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Work on bone marrow transplantation from haploidentical donor has been proceeding

for over 20 years all over the world and new transplant procedures have been

developed. To control both graft rejection and graft vs. host disease, some centers

have preferred to enhance the intensity of the conditioning regimens and the

post-transplant immune suppression in the absence of graft manipulation; others have

concentrated on manipulating the graft in the absence of any additional post-transplant

immune suppressive agent. Due to the current high engraftment rates, the low

incidence of graft-vs.-host disease and regimen related mortality, transplantation from

haploidentical donors have been progressively offered even to elderly patients. Overall,

survivals compare favorably with reports on transplants from unrelated donors. Further

improvements will come with successful implementation of strategies to enhance

post-transplant immune reconstitution and to prevent leukemia relapse.

Keywords: haploidentical transplantation, T cell depletion, graft vs. host disease, immune reconstitution, graft vs.

leukemia effect

INTRODUCTION

The great interest in hematopoietic stem cell transplantation (HSCT) from partially matched family
donors (haplo-HSCT) arises from several advantages: (1) the donor is immediately available for
almost all patients, (2) he/she can be chosen from family members, (3) he/she is highly motivated,
and (4) post-transplant donor-derived cellular therapies (such as donor lymphocyte infusions) are
easily accessible if needed (1). A recent survey confirmed the numbers of haplo-HSCT performed
in Europe continue to increase (2), certainly because of the impressive progress in the clinical,
biological, and technical aspects of haplo-HSCT that have been achieved over the past decade.
Nowadays, haplo-HSCT is a clinical reality that provides similar outcomes to transplantation from
either matched unrelated donors or unrelated cord blood unit (3–5).

Approaches to T-cell depletion have varied greatly in the levels of residual T lymphocytes in
the inoculum, intensity of the conditioning regimens and post-transplant immunosuppression
(6). On the other hand, interest in unmanipulated or T cell replete haplo-HSCT was reawakened
by new strategies for graft-vs.-host disease (GvHD) prophylaxis, such as G-CSF–primed grafts
(7, 8), post-transplant rapamycin (9), or high-dose cyclophosphamide (CY) in combination
with other immunosuppressive agents (10–13). This latter is mainly based on standard T cell
replete stem cell transplants with the aim of making haplo-HSCT as easier as possible. On
the contrary, transplant platforms based on T cell depletion rely mainly on graft processing to
achieve an ideal graft composition that allows for prevention of rejection, recurrence of leukemia,
infections, and GvHD without the need for any further post-transplant immune suppressive
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treatment. T cell depletion-based grafts require dedicated
laboratories and are more expensive than conventional
unmanipulated HSCT, especially if combined with adoptive
transfer of T cell populations that have been chosen to improve
post-transplant immune reconstitution. However, unlike in
unmanipulated haplo-HSCT, pharmacologic GvHD prophylaxis
and further treatments are not necessary in T cell depleted
haplo-HSCT, thus, reducing the need and the cost of supportive
care and post-transplant hospitalizations. In recipients of
unmanipulated T replete haplo-HSCT followed by post-
transplant cyclophosphamide (PTCY), the use of non-ablative
conditioning regimen has certainly contributed to reduce
non-relapse mortality (NRM). However, non-fatal BK virus-
associated hemorrhagic cystitis (HC) occurred in 75% of patients
after a busulfan-based conditioning and in 30% of patients after a
TBI-based conditioning [reviewed in (14)]. Furthermore, relapse
remains a major concern, especially after non-myeloablative
conditioning regimens, occurring in ∼45–51% of patients
(11, 14, 15).

This review will concentrate on the evolution of the T cell
depleted (TCD) haplo-HSCT since the main obstacles to its
success (lethal GvHD and graft rejection) were overcome in the
early 1990s.

