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Trivalent Cerium (Ce3+) doped Yttrium Oxide (Y2O3) host crystal has drawn considerable

interest due to its popular optical 5d-4f transition. The outstanding optical properties of

Y2O3:Ce system have been demonstrated by previous studies but the microstructures

still remain unclear. The lacks of Y2O3:Ce microstructures could constitute a problem

to further exploit its potential applications. In this sense, we have comprehensively

investigated the structural evolutions of Y2O3:Ce crystals based on the CALYPSO

structure search method in conjunction with density functional theory calculations. Our

result uncovers a new rhombohedral phase of Y2O3:Ce with R-3 group symmetry. In the

host crystal, the Y3+ ion at central site can be naturally replaced by the doped Ce3+,

resulting in a perfect cage-like configuration. We find an interesting phase transition that

the crystallographic symmetry of Y2O3 changes from cubic to rhombohedral when the

impurity Ce3+ is doped into the host crystal. With the nominal concentration of Ce3+ at

3.125%, many metastable structures are also identified due to the different occupying

points in the host crystal. The X-ray diffraction patterns of Y2O3:Ce are simulated and

the theoretical result is comparable to experimental data, thus demonstrating the validity

of the lowest energy structure. The result of phonon dispersions shows that the ground

state structure is dynamically stable. The analysis of electronic properties indicate that

the Y2O3:Ce possesses a band gap of 4.20 eV which suggests that the incorporation

of impurity Ce3+ ion into Y2O3 host crystal leads to an insulator to semiconductor

transition. Meanwhile, the strong covalent bonds of O atoms in the crystal, which

may greatly contribute to the stability of ground state structure, are evidenced by

electron localization function. These obtained results elucidate the structural and bonding

characters of Y2O3:Ce and could also provide useful insights for understanding the

experimental phenomena.
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INTRODUCTION

The rare-earth Cerium ions doped crystals constitute an
attractive class of materials that have been extensively used in
many kinds of fields including scintillation phosphors, laser
medium, and white light emitting diode phosphors (Han et al.,
2019; Lin et al., 2019; Masanori et al., 2020). The outstanding
optical behaviors of trivalent Cerium ion (Ce3+) has drawn
considerable interest due to its popular optical 5d-4f transition.
Among various host materials, Yttrium Oxide (Y2O3) crystal is
considered to be the most promising sesquioxide host because
of its unique chemical and thermal stability. The Y2O3 host
crystal is also one of the multifunctional materials that can give
rise to many application areas owing to its fabulous capacity of
incorporating the activated laser ions (Ming et al., 2018; Wang
et al., 2018; Ju et al., 2020). The latest study has indicated that the
Ce3+ doped Y2O3 crystals (Y2O3:Ce) exhibit dominant emission
bands at around 380 nm and relatively low intensive band at
560 nm (Gieszczyk et al., 2019). The results further demonstrate
the ideal applications of energy storage phosphors for Y2O3:Ce.
The excellent advantages of Y2O3:Ce can also be evidenced by the
effective use as various laser ceramics (Lupei et al., 2017).

It is well-known that the laser actions can be generally
identified in the absorption and emission spectra of rare-
earth doped materials. In order to explore the luminescent
properties of Y2O3:Ce, Jia et al. (2001) had synthesized
the Y2O3:Ce nanoparticles in experiments and measured the
photoluminescence spectra at room temperature. Their results
revealed that the strong emissions cover the ultraviolet band
from 240 nm to 380 nm. To explain the emission lines of the
spectra, Loitongbam et al. (2013) measured the luminescence
intensities of Y2O3:Ce and found that the characteristic blue color
emissions at 424 and 486 nm are originated from Ce3+ ion 5d
(spectra terms) → 4f (spectra terms). An unexpected optical
activity, including up and down conversions, for Y2O3:Ce crystal
was firstly observed by Marin et al. (2013). Although the laser
actions were established by a few studies, many researchers were
motivated to probe the structural properties of Y2O3:Ce. The
effect of doping Ce3+ ion into Y2O3 fibers was investigated by
Zhu et al. (2008). They found that the obvious quenching of the
luminescence occurred at Ce3+ concentration of 5%. By using
the solid-state-reactive method, Liu et al. (2020) carried out a
study on the structures of a series of Ce3+ doped Y2O3 ternary
ceramics. The results demonstrated that the solubility of Ce3+

concentration at 4% could broaden emission spectra and lead to
a large red-shift, which is attractive for the white light emitting.
A recent research on the structural properties of Y2O3:Ce was
conducted by Krutikova et al. (2020). The nanopowders were
obtained by laser ablation and the X-ray diffraction (XRD)
patterns of Y2O3:Ce crystal were reported. By looking at the
investigations concerning Y2O3:Ce in the literatures, it can
be concluded that the systematic electronic structures have
not yet been explored, especially for the theoretical insights.
Furthermore, the lacks of Y2O3:Ce microstructures constitute a
problem to exploit its potential prospects in many applications.

