima, KwMax
T Tð Þ and KwMax

T Pð Þ and
minima Kmin

T Tð Þ and Kmin
T Pð Þ. The loci of weak extrema and minima

of KT(T) and KT(P) do not coincide in the T 2 P plane. The locus of
weak maxima along isotherms KwMax

T Pð Þ merges with the locus of
minima Kmin

T Pð Þ at the point where the slope of both loci is hP/hT R
‘. Furthermore, both loci approach to the LL spinodal at high P. The
locus of weak maxima along isobars KwMax

T Tð Þ approaches the LL
spinodal where KT exhibits the strongest maxima, and merges with
the locus of minima Kmin

T Tð Þwhere the slope of both loci is hP/hT R
0 (data at high P and T not shown in Fig 3). This locus intersects the
TMD at its turning point. Indeed, as reported in Ref. 39 and in the
Methods section, the temperature derivative of isobaric KT along
the TMD line is related to the slope of TMD line

LKT

LT

� �
P, TMD

~
1
V

L2V
�
LT2

� �
TMD

LP=LTð ÞTMD

ð1Þ

where all the quantities are calculated along the TMD line. Hence the
locus of extrema in KT(T), where (hKT/hT)P 5 0, crosses the TMD
line where the slope (hP/hT)TMD is infinite. We observe also that the
weak maxima of KT(T) and KT(P) increase as they approach the LL
spinodal. All loci of extrema in KT are summarized in Fig. 3.

Next we calculate the isobaric specific heat CP ; (hÆHæ/hT)P 5

ÆDH2æ/kBT along isotherms and isobars, where Hh i:h izP Vh i is
the average enthalpy, is the Hamiltonian as defined in the
Methods section, ÆDH2æ is the enthalpy fluctuations (Fig. 4). We find
two maxima at low P separated by a minimum. At high-T the maxima
are broader and weaker than those at low-T. As discussed in Ref. 49,
the maxima at high T are related to maxima in fluctuations of the HB
number NHB, while the maxima at low T are a consequence of max-
ima in fluctuations of the number Ncoop of cooperative HBs. The lines
of strong maxima at constant P and constant T, respectively CsMax

P Tð Þ
and CsMax

P Pð Þ, overlap for all the considered pressures, and both
maxima are more pronounced in the range Pv0= 4Eð Þ[ 0:5, 0:6½ � and
TkB= 4Eð Þ[ 0:06, 0:07½ �. The weak maxima CwMax

P Pð Þ and CwMax
P Tð Þ

increase approaching the LL spinodal and have their larger maxima at
the state point where they converge to the strong maxima, consistent
with the occurrence of a critical point for a finite system (Fig. 4). The
lines of weak maxima overlap for all positive pressures, branching off
at negative pressures. At negative pressures, the locus CwMax

P Pð Þ bends

Figure 1 | Schematic view of a section of the water monolayer confined
between hydrophobic walls of size L 3 L separated by h < 0.5 nm.

Figure 2 | (a) Isobaric density variation for 104 water molecule. Lines join

simulated state points (, 150 for each isobar). P increases from 20.5

(bottom curve) to 1.5 ð4EÞ=v0 (top curve). Along each isobar we locate the

maximum r (green squares at high T) and the minimum r (green small

circles at low T) and the liquid-gas spinodal (open large circles at low P).

(b) Loci of TMD, TminD, liquid-gas spinodal and liquid-liquid spinodal in

T 2 P plane. Dashed lines with labels represent the isochores of the system

from rv0 5 0.43 (bottom) to rv0 5 0.80 (top). Dashed lines without labels

represent intermediate isochores. TMD and TminD correspond to the loci

of minima and maxima, respectively, along isochores in the T 2 P plane.

We estimate the critical isochore at rv0 , 0.47 (red circles). All the

isochores with 0.47 , rv0 , 0.76 intersect with the critical isochore for

Pv0= 4Eð Þ§0:5 along the LL spinodal (tick turquoise) line.
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toward the turning point of the TMD line, as discussed in Methods
section and in Ref. 53. Indeed, according to the relation

LCP

LP

� �
T, TMD

~T
LP
LT

� �
TMD

L2V
LPLT

� �
TMD

, ð2Þ

in case of intersection between the locus of extrema (hCP/hP)T 5 0
and the TMD line, it results that (hP/hT)TMD 5 0. Note that, as we
explain in the Methods section, the relation (2) does not imply any
change in the slope of the TminD line at the intersection with the
locus of (hCP/hP)T 5 0.