PREVENTING GvHD AND OVERCOMING
REJECTION

In the early 1980s the use of soybean lectin agglutination (SBA)
followed by rosetting with sheep red blood cells (E-rosette)
allowed hematopoietic stem cell engraftment and immune
reconstitution in the absence of GvHD. The sedimentation of
T cells that spontaneously surrounded sheep red cells (rosettes)
made possible the depletion of most of the T lymphocytes that
escaped lectin agglutination. Such approach resulted in about
a thousand-fold depletion of T-cells (16, 17). Thanks to this
technique, patients with severe combined immunodeficiency
(SCID) were successfully transplanted with TCD bone marrow
graft from a haploidentical donor. T cell depletion facilitated
engraftment and ensured no GvHD in these patients (16, 17).

Since the first successful haplo-HSCT in SCID patients, a
lectin-based T cell depletion approach has been implemented
over the years with great success in hundreds of SCID patients
with a very long follow-up. It showed a cure rate that was
especially impressive in patients receiving the transplant within
the first year after birth (16–19). Following these remarkable
results, TCD haplo-HSCT was attempted in patients affected by
acute leukemias. In the first patient series such approach failed
because of an unacceptable high rate of graft rejection (20, 21).
In leukemia patients, anti-donor, recipient type, cytotoxic T-
lymphocyte precursors (CTL-p) may survive the conditioning
regimen and promote rejection of the donor graft (21–23). Donor
T cells that derives from the inoculum eliminate residual host
CTL-ps and allow for engraftment in unmanipulated transplants.
Such mechanism is not present in TCD transplants. Thus,
conditioning regimens that might be conventionally considered

sufficient for donor engraftment in unmanipulated transplants
are no longer adequate in TCD haplo-HSCT.

The use of a graft containing a “megadose” of TCD
hematopoietic progenitor cells was a clinical breakthrough as
it overcame such immunological barrier in the absence of
an excessive conditioning regimen related toxicity (24, 25).
Preclinical studies demonstrated that cells within the human
CD34+ hematopoietic stem cell population can specifically
neutralize CTL-ps directed against their antigens but not against
a third party in mixed lymphocyte reactions. This peculiar ability
was called “veto” activity (26–28). The ability of a “megadose”
of CD34+ cells to exert in vivo “veto” activity and, thus, to
facilitate engraftment, was confirmed in a “first in human”
clinical trial in Perugia from 1993 to 1995. In this study, TCD
haplo-HSCT was performed in 36 acute leukemia patients that
received a conditioning regimen with single dose total body
irradiation (TBI), cyclophosphamide, anti-thymocyte globulin
(ATG), and thiotepa followed by the infusion of ≈10 × 106

CD34+ cells/kg and only 2 × 105 CD3+ cells/kg. This clinical
protocol showed robust sustained engraftment in 80% of patients
with only 20% of them experiencing GvHD despite the absence of
any pharmacologic immune suppressive GvHD prophylaxis (29).

FROM LECTINS TO CD34+ CELL
SELECTION

Following this initial success, efforts have been made to optimize
graft processing and reducing the conditioning-related toxicity
with the aim to further improve TCD haplo-HSCT outcome.

Grafts containing a median of 2 × 105 CD3+ cells/kg after
the lectin-based procedure were associated to a 20% incidence
of GvHD. Moreover, in SCID haplo-HSCT, 3 × 104/kg of
donor T cells was identified as the threshold for GvHD (17).
To further reduce the number of T lymphocytes in the final
graft to such level, peripheral blood progenitor cells (PBPCs)
mobilized with G-CSF were depleted of T-cells by one round of
E-rosetting followed by positive immuno-selection of the CD34+
cells with the Ceprate system (30). This strategy was subsequently
abandoned in 1999 when the CliniMACS device (©Miltenyi)
allowed for an effective CD34+ cell selection in just one step
procedure. This approach is still widely used to date as no other
manipulation of leukapheresis products is needed (31).