In this paper, we have performed a systematic study on
the stable structures and electronic properties for Y2O3 doped

with Ce3+ system. By using the CALYPSO (Crystal structure
AnaLYsis by Particle Swarm Optimization) structure search
method (Wang et al., 2010, 2012; Li et al., 2014) combined
with first-principle calculation, the low-lying energy structures of
Y2O3:Ce are extensively searched. A large number of candidate
structures are obtained and the ground state structure together
with the first four metastable structures is analyzed in detail.
Based on the obtained lowest energy structure of Y2O3:Ce, we
thoroughly conduct a calculation of the electronic properties,
which could provide powerful guidance for further experimental
and theoretical studies.

COMPUTATIONAL DETAILS

We have carried out an unbiased structure search for Y2O3

doped with Ce3+ system based on the CALYPSO method (Wang
et al., 2010, 2012; Li et al., 2014). The CALYPSO is able to
successfully predict the stable structures only with given chemical
composition of the system (Lu et al., 2013, 2017, 2018; Lu
and Chen, 2018). The detailed method of CALYPSO has been
reported in many papers (Ju et al., 2016, 2017, 2019a,b). In
this work, the structure searches are performed for Y2O3 doped
with Ce system at 80 atoms in one unit cell. The obtained low-
lying energy structures are used to perform further geometric
optimizations. We conduct the ab initio structural relaxations
and electronic properties calculations in the framework of density
functional theory (DFT) by using the local density approximation
(LDA) exchange correlation functional, as implemented in
the Vienna Ab Initio Simulation Package (VASP) (Kresse and
Hafner, 1993; Kresse and Furthmuller, 1996; Perdew et al.,
1996). Considering the strong f-electrons correlations within
the heavy Ce3+ ion, an onsite Coulomb repulsion U = 5.0 eV
is employed in the calculations (Herbst and Waston, 1978).
We use the projector-augmented wave method to simulate the
valence electron space of Ce, Y, and O atoms. The used electrons
are 4f15s25p65d16s2, 4s24p64d15s2, and 2s22p4, respectively.
Sufficiently fine Monkhorst-Pack k meshes and 500 eV cutoff
energy have been chosen to make sure that the calculated
enthalpy of each atom is<1 meV. By using a super cell approach,
the phonon dispersion spectra are calculated in PHONOPY code
(Atsushi et al., 1993). The electron localization function (ELF)
(Becke and Edgecombe, 1990; Savin et al., 1992) analysis of
Y2O3:Ce is performed and the results are depicted in the VESTA
software (Momma and Izumi, 2011). The projected Crystal
Orbital Hamilton Population (COHP) (Richard and Peter, 1993)
are calculated by the LOBSTER code (Volker et al., 2011; Stefan
et al., 2016).

RESULTS AND DISCUSSIONS

Crystal Structures
The stable structures for Y2O3:Ce system are favorably identified
by using the method described in section Computational Details.
On the basis of total energies from low to high, we have plotted
the lowest-energy structure of Y2O3:Ce in Figure 1, together
with the local [CeO6]9− complex ligand. Noticeably, the ground
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FIGURE 1 | The ground state structure of Y2O3:Ce.

state structure of Y2O3:Ce possesses a novel structure with R-
3 (No. 148) space group. To the best of our knowledge, the
rhombohedral phase of Y2O3:Ce crystal is uncovered for the first
time. This result indicates an interesting phase transition that the
crystallographic symmetry of Y2O3 changes from cubic (Ia-3) to
rhombohedral (R-3) when the impurity Ce3+ is doped into the
host crystal. It is clearly seen from Figure 1 that the host Y3+ ion
can be naturally occupied by the impurity Ce3+ ion. Interestingly,
the Wyckoff position of Ce3+ is 1b (0.5, 0.5, 0.5), suggesting
that the ground state Y2O3:Ce is a standard cage-like structure.
This result is different from that of Y2O3:Nd system (Ju et al.,
2020). For reference, the coordinates of all atoms for the ground
state Y2O3:Ce are summarized in Table 1. The estimated unit cell
parameters and volume for Y2O3:Ce are a = b = c = 10.541
Å and 1171.371 Å (Han et al., 2019), respectively. These values
are slightly smaller than those of pure Y2O3 but are comparable
to the results reported by Kumar et al. (2017). As regard to the
local structure, the Ce3+ ion is calculated to be 6-fold coordinated
by O2−, forming the [CeO6]9− complex ligand. The cationic site
symmetry of Ce3+ is C3i with six equal Ce–O bonds of 2.369 Å.
This bond length is similar with that of Y–O bonds because the
effective radius of Ce3+ (1.03 Å) is very close to Y3+ (0.90 Å).

