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Abstract: A model of the polymerization process during the formation of a pair of polymer brushes
was designed and investigated. The obtained system consisted of two impenetrable parallel surfaces
with the same number of chains grafted on both surfaces. Coarse-grained chains embedded in nodes
of a face-centered cubic lattice with excluded volume interactions were obtained by a ‘grafted from’
procedure. The structure of synthesized macromolecular systems was also studied. Monte Carlo
simulations using the dynamic lattice liquid model were employed using dedicated parallel machine
ARUZ in a large size and time scale. The parameters of the polymerization process were found to be
crucial for the proper structure of the brush. It was found that for high grafting densities, chains were
increasingly compressed, and there is surprisingly little interpenetration of chains from opposite
surfaces. It was predicted and confirmed that in a polydisperse sample, the longer chains have
unique configurations consisting of a stretched stem and a coiled crown.

Keywords: dynamic lattice liquid model; Monte Carlo method; polymer brushes; polymerization

1. Introduction

Polymer brushes are built from macromolecules terminally attached to a surface.
They were recently a subject of many experimental and theoretical works predominantly
because of their practical importance for, size-exclusion chromatography, polymer adhesion,
lubrication and intelligent polymeric systems [1–5] and others. Polymer brushes formed
of chains grafted to one surface can be treated as the reference state for the confined
brushes. Brushes have been obtained using various experimental techniques, as recently
reviewed [6–8]. Polymer brushes, in real experiments, can be synthesized using two
different methods in general: by tethering the chains that were previously polymerized
(‘grafting to’) and by growing chains directly from initiators anchored on the surface
(‘grafting from’) [9–12].

Properties of polymer brushes were also studied using Molecular Dynamics, Dis-
sipative Particle Dynamics [13–17], Monte Carlo (MC) simulations [14,18–31], scaling
theory and theoretical self-consistent field considerations [31–39]. Field theory is partic-
ularly well suited to handle polymer brushes—a configuration of a single chain can be
mapped into a trajectory of quantum particles with time being replaced by the contour
length [34–40]. Although Milner, Witten, and Cates analytically employed a parabolic
form for the concentration profile, more detailed approaches required numerical calcula-
tions [34,41]. Nevertheless, this theory can give an intriguing glimpse into the behavior
of polymer brushes without performing time-consuming Monte Carlo simulations. More
recently, polymer brushes with high grafting densities have been shown to be much more
stretched, as was previously estimated [42]. The concentration profiles of a polymer brush
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swollen in good solvents have been extensively reported, for example, by Murat and
Grest [16], where a molecular dynamics study was presented, and the results compared
favorably with the monomer concentration profile obtained by field theory. In particu-
lar, their numerical result for intermediate surface coverage values agreed well with the
analytic result obtained by Milner et al. [34] but differed qualitatively from it for higher
surface coverage values. Other structural parameters mainly concern the chain size, its
components parallel and perpendicular to the grafting surface, as well as the height of the
brush [5,15,43].

Systems consisting of two opposing brushes, i.e., two parallel surfaces grafted with
chains, were also a subject of considerable interest [44]. Theoretical studies mainly con-
cerned the compression phenomenon of such brushes [45–49] by mutual interaction. Struc-
ture, interaction, and friction between a pair of brushes (neutral and charged) were recently
investigated [47,50–56] using computer simulations. In a recent simulation study based
on the dynamic lattice liquid (DLL) model, the attention was focused on the dynamics of
dense and interpenetrating brushes [57]. It was shown that there was a strong correlation
between the dynamics and the brush structure, and that changes in the mobility of solvent
molecules could be attributed to the local structure of the brush.

In this paper, a coarse-grained MC model of opposing brushes, formed by multichain
polymer systems, was considered. Due to complex architecture resulting from large size
and high density of polymer chains, these systems were studied by a lattice model. Fully
flexible chains immersed in a good solvent were considered, and solvent molecules were
explicitly included in the model. At first, a polymerization process of opposing polymer
brushes was studied. Brushes were virtually synthesized by ‘grafting from’ approach;
that is, the chains’ polymerization started from the initiator present in the surfaces. In
the ‘grafting from’ procedure, the initialization of the polymerization process starts on a
surface and all chains grow until the process is terminated. This procedure was chosen
due to the severe problems with the equilibration of brushes obtained by the ‘grafting to’
procedure, where completely synthesized chains are grafted onto surfaces. The properties
of this model were studied using the Monte Carlo method using the DLL model [58,59].
This simulation algorithm was already successfully used, for example, to study various
polymerization processes, including single polymer brushes [60–62]. The influence of the
polymerization parameters on the structure of the growing opposing brushes was the main
goal of this study. Then, the structure was investigated, focusing on the interactions of a
pair of brushes.