In 1995 the Perugia group started to use fludarabine instead
of cyclophosphamide for the first time in allogeneic HSCT.
This modification of the conditioning regimen was based on
data from a murine model where conditioning regimens with
TBI/cyclophosphamide and TBI/fludarabine provided similar
immunosuppression (32). In fact, fludarabine was introduced in
order to minimize extra-hematological toxicity and, at the same
time, to enhance host immunosuppression (30, 31).

The combination of a fludarabine-based conditioning
regimen and the positive selection of the CD34+ cells prevented
both rejection and GvHD. However, it is worth noting that in
vivo persistence of ATG, which was part of the conditioning,
may have contributed to the almost complete control of GvHD.
At the same time, the conditioning-related toxicity was very low
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with only a minority of patients developing severe mucositis and
no case of veno-occlusive disease of the liver was observed (31).

An analysis of the relapse rate also led to some interesting
observations. In fact, despite the absence of GvHD, the leukemia
relapse was not increased in these high-risk leukemia patients
(31). Several factors may have contributed to eradicate the
residual leukemic cells despite the lack of a potent T-cell mediated
Graft-vs.-Leukemia (GvL) effect: (1) the intense myeloablation of
the conditioning regimen could have reached a deeper reduction
of leukemic stem cells in the bone marrow of the patients;
(2) the few T cells in the graft may have exerted a subclinical
GvL/GvHD effect because they were unopposed by any post-
transplant immune suppressive treatment; (3) a strong and T
cell independent GvL effect exerted by donor NK cells (33–35).
NK-cell function is regulated by a balance of signals mediated
by activating and inhibitory receptors (36). NK receptors specific
for major histocompatibility complex (MHC) class I molecules,
including killer immunoglobulin (Ig)-like receptors (KIR) and
the C-type lectin-like CD94/NKG2A, have a role in eradicating
residual leukemic cells. NK cells react to the lack of self-
HLA expression on allogeneic targets (so-called “missing self-
recognition”) (37). In an analysis of 112 patients with high-risk
AML, transplantation from NK-alloreactive donors (n= 51) was
associated with a significantly lower relapse rate in the 61 patients
in complete remission (CR) at transplant (3 vs. 47%) (P > 0.003)
and better event-free survival (EFS) (67 vs. 18%, P = 0.02) (38).
Results from clinical trials have shown that NK cell alloreactivity
is also an effective form of immunotherapy in pediatric acute
leukemia (39, 40). The combination of KIR genes define group
A haplotype, which has few genes, most of which encoding
for inhibitory KIRs, while group B, in addition to inhibitory
KIRs, has several genes encoding for activating KIRs (40). In
children with acute lymphoid leukemia in complete remission,
Oevermann et al. reported a significantly reduced incidence of
relapse among the group B haplotype as compared to those of
the group A haplotype (33 vs. 64%) (41). Another mechanism
that allows for better control of leukemia relapse relies on the
use of mothers as donors. In fact, mothers can develop memory
T cells against paternal HLA haplotype because of exposure
to fetal antigens during pregnancy. This T cell immunity
could be responsible for early recognition of such antigens in
leukemic cells after transplant resulting in stronger GVL effect
when mothers are chosen as donors (42). In addition to the
anti-leukemia effect, NK-alloreactive donors carrying KIR2DS1
and/or KIR3DS1 genes also impact on NRM by controlling
infections, and so contributing to improve the event-free survival
(43). Therefore, the donor-vs.-recipient NK alloreactivity, as
predicted by the HLA disparity, should be considered when
selecting the optimal donor within the family members.

Apart from the NK alloreactivity, 43% of AML and 30%
of ALL patients who were in any CR at transplant survive
event-free and GvHD-free with a maximum follow-up of 20
years (31). More recently, the European Group for Blood and
Marrow Transplantation (EBMT) performed a retrospective
study collecting data from different European centers to
analyze the outcome of “mega-dose” haplo-HSCT. This study
confirmed the success of the approach by reporting 48%

EFS in 266 patients with AML in first CR at the time of
transplantation (44).