We calculate also the thermal expansivity aP ; (1/ÆVæ) (hÆVæ/hT)P

along isotherms and isobars (Fig. 5). As for the other response func-
tions, we find two loci of strong extrema, minima in this case,
asmin

P Pð Þ and asmin
P Tð Þ, along isotherms and isobars, respectively

showing a divergent behavior in the same region where we find the
strong maxima of KT and CP. From this region two loci of weaker
minima depart. We find that the locus of weak minima along isobars
awmin

P Tð Þ bends toward the turning point of the TMD. Although our
calculations for aP do not allow us to observe the crossing with the
TMD line, based on the relation (see Methods)

LaP

LT

� �
P, TMD

~{
1
V

LP
LT

� �
TMD

L2V
LPLT

� �
TMD

ð3Þ

that holds at the TMD line, we can conclude that awmin
P Tð Þ should

have zero T-derivative if it crosses the point where the TMD turns

into the TminD line, because in this point the TMD slope approaches
zero.

The locus of weaker minima along isotherms awmin
P Pð Þ, merges

with the locus of maxima aMax
P Pð Þ at the state point where the slope

of both loci is hP/hT R ‘ (not shown in Fig. 5). According to the
thermodynamic relation, discussed in Methods section,

LaP

LP

� �
T

~{
LKT

LT

� �
P

, ð4Þ

we find that the locus of extrema in thermal expansivity along iso-
therms coincides, within the error bars, with the locus of extrema of
isothermal compressibility along isobars (Fig. 5c).

All the loci of extrema of response functions that converge toward
the same region A in Fig. 3, 4 and 5 increase in their absolute values.
Because the increase of response functions is related to the increase of
fluctuations and this is, in turn, related to the increase of correlation
length j, to estimate j we calculate the spatial correlation function

G rð Þ: 1
4N

X
~ri{~rlj j~r

sij ~rið Þslk ~rlð Þ
� �

{ sij
� �2

h i
ð5Þ

where~ri is the position of the molecule i, ~ri{~rlj j~r the distance
between molecule i and molecule l and Æ?æ the thermodynamic aver-
age. The states of the water molecule, as well as the density r, the
energy E and the entropy S of the system, are completely described
by the bonding variables sij. Therefore, the function G(r) accounts

Figure 3 | (a) Loci of strong maxima (KsMax
T Tð Þ), weak maxima (KwMax

T Tð Þ in the inset) and minima (Kmin
T Tð Þmarked with large triangles in the inset)

along isobars for KT(T). (b) Loci of strong maxima (KsMax
T Pð Þ), weak maxima (KwMax

T Pð Þ in the inset) and minima (Kmin
T Pð Þmarked with large triangles in

the inset) along isotherms. The weak maxima merge with minima. (c) Projection of extrema of KT in T 2 P plane. The strong maxima (symbols),

weak maxima (solid lines) and minima (dashed lines) of KT(T) (orange) and KT(P) (blue) form loci in T 2 P plane that relate to each other and intersect

with the TMD line following the thermodynamic relations discussed in the text. The large yellow circle with label A identifies the region where KsMax
T Tð Þ

and KsMax
T Pð Þ converge and display the largest maxima, consistent with the occurrence of a critical point in a finite-size system. Symbols not explained

here are as in Fig. 2.
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for the fluctuations in r, E and S and allows us to evaluate the
correlation length because the order parameter of the LLPT, as we
discuss in the following, is related to a linear combination of r and E.
Note that, instead, the density-density correlation function would
give only an approximate estimate of j.

We observe an exponential decay of G(r) , e2r/j at high tempera-
tures in a broad range of pressures. Approaching the region A, the
correlation function can be written as G(r) , e2r/j/rd221g where d is
the dimension of the system and g a (critical) positive exponent.
When j is of the order of the system size, the exponential factor
approaches a constant leaving the power-law as the dominant con-
tribution for the decay.