2. The Model and Method

The model presented in this paper was coarse-grained, i.e., it consisted of coarse-
grained fragments of matter such as polymers, polymer segments, and solvent molecules
with all atomic details suppressed. The DLL model is based on the concept of cooperative
motion of objects with positions restricted to nodes of a quasi-crystalline lattice. In the
present study, it was a face-centered cubic lattice with coordination number q = 12. A small
excess volume is assumed in the system, and therefore all objects have a space to vibrate
around their position as in real dense liquids [58]. The quasi-crystalline lattice nodes define
the positions of objects. Due to high density (all neighboring lattice nodes are occupied),
an object is not able to easily move over a distance longer than lattice constant, but long-
range motion can take place, in a long time limit, as a set of cooperative rearrangements.
In the DLL model, the cooperative motion of objects has the form of a closed loop of
displacements involving at least three neighboring objects in a given time step. Therefore,
contrary to other lattice models, DLL allows studying systems at the highest density, where
all lattice nodes of the system are occupied.

The DLL model was implemented as a Monte Carlo dynamic simulation algorithm
for polymer brushes in a solvent. In the presented model, during the first step (the
polymerization process), the lattice nodes are occupied either by surface nodes (some of
them with initiating sites), segments of the polymer chains or monomers (free segments),
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whereas during the second step (the time evolution of the synthetized opposing brush),
only polymer segments and solvent molecules are present (except the surfaces). The
system was assumed to be athermal, i.e., without any interactions, with the exception
of the excluded volume condition. Therefore, the polymerization and time evolution of
opposing brushes were studied under good solvent conditions. The single simulation step
t consisted of three stages. In the first one, a random vector field of motion attempt was
generated. This was realized by assigning a unit vector to each object, pointed towards
one of the nearest neighboring lattice sites and representing the direction along which the
object attempted to move. In the second stage, groups of vectors forming closed loops
were identified, whereas the remaining objects were immobilized at the given time step.
To maintain the continuity of macromolecules, if the potential movement realized by a
given loop led to a break of bond between chain segments in the polymer, such a loop
was immobilized. In the third stage, rearrangements of objects along remaining loops
were performed by displacing the objects to the neighboring lattice nodes according to the
unit vector generated in the first stage. As a result, the time step was a discrete variable
for which the positions of all objects were attempted to update simultaneously. A single
time step in the DLL model corresponds to approximately 6 × 10−13 s or to 3 × 10−12 s
for low-weight and high-weight macromolecular systems, respectively [26,63]. Detailed
balance and ergodicity of the DLL algorithm was discussed elsewhere [58].

The simulation procedure consisted of two parts. In the first one, chains grafted onto
a pair of parallel surfaces were synthesized using the ‘grafted from’ procedure. The proce-
dure used enabled the obtainment of a polydisperse, dense and highly grafted opposing
polymer brush [7,26]. Then, depending on the parameters of the polymerization process,
equilibration runs were performed (see the discussion below). In the second part, for a
polymer brush at equilibrium, a long production run delivered data for structure studies.

3. Results and Discussion

The system has a form of a slit built by a pair of parallel surfaces placed at z = 1 and
144 coordinates, the slit width was 2d = 142. The confining surfaces were impenetrable
for monomers, polymer segments and solvent molecules. No other interactions with the
surfaces were assumed. The length of the Monte Carlo box in directions parallel to the
surfaces was L = 144 (72 nodes in x- and 144 nodes in y-direction), thus the system consisted
of total 1,492,992 lattice nodes. Periodic boundary conditions were imposed in x- and
y-directions. After polymerization, the end of each chain was grafted (tethered) to one of
the surfaces and the positions of the grafting points were random. Both surfaces had the
same amount of polymer chains.