POSITIVE SELECTION OF THE PBPCs AND
POST-TRANPLANT IMMUNOLOGICAL
RECONSTITUTION

While the low number of infused donor T lymphocytes allows
for almost full prevention of GvHD in TCDhaplo-HSCT, it is also
responsible for themajor drawback of this approach. In fact, post-
transplant T cell immune reconstitution in TCD haplo-HSCT
is delayed because it relies only on the expansion of the few T
cells infused within the graft and on the development of donor,
thymus derived, naïve T cells that occurs several months after
transplant in adult patients. Thymus function decays with age
and myeloablative conditioning regimen further disrupts thymus
and lymphoid structures. These events alter post-transplant T
cell dynamics and impede generation of efficient memory T
cell immunity (45). Because of the low number of donor T
cell in the graft and the additional in vivo T cell depletion
exerted by the use of ATG in the conditioning regimen, patients
that receive TCD haplo-HSCT exhibit a very narrow T-cell
repertoire that is responsible for their prolonged susceptibility
to life-threatening opportunistic infections (46). In the study by
Aversa and colleagues, 27 of 103 patients died because of deadly
infections (31). Thus, infection-related mortality was the main
cause of transplant failure in this setting.

In this context, it is of note the retrospective analysis that the
Swiss Blood Stem Cell Transplantation group made to evaluate
the effect on immune reconstitution and incidence of infections
in haplo-HSCT from 1998 to 2010. The authors reported 69
transplants that were performed with ex-vivo T cell depletion
(through CD34 positive selection or CD3/CD19 depletion) or
with in vivo T cell depletion using anti-CD52 monoclonal
antibody alemtuzumab (47). High incidence of life-threatening
bacterial, fungal, and viral infections (mostly Cytomegalovirus,
CMV) was reported in all these patients. Eventually, the use of
alemtuzumab was associated with a higher incidence of CMV
reactivations (54 vs. 28%, p= 0.015), demonstrating that even in
vivo T cell depletion should be considered a relevant risk factor
in haplo-HSCT (48).

Improving Immunological Reconstitution
After CD34+ Cell Haplo-HSCT
With the aim of diminishing the challenges of life-threatening
infections, GvHD, and relapse after TCD haplo-HSCT, various
strategies have been investigated over the past decade to facilitate
the safe transfer of mismatched T lymphocytes.

The use of post-transplant adoptive transfer of pathogen-
specific T lymphocytes represents a possible strategy. A study
demonstrated that the infusion of donor derived ex vivo
selected T cells that were able to clone specifically against
Aspergillus or CMV antigens, could control CMV reactivation
and reduced detection of galactomannan (49). Interestingly
these cells remained pathogen-specific over time after infusion
as patients did not develop such infections and did not
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experience GvHD. Thanks to these promising results, other
authors developed similar approaches for the prevention of
Adenovirus and Epstein-Barr virus (EBV) infections (50, 51).

Several groups attempted to ameliorate post-transplant
immune reconstitution by infusing adoptive T cell
immunotherapy with a broad T cell receptor repertoire
that resembles physiological conditions. Different approaches
have been used to manipulate the graft so that enough T cells
could be infused to the patients without causing GvHD.

The group form San Raffaele Institute in Milan, Italy,
engineered polyclonal donor T cells to express suicide genes
(e.g., the herpes simplex thymidine kinase, TK, and gene). Once
infused, these engineered cells could be lysed in case they
triggered GvHD by the simple use of Ganciclovir, a widely
available anti-viral kinase drug normally used in the treatment
of CMV reactivations or diseases (52). One concern is that the
mechanism is dependent on cell cycle, thus killing can be delayed
and is limited to proliferating cells. Nevertheless, the patients
enrolled in this study experienced a low rate of infection-related
mortality suggesting functional protection against pathogens
(53, 54). Thanks to this experience, it was further possible to
understand that TK cell dependent immune reconstitution relies
on the thymic generation of T cells derived from differentiated
donor hematopoietic precursors (55).