At P below the region A, we find that j has a maximum, jMax, along
isobars and that jMax increases approaching A (Fig. 6). The jMax locus
coincides with the locus of strong extrema of CP, KT and aP (Fig. 6b).
We observe that this common locus converges to A and that all the
extrema increase approaching A. This behavior is consistent with the
identification of A with the critical region of the LLCP. Furthermore,
we identify the common locus with the Widom line that, by defini-
tion, is the jMax locus departing from the LLCP in the one-phase
region54,55. Our calculations allow us to locate the Widom line at
any P down to the liquid-to-gas spinodal.

At P above the region A, we find the continuation of the jMax line,
but with maxima that decrease for increasing P, as expected at the LL
spinodal that ends in the LLCP (Fig. 6). Therefore, we identify the
high-P part of the jMax locus with the LL spinodal. Along this line the
density, the energy and the entropy of the liquid are discontinuous, as
discussed in previous works31,40,44–49.

To better locate and characterize the LLCP in A we need to define
the correct order parameter (o.p.) describing the LLPT. According to

mixed-field finite-size scaling theory56, a density-driven fluid-fluid
phase transition is described by an o.p. M ; r* 1 su*, where r*
5 rv0 represents the leading term (number density), u:E= ENð Þ is
the energy density (both quantities are dimensionless) and s is the
mixed-field parameter. Such linear combination is necessary in order
to get the right symmetry of the o.p. distribution QN(M) at the critical
point where QN Mð Þ!~pd xð Þ. Here is x ; B(M 2 Mc), B:a{1

M Nb=dn,
b is the critical exponent that governs M, n is the critical exponent that
governs j, with n and b defined by the universality class, aM is a non-
universal system-dependent parameter and ~pd is an universal function
characteristic of the Ising fixed–point in d dimensions. We adjust B
and Mc so that QN(M) has zero mean and unit variance.

We combine, using the multiple histogram reweighting method57

described in the Methods section, a set of 3 3 104 MC independent
configurations for , 300 state points with 0:040ƒTkB= 4Eð Þƒ0:065
and 0:40ƒPv0= 4Eð Þƒ0:75. We verify, by tuning s, T and P, that there
is a point within the region A where the calculated QN(x) has a sym-
metric shape with respect to x 5 0 (Fig. 7). We find s 5 0.25 6 0.03 for
our range of N. The resulting critical parameters Tc(N), Pc(N) and the
normalization factor B(N) follow the expected finite-size behaviors
with 2D Ising critical exponents56. From the finite-size analysis we
extract the asymptotic values TckB= 4Eð Þ~0:0597+0:0001 and
Pcv0= 4Eð Þ~0:555+0:002.

The presence of a first order phase transition ending in a critical
point, associated to the o.p. M, is confirmed by the finite size analysis
of the Challa-Landau-Binder parameter58 of M

UM:1{
M4h iN

3 M2h i2N
ð6Þ

Figure 4 | (a) Loci of strong maxima (CsMax
P Tð Þ) and weak maxima (CwMax

P Tð Þ in the inset) along isobars for CP. (b) Loci of strong maxima (CsMax
P Pð Þ) and

weak maxima (CwMax
P Pð Þ in the inset) along isotherms. (c) Projection of CP maxima in T 2 P plane. The large circle with A identifies the region

where CP shows the strongest maximum. Symbols not explained here are as in Fig. 2.
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where the symbol Æ?æN refers to the thermodynamic average for a
system with N water molecules. UM quantifies the bimodality in
QN(M). The isobaric value of UM shows a minimum at the temper-
ature where QN(M) mostly deviates with respect to a symmetric
distribution (Fig. 8). Minimum of UM converges to 2/3 in the ther-
modynamic limit away from a first order phase transition, while it
approaches to a value ,2/3 where the bimodality of QN(M) indicates
the presence of phase coexistence.

These results are consistent with the behavior of the Gibbs free
energy G calculated with the histogram reweighting method (Fig. 9).
In particular, we calculate G along isotherms, for P crossing the LLPT
and the loci of weak maxima in KT(T) and CP(P). We find that the
behavior of G for T , Tc is consistent with the occurrence of a
discontinuity in volume V 5 hG/hP, in the thermodynamic limit,
with a decrease of V corresponding to the transition from LDL to
HDL for increasing P. Crossing the loci KTðTÞwMax and CPðPÞwMax

the volume decreases with pressure without any discontinuity as
expected in the one-phase region.