Grafting density was defined as a ration of the grafting points number to the number
of lattice nodes forming the surfaces. In this work, the grafting density was varied: σ = 0.2,
0.25, 0.3, 0.35, and 0.4 (for each surface). System contained up to 8200 polymer chains (L2σ).
The critical grafting density σ* is usually defined as [15] σ* = π Rg

2N/L2, where Rg
2 is the

mean-squared radius of gyration for chain and N is the number of chains grafted onto the
surface. σ* measures the compression of grafted chains: for σ* < 1 chains are in the so-called
mushroom regime, whereas for σ* > 1 chains form a real brush (chains are restricted to
less surface area than in unrestricted solution). In this work σ* varied from 62 to 149, so
the chains considered were always in the real brush regime [4]. For length dependance
studies σ = 0.3 was selected. The influence of the grafting density on the single-brush
structure showed that a crossover from low to high grafting regime is located near this
value and it corresponds to ~0.35 chains/nm2 in a polymer system where one polymer
bead represents the MMA monomer [26]. The synthesized systems always possessed some
polydispersity and therefore the average chain length must be described by the averaged
degree of polymerization. The number-averaged degree of polymerization DPn is defined
as DPn = ∑2N

i=1 nimi/ ∑2N
i=1 ni, where 2N stands for the total number of chains in the system,

mi is the length (number of segments) of the i-th chain, and ni is the number of chains with
length mi. The DPn values were varied in a wide range, from 30 to 160.
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The polymer brush system was synthesized in the first part of the simulation. The
simulation box was filled with single-node monomer and initiator, which was randomly
incorporated into the surfaces with a given grafting density. The controlled living irre-
versible radical polymerization was chosen for synthesis modeling, i.e., the process of
attachment of monomers to a growing chain with assumed reaction rate p. In the first
variant, the macromolecular layer was polymerized with p = 10−4 (see ref. [26,64] for
details), and the brush grew until it reached the desired DPn. After this the reaction was
stopped and all the unreacted monomer was replaced by an inert solvent. According to
previous studies [26,64], a high polymerization probability, i.e., a fast polymerization, led
to the more compact structures of polymer chains in a brush; therefore, the opposing brush
systems obtained in this polymerization procedure required a long equilibration. Next,
additional simulation steps t were performed to equilibrate the layer (107 steps) because
after the polymerization, chains needed extra time to extend to their equilibrium size [64].
The additional equilibration (2 × 108 steps) was introduced for the reason discussed below.
After the equilibration period, the production simulation run was begun (8 × 108 steps).
The second step allowed for good time-averaging of static properties, and determination
of the system structure. Figure 1a presents examples of changes in the mean chain size
(the mean squared radius of gyration) during a single simulation run for three average
chain lengths. A higher target chain length resulted in considerably longer synthesis
and equilibration times—the production run for longer chains (degree of polymerization
DPn = 130) was almost an order of magnitude shorter than that for short chains (DPn = 50).
Figure 1b presents changes in chain size in all opposing brushes under consideration, but
the first 107 steps of the simulation and synthesis part are not shown here. It can clearly
be seen that the relaxation of systems with DPn > 70 is considerably longer and reaches
108 steps. Therefore, the equilibration period had to be extended beyond the initially
assumed 107 steps. Nevertheless, all of the macromolecular systems under consideration
were properly equilibrated. One can see that for longer chains, an additional equilibration
is required in order to obtain a stable mean size of chains. Polymerization and equilibration
had to last for 2 × 108 time steps. To collect uncorrelated data, the production run lasted
up to 109 time steps. In order to study brushes in a wide range of grafting densities and
chain lengths, one had to deal with systems consisting of 106 objects (monomers, polymer
segments and solvent molecules) or more. It appeared impossible to study such systems for
at least 109 time steps required for the equilibration process when using a typical computer
cluster or supercomputer [65]. Therefore, the use of dedicated hardware like ARUZ (Ana-
lyzer of Real Complex Systems—in Polish, Analizator Rzeczywistych Układów Złożonych)
is inevitable in order to study macromolecular systems at these time scales. The detailed
information about this unique dedicated machine can be found elsewhere [57,65–70].

Having employed the ARUZ machine, an alternative way to equilibrate opposing
brushes was examined. Basing on the results of our previous studies [26,64], p was lowered
to the value of 10−6 (102 times compared with the case discussed above), which is more
realistic. It is impossible to relate this probability with polymerization reaction rates of
given monomers but a proper ratio of this probability to the mobility of objects has to be
set. The estimations suggest that for longer chains p should be no higher than 10−5. The
relation of this parameter to experiments is discussed in ref. [26]. In Figure 1c, the time
evolution of the mean squared radius of gyration of chains is presented for the probability
p = 10−6. One can observe that after the polymerization was stopped, all Rg

2(t) curves
are nearly flat. Additional information on the relaxation of polymer chains during the
polymerization process can be obtained from the analysis of mean-squared radius of
gyration component in the direction normal to the surface <Rg