An alternative and more attractive approach is based on the
post-transplant infusion of inducible human caspase-9 transgene
(iC9) T lymphocytes (56, 57). This technology is based on
a cell membrane-permeable small molecule dimerizing drug,
AP1903 (also known as Rimiducid). The administration of
AP1903 induces dimerization of caspase 9, which activates the
terminal effector caspase, caspase 3, with rapid induction of
apoptosis. Unlike the HSV-TK–based suicide gene, the iC9 is
human derived and has limited immunogenicity and, more
important, ganciclovir and related drugs to treat viral infection
are allowed without T-cell damage (56). Activation of iC9
produces up to 99% eradication of iC9-expressing T cells within
2 h of a single dose of AP1903 and controls GvHD within
24–48 h. Although administration of AP1903 in patients with
GvHD reduces the level of circulating virus-specific iC9-T cells,
these cells subsequently recover and in vivo antiviral activity
is retained.

Another approach aims to ex vivo selectively deplete
donor-vs.-recipient alloreactive T lymphocytes. T-cell activation
is associated with P-glycoprotein pump inhibition, which
leads to intracellular accumulation of the rhodamine-derived
photosensitizer TH9402, a substrate of this pump Alloreactive
T cells preferentially retain the photosensitizer TH9402 and
can then be eliminated following exposure to visible light.
On the contrary, resting T lymphocytes still exhibit a broad
repertoire against infective agents (58–60). More recently, this
photodepletion strategy has been tested in a phase I clinical
study with aims to find the maximum tolerated dose and
to evaluate the safety of allodepleted T-cell immunotherapy
(ATIR101), administered in the absence of any additional GvHD
prophylaxis, in recipients of CD34+-selected haploidentical
HSCT (61). Adults with hematological malignancies were treated
with myeloablative TCD haplo-HSCT followed 1 month later

by ATIR101 at escalating doses. No patient developed grade
III/IV acute GVHD. At 1 year, all nine patients receiving at least
one million ATIR101 CD3+ cells/kg did not experience life-
threatening infections. After more than 8 years, none of them
died because of non-relapse mortality and two thirds of them
survive. These promising results set the base for the development
of an ongoing phase 3 randomized trial that compares haplo-
HSCT+ ATIR101 vs. unmanipulated haplo-HSCT+ PTCY.

Recently, the group of Perugia employed adoptive transfer
of donor CD4+CD25+FOXP3+ regulatory T cells (Tregs) to
protect from GvHD that could be caused by the concomitant
infusion of high numbers of donor conventional T cells
(Tcons) (62, 63). Freshly isolated donor Tregs at a dose of
2 × 106 /kg were given 4 days prior to the infusion of a
“megadose” of CD34-positive cells and controlled numbers (0.5–
2 × 106/kg) of broad repertoire Tcons, without any post-
transplant immunosuppression. GvHD occurred in a minority
of the patients proving the effectiveness of the approach
despite no post-transplant pharmacologic immune suppressive
drug was given to the patients. Moreover, Treg/Tcon adoptive
immunotherapy allowed for a fast post-transplant T and B
cell immune reconstitution. Diverse naïve and memory T cell
subpopulations with a broad T cell receptor repertoire could
be early detected and rapidly increased over time. Pathogen-
specific CD4+ and CD8+ T cell clones emerged earlier in
comparison to patients that received TCD haplo-HSCT with
no Treg/Tcon infusions. Treg/Tcon adoptive immunotherapy
reduced CMV reactivation episodes with no CMV-related death.
More importantly, Treg infusion did not interfere with Tcon
mediated GvL effect as leukemia relapse occurred in very few
patients despite high-risk diseases (64).