The distribution QN(N) adjust well to the data only for large N.
We, therefore, perform a more systematic analysis. For each N, we
quantify the deviation of the calculated ~p Nð Þ from the expected ~p2 for
the 2D Ising. Furthermore, due to the behavior of data for small N
(Fig. 7a), we calculate the deviation from the 3D Ising ~p3

56. We
estimate the Kullback-Leibler divergence51,59,

DKL
d Nð Þ:

Xn

i~1

ln
~pd,i

~pi Nð Þ

� �
~pd,i ð7Þ

of the probability distribution ~pi Nð Þ of xi from the theoretical value
~pd,i of xi (i 5 1, …, n) in d dimensions (Fig. 10a), and the Liu et al.
deviation51,

Wd Nð Þ: 1
n

Pn
i~1

ffiffiffiffiffiffiffiffiffiffiffi
~pi Nð Þ

p
~pi Nð Þ{~pd,ij j

~pd,peak{~pd,x~0
ð8Þ

with ~pd,peak{~pd,x~0 difference between the distribution peak and its
value at x 5 0 (Fig. 10b).

We confirm s^0:25 for ~p2 and find s 5 0.10 6 0.02 for ~p3 for our
range of N. For both DKL

d and Wd, with d 5 2 and d 5 3, we find
minima at TckB= 4Eð Þ^0:06 and Pcv0= 4Eð Þ^0:55 that become stron-
ger for increasing N. We find that DKL

2 and W2 decrease with increas-
ing N, vanishing for N R ‘ (Fig. 10). Therefore, for an infinite
monolayer between hydrophobic walls separated by h < 0.5 nm,
the system has a LLCP that belongs to the 2D Ising universality class,
as expected from our representation of the system as the 2D projec-
tion of the monolayer.

However, by increasing the confinement, i.e. reducing N and L at
constant r, DKL

2 and W2 become larger than DKL
3 and W3, respect-

ively. Therefore, the calculated ~p Nð Þ deviates from the 3D probability
distribution less than from the 2D probability distribution. For N 5

2500 we find that both DKL
3 and W3 have values approximately equal

to those for DKL
2 and W2 calculated for a system ten times larger. In

particular we find DKL
3 ^0 for N 5 2500. Hence, by increasing the

confinement of the monolayer at constant r, the LLCP has a behavior

Figure 5 | (a) Loci of strong minima of (asmin
P Tð Þ) and weak minima (awmin

P Tð Þ in the inset) along isobars for aP. (b) Loci of strong minima (asmin
P Pð Þ)

and weak extrema (aMax
P Pð Þ and awmin

P Pð Þ in the inset) along isotherms. (c) Projection of aP extrema in T 2 P plane. Orange lines are the loci of

weaker extrema KwMax
T and Kmin

T . The large circle with A identifies the region where the divergent minimum in aP is observed. Symbols not explained here

are as in Fig. 2.
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that approximates better the bulk25–30,38, with a crossover between 2D
and 3D-behavior occurring at N^104.

This dimensional crossover is confirmed by the finite-size analysis
of the Gibbs free energy cost DG/(kBTc) to form an interface between
the two liquids in the vicinity of the LLCP, calculated as
DG Nð Þ:{kBTc Nð Þ ln min

N ,Vð Þ{ln Max
N ,Vð Þ


 �
, where min

N

and Max
N are the minimum and maximum values of the probability

distribution N ,Vð Þ of configurations of N water molecules with
energy and volume V at the LLCP. This quantity is expected to

scale as DG!N
d{1

d . We find that our data can be fitted as N
2
3 for small

sizes and as N
1
2 for large sizes with a crossover around N 5 104

(Fig. 10c). Considering the value of the estimated rc in real units
(^ 1g

�
cm3)45, the corresponding crossover wall-size is L^25 nm.