In the structure prediction, we adopt the chemical
composition of Ce:Y: O = 1: 31: 48 to obtain the stable
structures with nominal concentration of Ce3+. In this sense,
the impurity Ce3+ in Y2O3 crystal is equal to 3.125 at %. Apart
from the ground state structure, the CALYPSO also identifies a
large number of candidate isomers that can be useful to study
the structural evolution of the Y2O3:Ce. Figure 2 illustrates the
first four metastable structures of Y2O3:Ce. The isomer (a) has
the same R-3 space group as the lowest energy structure while
the impurity Ce3+ ions are likely to substitute the Y3+ at the
lattice vertexes. The Ce3+ ion of isomer (a) takes the 1a (0, 0,
0) position. It is evidenced that the calculated crystal lattice
parameters (10.543 Å) are nearly same as those of lowest-energy
structure. The group symmetry of isomer (b) is predicted to
be P1 with a triclinic phase. The Wyckoff position of Ce3+ is
predicted to be 1a (0.25, 0.75, 0.25). Calculated result reveals that
the isomer (c) exhibits a monoclinic structure which belongs to
P2 symmetry. The impurity Ce3+ ion occupies the 1b (0, 0.47157,

TABLE 1 | Coordinates of all atoms for the ground state Y2O3:Ce.

Atom x y z Wyckoff site symmetry

Ce 0.50000 0.50000 0.50000 1b

Y1 0.50000 0 0 3d

Y4 0 0.50000 0.50000 3e

Y5 0 0 0 1a

Y8 1.21723 −0.00048 −0.24957 6f

Y9 0.78317 −0.50109 −0.24904 6f

Y10 0.28219 0.00104 0.25009 6f

Y11 0.72090 −0.50141 0.24728 6f

O1 0.64138 −0.12945 −0.09800 6f

O2 1.14358 −0.62871 0.40217 6f

O3 0.35267 −0.63253 0.60591 6f

O4 0.85797 −0.12919 0.09753 6f

O5 0.85966 0.12874 0.40167 6f

O6 0.35814 −0.37026 −0.09599 6f

O7 1.14102 −0.37007 0.09751 6f

O8 0.64188 0.12739 0.59868 6f

05) position. For the configuration of isomer (d), it is seen that
the Ce3+ ions appear at the center sites of bottom and top in the
crystal lattice. The isomer (d) is assigned to P1 group symmetry
and is 0.27 eV energetically higher than ground state structure.

Although the X-ray powder diffraction (XRD) patterns of
Y2O3:Ce crystals have been extensively studied, there appears to
be inconsistencies of the spectra (Chien and Yu, 2008; Taibeche
et al., 2016; Kumar et al., 2017). In order to clarify the crystal
characters of the lowest-energy structure, we simulate the XRD
patterns of Y2O3:Ce in the 2θ range of 15–65◦. The result
compared with experimental data is presented in Figure 3. It is
evident that the calculated spectrum is in perfect agreement with
the values measured by Kumar et al. (2017), demonstrating the
validity of the lowest energy structure as well as the accuracy
of our theoretical calculations. It should be pointed out that the
simulated diffraction peak at 34◦ is ascribed to the (400) plane
direction. This is accord with the result obtained by Taibeche
et al. (2016) but different from the measured value proposed by
Chien and Yu (2008). For comparison, the XRD patterns of the
four isomers (a), (b), (c), and (d) are also provided in Figure 3.
Although the overall distribution of the peaks in isomers is
closely similar with each other, there are minor differences in
the relative intensities. To evaluate the dynamical stability of
Y2O3:Ce, the phonon spectrum within the Brillouin zone of
ground state structure are calculated. Figure 4 illustrates the
phonon dispersion curves along the high-symmetry directions
including F, Γ , and Z. Clearly, the overall values in Figure 4

are positive and no virtual frequencies are observed in the full
Brillouin zone. It is concluded that the rhombohedral phase
structure of Y2O3:Ce crystal is dynamically stable.

Electronic Properties
To further elucidate the electronic properties of Y2O3:Ce crystal,
we have performed a series of ab initio calculations including the
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FIGURE 2 | The (A–D) isomers for Y2O3:Ce.