FROM POSITIVE TO NEGATIVE
SELECTION OF PBPCs

More recently, the CD34-positive selection technique has been
progressively abandoned in favor of a negative selection of
the PBPCs with the aim of improving clinical results. In
fact, unlike the CD34-positive selected grafts, other immune
components, such as NK cells, dendritic cells, and monocytes,
are not lost during the negative selection-based procedure and
all together these cells contribute to facilitate engraftment, to
improve the post-transplant recovery of the anti-infective and
anti-leukemia immunity.

Negative Selection in Children
In the study by Bader et al. (65), grafts were depleted of T
and B cells by using CD3- and CD19-coated microbeads and
the automated CliniMACS device (Miltenyi Biotec, Germany).
Children with acute leukemia received a conditioning that
included fludarabine, thiotepa, melphalan, and OKT-3 or ATG.
Primary engraftment was achieved in 88% of patients, acute
GvHD grade II and III-IV occurred in 20 and 7%, and chronic
GvHD in 21%. NRM was 8% at 1 year and 20% at 5 years
(65). Using the same T and B cell depletion but a reduced
intensity conditioning in 61 adults (median age 46 years), the
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incidence of grade II–IV acute and chronic GvHD was 46 and
18%, respectively. Non-relapse mortality on Day 100 was 23 and
42% at 2 years. Relapse rate was 31% and OS at 2 years was 28%
(66). A major concern with this approach was the high incidence
of GvHD.

To overcome this problem, Chaleff et al. recently described
a large-scale clinical method using the Miltenyi Biotec
CliniMACS R© TCR α/β System for the depletion of α/β T
lymphocytes from peripheral blood stem cells while retaining
all other cells (67). The CliniMACS R© TCR α/β System uses
murine monoclonal antibodies specific for the T-cell receptor
α/β antigen conjugated to biotin in combination with the
CliniMACS R© Anti-Biotin reagent. The pioneering experience
of the Handgretinger’s group showed that TCR αβ/CD19
depletion allows a T-cell reduction of 4.5–5 log, which is
comparable to CD34+ positive selection (68, 69). It also
ensures patients to receive NK cells, monocytes, dendritic
cells, and, most important, the TCRγδ+ T lymphocytes.
TCRγδ+ T cells appear to exert anti-leukemic activity
since they directly recognized stress-induced self-antigens
expressed by malignant cells. Strikingly, they do not recognize
specific processed peptide antigens as presented on major
histocompatibility complex molecules and so are not expected to
induce GvHD (70–72).

The first clinical experiences with children transplanted in
Tubingen confirmed excellent full-donor engraftment, a rapid
early expansion of donor-derived TCRγδ+ T lymphocytes
that contributed to a very fast immunological reconstitution
(69). Using the same method for graft processing, Locatelli
and colleagues in Rome achieved similar results in terms of
engraftment, prevention of both acute and chronic GvHD
and a rapid recovery of post-transplant immunity in children
independently from the conditioning regimen, whether TBI-
based (children with leukemia) or chemotherapy-based (children
with non-malignant disorders) (73, 74). In 23 children with non-
malignant disorders, no cases of visceral acute or chronic GvHD
was observed and survival was 91% at 2 years (75). The same
group in Rome, starting from encouraging results on a chimeric
gene incorporating the death domain of inducible caspase 9
(iC9) (56, 76), has recently launched a phase I/II study enrolling
children with either malignant or non-malignant disorders who
will receive TCRαβ/CD19-depleted haplo-HSCT, followed by the
infusion of titrated numbers of iC9 T cells on day 14 ± 4. These
iC9-modified T cells are expected to further improve T cell
immune reconstitution without the risk of severe GvHD. In fact,
they can be rapidly eliminated by the administration of AP1903,
if acute GvHD occurs (77).