Discussion
Our rationale for this dimensional crossover at fixed h is that, when
L/h decreases toward 1, the characteristic way the critical fluctuations
spread over the system, i.e. the universality class of the LLCP, resem-
bles closely the bulk because the asymmetry among the three spatial
dimensions is reduced. A similar result was found recently by Liu et
al. for the gas-liquid critical point of a Lennard-Jones (LJ) system
confined between walls by fixing L and varying h51. However, in the
case considered by Liu et al. the crossover was expected because the
number of layers of particles was increased from one to several,
making the system more similar to the isotropic 3D case. Here,
instead, we consider always one single layer, changing the proportion
L/h by varying L. Therefore, it could be expected that the system
belongs to the 2D universality class for any L.

Furthermore, the extrapolation of the results for the LJ liquid to
our case of a monolayer with h=r0^1:7, where r0 is the water van der

Waals diameter, would predict a dimensional crossover at L=h^551.
Here, instead, we find the crossover at L=h^50, i.e. one order of
magnitude larger than the LJ case. We ascribe this enhancement of
the crossover to (i) the presence of a cooperative HB network and (ii)
the low coordination number that water has in both the monolayer
and the bulk. These are the main differences between water and a LJ
fluid. The cooperativity intensifies drastically the spreading of the
critical fluctuations along a network, contributing to the effective
dimensionality increase of the confined monolayer. Moreover, the
HB network has in 3D a coordination number (z 5 4) as low as in 2D,
making the first coordination shell similar in both dimensions.

Our findings are consistent with recent atomistic simulations of
water nanoconfined between surfaces.60–62. Zhang et al. found that
water dipolar fluctuations are enhanced in the direction parallel to
the confining surfaces (hydrophobic graphene sheets) within a dis-
tance of 0.5 nm60. Ballenegger and Hansen found similar results for

Figure 6 | (a) The correlation length j along isobars for N 5 104 water

molecules has maxima that increase for P approaching the critical region A.

(b) The locus of j maxima coincides with the loci of strong extrema of KT,

CP and aP. The Widom line is by definition the locus of j maxima at high T

departing from the LLCP, that we locate within the critical region A, as

discussed in the text.

Figure 7 | (a) The size-dependent probability distribution QN for the

rescaled o.p. x, calculated for Tc(N), Pc(N) and B(N), has a symmetric

shape that approaches continuously (from N 5 2500, symbols at the top at

x 5 0, to N 5 40000, symbols at the bottom) the limiting form for the 2D

Ising universality class (full blue line) and differs from the 3D Ising

universality class case (full black line). Error bars are smaller than the

symbols size. (b) The size-dependent LLCP temperature Tc(N) and (c)

pressure Pc(N) (symbols), resulting from our best-fit of QN, extrapolate to

TckB= 4Eð Þ^0:0597 and Pcv0= 4Eð Þ^0:555, respectively, following the

expected linear behaviors (lines). (d) The normalization factor B(N)

(symbols) follows the power law function (dashed line) / Nb/dn. We use

the d 5 2 Ising critical exponents: h 5 2 (correction to scaling), n 5 1 and

b 5 1/8 (both defined in the text).
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Figure 8 | Challa-Landau-Binder parameter UM (defined in the text) of the o.p. M for different system sizes, calculated for three pressures: (a)

Pv0= 4Eð Þ~0:9, (b) Pv0= 4Eð Þ~0:7, and (c) Pv0= 4Eð Þ~0:5 slightly below Pcv0= 4Eð Þ^0:555. The curves are calculated with the histogram reweighting

method. (d) Scaling of the minima of UM for different P. The arrow points to value 2/3 corresponding to the absence of a first-order phase transition in the

thermodynamic limit. Error bars are calculated propagating the statistical error from histogram reweighting method.
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Figure 9 | Gibbs free energy G along isotherms, as function of P. Points are shifted so that G 5 0 at the lowest P. Lines are guides for the eyes. (a) For

T ¼ 0:02 ð4E=kBÞvTc there is a discontinuity in the P-derivative of G at P^0:952 ð4E=v0ÞwPc as expected at the LLPT, consistent with the behavior of

the response functions at this state point (e.g., in Fig. 3b, 4b). (b) For T~0:04 (4E=kB)vTc we observe the discontinuity in the P-derivative at