electronic band structures, total and partial electronic density of
states and electron localization functions. The calculated band
structure and density of states (DOS) are plotted together in
Figure 5. Our calculated results show that both of the conduction
band minimum and valence band maximum are identified at
Γ site. The band structure is considered to be a typical of
semiconductor with relatively flat top of the valence bands.
According to the calculations, the band gap value of ground state
Y2O3:Ce is equal to 4.20 eV directly at Γ point. This result is
very close to the energy gap of Y2O3:Nd system (Ju et al., 2020)
but significantly smaller than that of pure Y2O3 crystal (Wilk
and Wallace, 2002). The direct band gap of 4.20 eV suggests
a semiconductor character of the Y2O3:Ce. In addition to the
electronic band gap, the electronic calculations of high-symmetry
directions are in accordance with the above analysis based on
phonon spectrum. In Figure 5A, we can clearly see that the band
structures can be divided into three parts. The high conduction
band is above 4.20 eV while the low valence band is below
−0.17 eV. Interestingly, an extremely narrow valence band is
observed just below the Fermi level. This result is greatly different
with the band structures of pure Y2O3. The calculations show

that the narrow valence band is caused by the electronic Alpha
states. In contrast, the Beta electrons are not identified near the
Fermi level. In order to explore the origins of the electronic
bands, we further calculate the partial DOS including s, p, d
and f states. The calculated DOS are depicted in Figure 5B. It
can be clearly seen that the high conduction bands are mainly
formed by d and p states. The p electrons are calculated to be
the strongest state in the low valence bands. Moreover, the partial
DOS of Y2O3:Ce reveals that the extremely narrow valence band
near Fermi level is ascribed to the f orbital, which suggests that
the impurity Ce3+ ion leads to a dramatic reduction of the band
gap. In other words, it is concluded that the incorporation of the
doped Ce3+ ion into Y2O3 host crystal results in an insulator to
semiconductor transition.

To achieve foundational understanding of the bonding
character and distribution of electrons of Y2O3:Ce crystal, we
have carried out a calculation on the electron localization
functions based on the ground state structure. The visually
ELF of the structure and (100) plane are presented together in
Figure 6. Obviously, the electrons near the cationic atoms are
greatly localized with ELF values at ∼0.9 while the ELF values
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FIGURE 3 | The simulated XRD patterns for ground state Y2O3:Ce and

isomers (a–d), compared with measured spectra.

in the crystal lattice are nearly zero. This result indicates that
the electrons localization on Ce and Y atoms broadens toward O
atoms, forming a complete charge delocalization in the vicinity
of O atoms. The strong ionic bonds are identified between Ce-
O and Y-O. Furthermore, our calculations also show that the
value of ELF at Ce atom is relatively larger than the ELF of Y
atoms. This phenomenon can be explained as the remaining 4f
(Masanori et al., 2020) electron of Ce3+ ion. It should be pointed
out that there are strong charge localizations between O-O
atoms, demonstrating the covalent bond of O atoms. To further
quantitatively estimate the contribution of bonds between O
atoms, we have presented the projected Crystal Orbital Hamilton

FIGURE 4 | Simulated phonon dispersions of the lowest energy structure for

Y2O3:Ce.

FIGURE 5 | Simulated (A) electronic bands and (B) total and partial DOS of

Y2O3:Ce.
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FIGURE 6 | ELF of the (A) structure and (B) <100> plane for Y2O3:Ce.

Population (-pCOHP) curves for the O-O bonds in Y2O3:Ce.
As shown in Figure 7, the strong bonding contributions of O-
O bonds are evidenced. The bond features near the Fermi level
can be ascribed to covalent. It is convinced that the excellent
stability of Y2O3:Ce crystal is owing to the strong covalent bonds
of O atoms.

CONCLUSION

To summarize, we have systematically reported the structural
evolutions, doping site locations and electronic properties of
Y2O3 crystal doped with Ce3+ ions. By using the CALYPSO
method in conjunction with first-principles calculations, a novel
stable phase with R-3 space group is identified for the first
time. For the ground state structure, the doped Ce3+ can
naturally occupy the central Y3+ site in the crystal lattice of
Y2O3, forming a standard cage-like structure. The cationic site
symmetry of Ce3+ is calculated to be C3i with six equal Ce–
O bonds. The first four candidate isomers present different
doping sites for Ce3+, which is helpful to investigate the
structural evolution of Y2O3:Ce. By comparing the simulated
XRD patterns with experimental data, we demonstrate the
validity of the lowest energy structure. The dynamically stability
of Y2O3:Ce crystal is carefully examined through the calculation
of phonon dispersions. Our results of electronic band structures

FIGURE 7 | The projected Crystal Orbital Hamilton Population (-pCOHP)

curves for the O-O bonds in Y2O3:Ce.

reveal that both of the conduction band minimum and valence
band maximum are located at Γ site, leading to a band gap
value of 4.20 eV. This band gap suggests a semiconductor
character of Y2O3:Ce system. Interestingly, an extremely narrow
valence band near Fermi level is observed in the band
structure and the contribution of this band is assigned to
f orbital. In addition, the calculated results of visually ELF
show that the charge localizations between O-O atoms are
dramatically strong, suggesting the covalent bond character of
O atoms in the Y2O3:Ce crystal. These findings could provide
important information of the microstructures of rare-earth
doped laser materials.
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