TCRγδ+ T cell recovering during the first year after HSCT
in 102 patients with acute leukemia correlated with a reduced
incidence of infection in the study by Perko et al. (78). Children
with an elevated number of TCRγδ+ T cells post-engraftment
experienced only viral infection, while low/normal TCRγδ+ T
cell group had viral, bacterial and fungal infections. Enhanced
TCRγδ+ T cell recovery resulted also in higher EFS rate at 1
year. One can speculate that the following factors may contribute
to explain these excellent results: a very fast reconstitution
of intestinal mucosa integrity, prompt anti-infective function

of TCRγδ+ T cell, and possibly a better balance within gut
microbiota (79).

Outcomes of TCRαβ/CD19-depleted haplo-HSCT were
evaluated in a cohort of children with chemorefractory
AML. The conditioning regimen was designed to include a
cytoreduction phase with fludarabine and cytarabine followed by
a myeloablative phase with treosulfan and thiotepa. Tocilizumab
was given instead ATG in all patients, abatacept in 10 patients.
Post-engraftment CD45RA-depleted donor lymphocytes were
given prophylactic with or without a hypomethylating agent.
Overall results were promising with 95% of patients achieving
a complete remission, 18% having a grade II-IV acute GvHD
and 23% chronic GvHD. At 2 years, NRM was 9%, relapse
rate 42%, event-free and overall survival were 49 and 53%,
respectively (80).

More recently, the advantages of this strategy were confirmed
in 20 advanced-stage Sickle Cell Disease (SCD) patients (children
and adults, median age 15 years). Conditioning consisted of ATG,
thiotepa, fludarabine, and treosulfan. Two patients succumbed
to a CMV pneumonitis and a macrophage activation syndrome.
One patient requires renal replacement therapy because of BK
virus nephritis. None developed grade III-IV acute GvHD. At a
median follow-up of 21 (range 9–62) months, 90% of these high-
risk patients survive showing the feasibility, safety, and efficacy of
TCD haplo-HSCT also for advanced stage SCD patients (81).

Negative Selection in Adults
This approach was recently tested in 59 adult patients (median
age 48 years, range 19–74) with hematological malignancies,
mostly acute leukemias (82). At the time of transplant, 35 (60%)
were in first or later remission and 24 (40%) in advanced
phase. All patients were conditioned with a chemotherapy-
based regimen that included ATG, treosulfan, fludarabine, and
thiotepa. No additional pharmacologic prophylaxis for GvHD
was given after transplantation and to minimize the in-vivo T
cell depletion, ATG was given at a median of 10 days before
the graft infusion. A full donor sustained engraftment was
achieved in 56/59 (95%) patients. Severe GvHD occurred in
two patients who subsequently died from complications due to
the GvHD itself and its treatment. One of them had received
the highest dose of αβ+ T cells (3.7 × 105/kg). Skin limited
grade II acute GvHD was observed in 8 patients who responded
rapidly to steroids. Only two patients have so far developed
chronic GvHD that recovered completely after steroid and
cyclosporine treatment. Interestingly, also in these adults with
high-risk hematological malignancies, numbers and functions of
the immune system recovered very soon after the engraftment.
Naïve and memory T-cell subsets increased significantly over
the first year after transplantation. B-cell reconstitution was
rapid and immunoglobulin serum levels normalized within 3
months. The quality of the immunological reconstitution allowed
a good control of the CMV reactivation with no cases occurring
after the first 2 months after transplantation. In two patients,
CMV reactivation was associated with a significant expansion
of pathogen-specific CD8+ T cells that contributed to clear
viral load spontaneously. Relapse of the underlying disease was
the main cause of death in 16/59 patients; 15 patients died
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TABLE 1 | Evolution of T cell depleted allogeneic HSCT.