P^0:865 ð4E=v0ÞwPc, again consistent with the LLPT. The LDL has a lower chemical potential (m ; G/N) than the HDL, mLDL , mHDL, due to the HB

energy gain in the LDL. For T ¼ 0:061ð4E=kBÞ (c) and for T ¼ 0:15 ð4E=kBÞ (d), both larger than Tc, we instead do not observe any discontinuity in the P-

derivative of G by crossing the locus of CPðPÞwMax
and the locus of KTðTÞwMax

, respectively, as expected in the one-phase region.
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confined polar fluids, including water, within < 0.5 nm distance
from the hydrophobic surface61. Bonthuis et al. extended these results
to both hydrophilic and hydrophobic confining surfaces. All these
findings are consistent with our result showing the enhancement of
the fluctuations of the o.p. in the direction parallel to the confining
walls separated by h < 0.5 nm. Furthermore, Zhang et al. observed
that the effect does not depend on the details of the water-surface
interaction but stems from the very presence of interfaces60. This is
confirmed by our study, where the water-interface interaction is
purely due to excluded volume. Following the authors of Ref. 60, this
observation allows us to relate our finding for rigid surfaces to experi-
mental results for water hydrating membranes63, reporting new types
of water dynamics in thin interfacial layers, and water nanoconfined
in different types of reverse micelles64, showing that the water
dynamics is governed by the presence of the interface rather than
the details (e.g., the presence charged groups) of the interface.

In conclusion, we analyze the low-T phase diagram of a water
monolayer confined between hydrophobic parallel walls of size L
separated by h < 0.5 nm. We study water fluctuations associated
to the thermodynamic response functions and their relations to the
loci of TMD, TminD. For each response function we find two loci of
extrema, one stronger at lower-T and one weaker and broader at
higher-T. These loci converge toward a critical region where the
fluctuations diverge in the thermodynamic limit, defining the
LLCP. We calculate the Widom line departing from the LLCP based
on its definition as the locus of maxima of j and show that it coin-
cides with the locus of strong maxima of the response functions. We
find that the LLCP belongs to the 2D Ising universality class for L R
‘, with strong finite-size effects for small L. Surprisingly, the finite-
size effects induce the LLCP universality class to converge toward the
bulk case (3D Ising universality class) already for a system with a very
pronounced plane asymmetry, i.e. a water monolayer of height h <
0.5 nm and L/h < 50. For normal liquid, instead, this is expected only
for much smaller relative values of L (L/h # 5). We rationalize this

result as a consequence of two properties of the HB network: (i) its
high cooperativity, that enhances the fluctuations, and (ii) its low
coordination number, that makes the first coordination shell for the
monolayer and the bulk similar.

Methods
The model. We consider a monolayer formed by N water molecules confined in a
volume V ; hL2 between two hydrophobic flat surfaces separated by a distance h, with

V=N§v0^42 A
03

, where v0 is the water excluded volume. Each water molecule has
four next-neighbours7. We partition the volume into N equivalent cells of height
h^0:5nm and square section with size r:

ffiffiffiffiffiffiffiffiffiffiffi
L2=N

p
, equal to the average distance

between water molecules. By coarse-graining the molecules distance from the
surfaces, we reduce our monolayer representation to a 2D system. We use periodic
boundary conditions parallel to the walls to reduce finite-size effects. We simulate
constant N, P, T, allowing V(T, P) to change, with each cell i 5 1, …, N having number
density ri:r T,Pð Þ:N=Vƒr0:1=v0 corresponding to a mass density ^1 g

�
cm3.

To each cell we associate a variable ni 5 0 (ni 5 1) depending if the cell i has ri/r0 #

0.5 (ri/r0 . 0.5). Hence, ni is a discretized density field replacing the water
translational degrees of freedom. The water-water interaction is given by

:
X

ij

U rij
� �

{JNHB{JsNcoop: ð9Þ

The first term, summed over all the water molecules i and j at O–O distance rij, has

U(r) ; ‘ for rvr0:
ffiffiffiffiffiffiffiffiffi
v0=h

p
~2:9 A

0
(water van der Waals diameter),

U rð Þ:4E r0=rð Þ12
{ r0=rð Þ6


 �
for r $ r0 with E:5:8 kJ=mol, and U(r) ; 0 for r . rc ;