2
⊥>. This parameter is

presented in Figure 1d as a function of time. The behavior of this parameter confirms that
the system is at equilibrium: no additional changes in the direction perpendicular to the
surface are observed. Thus, the obtained opposing brushes did not require any further
equilibration after the synthesis, which confirms this choice of low reaction rate. The
static properties of the brushes were time-averaged from 4 × 107 time step for DPn < 120
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and from 2 × 108 for the remaining samples in order to minimize statistical errors. It
appeared that the lowering of the polymerization probability also leads to smoother mass
distributions and lower dispersity of chain lengths. The rest of presented results considers
p = 10−6, if not stated otherwise, and presents the first clear indication that the formation of
a dense polymer brush or an opposing brush system require a careful choice of simulation
parameters. It also confirms the findings of dissipative particle dynamics simulations of
triblock Janus particles, where the formation of assembled structures near surfaces required
long simulation times [71,72].
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Figure 2 presents the distribution of chain lengths in both brushes for various DPn
and σ. The results were averaged with the resolution of 5 polymer beads. It can be seen
that each distribution has one peak and that the width of the peak increases with the
increase in the DPn and the grafting densities. The increase in grafting density additionally
slightly shifts the peak towards shorter chains and makes the distribution broader with
data becoming more scattered. These distributions can be easily fitted with the two-
parameter Schulz–Zimm function in a form already used for single brushes [73]. The
Schulz–Zimm approximation works very well for all cases under consideration, contrary
to results for single brushes where bimodal distributions were found for higher values of
DPn [43,64]. These differences in mass distributions for opposing and single brushes have
to be explained by lower polymerization probabilities used in the present study and thus
confirm the proper choice of the reaction rate. The broadening of the mass distribution, i.e.,
existence of the significant number of longer chains, is apparently related to the presence
of the other brush and its obstructive influence on the polymerization process. The second
factor that leads to the formation of longer chains is the longer polymerization time,
required for higher values of DPn.
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The distribution of chain lengths is usually analyzed via dispersity. Dispersity is
defined as DPw/DPn, where DPw is the weight-averaged degree of polymerization defined
as DPw = ∑2N

i=1 n2
i mi/ ∑2N

i=1 ni. In Figure 3 the dispersity as a function of the number-
averaged degree of polymerization DPn is shown. In the case of the polymerization
probability p = 10−4, the behavior of dispersity is similar to the case of a single brush
studied with the same model [26]: DPw/DPn initially decreases with DPn, but for higher
values of DPn it does not reach a plateau and starts to increase. The crossover between
two dispersity regimes is located near DPn = 50, i.e., where the brushes are still not
influenced by each other. The reduction in the polymerization probability to the value
of 10−6 dramatically changed the behavior of dispersity. It decreases with DPn over the
entire range under consideration. This behavior is in opposite to the results obtained in
Monte Carlo simulations where the bond fluctuation model was employed [27–29]. In these
simulations, dispersity increases with the polymerization progress and with the number-
average degrees of polymerization for most of grafting densities studied, that is, for σ > 0.08.
This result is similar to the one presented herein obtained for a higher polymerization
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probability. Similar behavior of dispersity was found in Molecular Dynamics simulations of
realistic models of oligomers grafted to surfaces and carbon nanotube composites [74,75].
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The system structure in equilibrium can also be analyzed by the scaling behavior of
chain sizes. Figure 4 shows the dependencies of the mean squared end-to-end distance
R2

ee, vs. chain length m (number of segments or DP for single chain), and for various
values of DPn on a double logarithmic scale. It is impossible to determine the scaling
exponents because the plots presented in Figure 4 are not linear. One can recognize that
for very short chains (m < 20) the scaling exponent is close to 1 whereas for intermediate
lengths (50 < m < 100) the dependence of R2