Years Technique Donor Disease

1980s TCD BM cells by

SBA+E-rosetting

Matched HMs

Haplo SCID

1990s TCD PBPCs by positive selection

of the CD34+ cells using the

CliniMACS device

Matched HMs, N-MHs

Haplo HMs, N-MHs

Early 2000s CD3/CD19 selection of the

PBPCs

Haplo HMs, N-MHs

Late 2000s CD34+ cell selection +

Tregs/Tcons

Haplo HMs

Late 2000s Selective depletion of

TCRαβ/CD19 cells in some

center followed by cell therapy

with HSTK-engineered

lymphocytes, photodynamic

purged T cells, iC9

Matched

Haplo

HMs, N-MHs

HMs, N-MHs

TCD, T Cell Depleted; BM, Bone Marrow; SBA, SoyBean Agglutinin; PBPCs, Peripheral

Blood Progenitor Cells; Tregs, T regulatory cells; Tcons, Conventional T cells; HMs,

Hematological Malignancies; N-MHs, Non-Malignant Hematologic diseases; HSTK,

Herpes Simplex Thymidine Kinase; iC9, inducible Caspase-9.

without relapsing, 11 of them from infections. Age at time of
transplantation was a significant risk factor for NRM. Three of
the 28 patients (10.7%) aged ≤48 years and 12 of the 31 (38.7%)
over 48 years of age have so far died from non-relapsing causes.
Cumulative incidence of NRM at 2 years was 18% for patients
aged ≤48 years and 47% for those over 48 years of age (p =

0.011). At a median of 27 months (range 1–62), 30 patients
(50.8%) survive.

Similar results have been recently reported by a team in
Turkey in 34 adult patients with either AML (n= 24) or ALL (n=
10) (83). Conditioning regimen consisted of thiotepa, melphalan,
fludarabine, and ATG. Full donor chimerism was achieved in
31/34 patients. Overall, four patients developed severe GvHD
(2 acute, 2 chronic). A low NRM (11.7%) at day 100 was
attributed to a rapid T-cell reconstitution. Relapse still remained
the main cause of death (56.3%). At 1 year, 42% of the patients
survive disease-free.

CONCLUSIONS

Haplo-HSCT is an attractive treatment for patients with high-risk
hematological malignancies lacking a well-matched unrelated
donor and who require a HSCT urgently. Today, rejection and
GvHD are no longer major issues and a recent registry-based
study of the EBMT confirmed that outcomes of TCD haplo-
HSCT have improved over time reflecting gaining experience,

better selection of the donor-recipient pairs, evolution of the
conditioning regimens, better supportive care, and treatment
options for infections complications, that remain the main cause
of death in this setting (84).

Years of research have taken us from a haplo-HSCT
containing amegadose of CD34-positive cells and very few donor
T lymphocytes to a new “designed” graft containing a megadose
of selectively depleted PBPCs and also different types of non-
alloreactive immune cells meant to improve immune recovery
in the absence of any additional post-transplant immune
suppressive prophylaxis of the GvHD (Table 1).

In this way, an innovative strategy has been recently designed
by the Perugia group using a Total Marrow/Total Lymphoid
Irradiation-based conditioning regimen followed by the infusion
of TCD Treg/Tcon haplo-HSCT to treat elderly patients (aged
55–68 years) with acute myeloid leukemia. None of the first 14
transplanted patients have so far relapsed (85). On the other
hand, in a recent retrospective cohort study by Solomon et al.,
recurrent disease was the main cause of death, in particular in
patients aged 55–70 years for whom a RIC protocol was adopted
to minimize the transplant-related toxicity (86).

In conclusion, we believe that TCD is still valid in haplo-HSCT
for the following main reasons: (a) it guarantees patients to have
a good quality of life in the absence of GvHD, in particular in the
elderly who, due to the age-related comorbidities, are less able to
tolerate GvHD and its treatments; (b) it provides a safer platform
for advanced treatment with infusions of TCR-transgenic T-cells,
genetically modified redirected NK cells or donor T cells bearing
chimeric antigen receptor (CAR-T) to reduce, or even abrogate,
the risk of recurrence of the underlying disease.
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