25r0 (cutoff).
The second term represents the directional (covalent) component of the hydrogen

bond (HB), with J=4E:0:5, NHB:
X

ijh i ninjdsij ,sji number of HBs, with the sum

over n.n., where sij 5 1, …, q is the bonding index of molecule i to the n.n. molecule j,
with dab 5 1 if a 5 b, 0 otherwise. Each water molecule can form up to four HBs. We

adopt a geometrical definition of the HB, based on the dOOH angle and the OH—O

distance. A HB breaks if dOOHw300 . Hence, only 1/6 of the entire range of values [0,

360u] for the dOOH angle is associated to a bonded state. Therefore, we choose q 5 6 to
account correctly for the entropy variation due to the HB formation and breaking.
Moreover, a HB breaks when the OH—O distance . rmax 2 rOH 5 3.14 Å, where rOH

5 0.96 Å and rmax 5 4.1 Å. The value of rmax is a consequence of our choice ni 5 0 for
ri/r0 # 0.5, i.e. r2

i

�
2§r2

0 , implying that ninj 5 0 when rij§r0

ffiffiffi
2
p

~4:10 Å ; rmax.

Figure 10 | (a) Kullback-Leibler divergence DKL
d Nð Þ and (b) Liu et al. deviations Wd of the calculated ~p Nð Þ from the Ising universal function ~pd in d 5 2

(open symbols) and d 5 3 (closed symbols), as a function of 1/N, with N water molecules, at constant r^rc. In both panels lines are power-law fits

and we observe a crossover between 2D and 3D behavior at N^104. (c) The free-energy cost to form an interface between the two liquids coexisting at the

LLCP scales as DG!N
d{1

d with d 5 3 for N , 104 and d 5 2 for N . 104.
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The third term of the Eq.(9) accounts for the HB cooperativity due to the quantum
many-body interaction65, with Js=4E:0:05 and Ncoop:

X
i
ni

X
l,kð Þi

dsik ,sil , where

(l, k)i indicates each of the six different pairs of the four indices sij of a molecule i. The
value Js=J is chosen in such a way to guarantee an asymmetry between the two
components of the HB interaction. To the cooperative term is due the O–O–O
correlation that locally leads the molecules toward an ordered configuration. In bulk
water this term would lead to a tetrahedral structure at low P up to the second shell, as
observed in the experiments66. An increase of T or P partially disrupts the HB network
and induces a more compact local structure, with smaller average volume per
molecule. Therefore, for each HB we include an enthalpy increase PvHB, where vHB/v0

5 0.5 is the average volume increase between high-r ices VI and VIII and low-r
(tetrahedral) ice Ih. Hence, the total volume is V ; V0 1 NHBvHB, where V0 $ Nv0 is a
stochastic continuous variable changing with Monte Carlo (MC) acceptance rule46.
Because the HBs do not affect the n.n. distance66, we ignore their negligible effect on
the U(r) term. Finally, we model the water-wall interaction by excluded volume.

The observables. The LLCP is identified by the mixed-field order parameter M and
not by the magnetization of the Potts variables si,j as in normal Potts model. M is
related to the configuration of the system by the relation

M:
N

Nvz
P

ijh i ninjdsij ,sji

zs U rð Þ{J
X

ijh i
ninjdsij ,sji{Js

X
i

ni

X
l,kð Þi

dsik ,sil

0
@

1
A ð10Þ

where v ; V0/N and s is the mixed-field parameter. M is therefore a linear
combination of density and energy.

Thermodynamic response functions are calculated from

KT:{
1
Vh i

L Vh i
LP

� �
T

~
DV2h i

kBTV
ð11Þ

and

CP:
L Hh i
LT

� �
P

~
DH2h i
kBT

ð12Þ

as long as the volume and energy distributions are not clearly bimodal, i.e. excluding
the values of T and P where the phase coexistence is observed, based on the definition
of M. Here DO:O� hOi, for O ¼ V;H and, H is the enthalpy of the system.

The Monte Carlo method. The system is equilibrated via Monte Carlo simulation
with Wolff algorithm46, following an annealing procedure: starting with random
initial condition at high T, the temperature is slowly decreased and the system is re-
equilibrated and sampled with 104 4 105 independent configurations for each state
point. The thermodynamic equilibrium is checked probing that the fluctuation-
dissipation relations, Eq. (11) and (12), hold within the error bar.

The histogram reweighting method. The probability QN(M) is calculated in a
continuous range of T and P across the jMax line. We consider an initial set of m g
[10520] independent simulations within a temperature range DTkB= 4Eð Þ*10{4 and
a pressure range DPv0= 4Eð Þ*10{3. For each simulation i 5 1, …, m we calculate the
histograms hi(u, r) in the energy density–density plane. The histograms hi(u, r)
provide an estimate of the equilibrium probability distribution for u and r; this
estimate becomes correct in the thermodynamic limit. For the NPT ensemble, the new
histogram h(u, r, P9, b9) for new values of b9 5 1/kBT9 and P9 close the simulated
ones, is given by the relation57

h u,r,P0,b0ð Þ~
Pm

i~1 hi u,rð Þe{b0 uzP0=rð ÞNPm
i~1 Nie{bi uzPi=rð ÞN{Ci

ð13Þ

where Ni is the number of independent configurations of the run i. The constants Ci,
related to the Gibbs free energy value at Ti and Pi, are self-consistently calculated from
the equation57

eCi ~
X

u

X
r

h u,r,Pi,bið Þ^Z Pi,bið Þ [ Ci~{G Pi,bið Þ=kBT: ð14Þ

We choose as initial set of parameters Ci 5 0. The parameters Ci are recursively
calculated by means of Eq. (13) and (14) until the difference between the values at
iteration k and k 1 1 is less then the desired numerical resolution (1023 in our
calculations). Once the new histogram is calculated, QN(M) at Ti and Pi is calculated
integrating h(u, r, Pi, bi) along a direction perpendicular to the line r 1 su.

Thermodynamic relations. We report here the calculations for the thermodynamic
relations in Eq. (1), (2), (3) and (4)39. To verify the relation (4) we calculate the
derivative of KT along isobars

LKT
LT

� �
P
~ L

LT { 1
V

LV
LP

� �
T

� 
P
~ 1

V2
LV
LT

� �
P

LV
LP

� �
T
{ 1

V
L2V
LPLT ~{aPKT { 1

V
L2V
LPLT ð15Þ

and the derivative of aP along isotherms

LaP

LP

� �
T

~
L
LP

1
V

LV
LT

� �
P

� �
T

~{
1

V2

LV
LP

� �
T

LV
LT

� �
P

z
1
V

L2V
LTLP

~

~aPKTz
1
V

L2V
LPLT

~{
LKT

LT

� �
P

ð16Þ

Following39,67 the line of extrema in density (TMD and TminD lines) is characterized
by aP 5 0, hence, daP 5 0 along the TMD line. Therefore,

0~daP:
LaP

LT

� �
P, ED

dTz
LaP

LP

� �
T, ED

dP~
1
V

L2V
LT2

� �
P, ED

dTz
1
V

L2V
LPLT

� �
ED

dP ð17Þ

where the index ‘‘ED’’ denotes that the derivatives are taken along the locus of
extrema in density. So, the slope hP/hT of TMD is given by

LP
LT

� �
TMD

~{

L2V
LT2

� �
P, TMD

L2V
LPLT

� �
TMD

ð18Þ

from which, using Eq. (15) with aP 5 0, we get Eq. (1). The Eq. (18) holds as long as
both (haP/hP)T and (haP/hT)P do not vanish contemporary, as it occurs along the
Widom line, where the loci of strong minima of aP overlap. For this reason the
intersection between the Widom line and TminD line does not imply any change in
the slope (hP/hT)TminD.

To calculate Eq. (2) we start from CP and aP written in terms of Gibbs free energy

CP

T
~{

L2G
LT2

, VaP~
L2G
LPLT

ð19Þ

from which results

L
LP

CP

T

� �
T

~
1
T

LCP

LP

� �
T

~{
L

LT
VaPð Þ

� �
P

~{
LV
LT

� �
P

aP{V
LaP

LT

� �
P

~{
L2V
LT2

� �
P

, ð20Þ

LCP

LP

� �
T

~{T
L2V
LT2

� �
P

: ð21Þ

Substituting in Eq. (18) we get the Eq. (2) at the TMD. Moreover, because of aP 5 0
at the TMD line, from the last equivalence of Eq. (20) we get

LaP

LT

� �
P, TMD

~
1
V

L2V
LT2

� �
P, TMD

ð22Þ

from which, using Eq. (18), we get the Eq. (3).
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