ee on chain length is considerably stronger.
This unexpected scaling comes from a variety of states of shorter chains (coiled) and longer
chains (extended). What is interesting here is that the size of the longest chains for high
DPn, i.e., for systems where the pairs of brushes are in contact, is almost independent of
the chain length. This confirms that the brushes do not interpenetrate significantly and
that the compression effect for the brushes prevails. A detailed analysis of the dependency
of the main parameters describing the brush on DPn was recently carried out [57]. It was
shown that the mean chain height and radius of gyration exhibit two scaling regimes.
The first region was found for brushes with DPn ≤ 100 and the scaling exponent was
considerably higher than for single free chain [76] and very close to the exponent of rods.
In the second regime, an unexpected scaling behavior was found, with scaling exponent
below 1, which can be interpreted as a size increase for short chains with increasing DPn
along with compression of longer chains, resulting in flower conformations. This suggested
the mutual interaction of both brushes for systems with DPn > 100.
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The main conclusions presented above, regarding the chain size parameters versus
their length, can be supported by the chain orientations analysis. The angle α between
the end-to-end vector Ree and the grafting surface (to which the chain was grafted) was
calculated for this purpose [50]. It was recently shown that in polydisperse brushes, the
orientation of short chains was almost random, whereas longer chains exhibit tilt angles
near the value of 80◦; that is, long chains are nearly perpendicular to the grafting surface.
However, the longest chins are characterized by a slight decrease in tilt angles, apparently
because of the excluded volume of the second brush. It is worth to notice that for longer
chains (m > 200), there is no difference in tilt angles with respect to degree of polymerization
DPn, although both brushes are being compressed [57]. Further information can be obtained
from the analysis of angles formed between the grafting surface and the vector from the
grafting point to a polymer bead belonging to the same chain and deposited in a layer
number I (i.e., deposited at a distance i from the grafting surface), for example, i = 2 means
coordinate z = 3. The results are presented in Figure 5, as a function of chain length, and
suggest that in all layers, angles are always oriented more randomly for very short chains.
For higher layers, the angle orientation is less random and closer to 80◦. For longer chains
(high DPn), the angles are lower. These differences are more pronounced for more distant
layers, which confirms that the interpenetration is rather small and longer chains prefer to
bend instead of penetrating the opposite brush. Summarizing, one can find in the system
numerous relatively short chains and less populated longer chains. The latter are elongated
in the direction normal to the grafting surface, whereas the short ones are placed more
randomly, although the normal orientation prevails. Similar assumptions were made by
Fleer et al. for their theoretical considerations [77], but it must be noted that the structure of
the brush presented here was obtained directly from simulations. The increase in grafting
density does not significantly change the shape of these curves, but shifts them toward
lower values of chain lengths. The conformation of the described and discussed chain
orientations can be found in the system visualization (see Figures 7 and 8).
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In order to check the state of mutual interpenetration of brushes directly, additional
parameters were calculated. The overlap integral Γ, which is proportional to the num-
ber of brush-brush contacts per unit area, was defined according to the formula [39,78]:
Γ = ∑2d

i=d ϕ1(zi)ϕ2(zi), where φ1 and φ2 are density profiles of each brush separately. The
overlap integral is proportional to the number of interactions between polymer beads
belonging to different brushes (in the model presented, there is no energy associated with
these contacts—the system is athermal). Then, the mutual interactions of a pair of brushes
can be described with the penetration length δ defined as δ = 2Γ/ϕ2

tot, where φ2
tot is the to-

tal density profile. Figure 6a presents the penetration length δ versus the number-averaged
degree of polymerization DPn. The penetration length is zero for separated brushes, but
between DPn = 70 and 90, where the brushes start to interact, this parameter increases
rather weakly with the increase in DPn from ca. 2.5 to ca. 3. Theoretical predictions for
monodisperse brushes gave a scaling δ~m2/3. For polydisperse systems, a larger interpene-
tration was expected, and the scaling depends on the degree of polydispersity: δ~m1/3 in
the case of weakly polydisperse systems and δ~m1/6 for strongly polydisperse systems [45].
Thus, one can conclude that for dense opposing brushes at high grafting density, simple
scaling theories do not work. Figure 6b shows the changes in the overlap integral with
the grafting density. One can observe that the interpenetration of brushes is small and
decreases over the entire range of grafting densities.
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Figure 7 presents typical chain conformations in opposing brush systems for the
highest number-averaged degree of polymerization DPn = 160. Short chains (m = 90,
Figure 7a) are coiled, those of intermediate length (m = 130, Figure 7b) are stretched
in the direction perpendicular to the surface, whereas longer chains (m = 180 and 230,
Figure 7c,d) are also stretched in the same direction but are folded near their free ends.
Partially folded states of longer chains confirm that the interpenetration of brushes is weak.
The conformations shown in Figure 7 are in full agreement with the changes of the size
parameters and chain orientations presented in Figures 4 and 5, respectively, and discussed
above. Thus, the presence of short and coiled chains near the grafting surface and long
chains exhibiting conformations consisted of a stem and a crown predicted by theoretical
considerations [74] was confirmed. In Figure 8a,b system snapshots are presented for
DPn = 50 and 110, excluding solvent molecules for clarity. Each brush is marked with a
different color to easily presenting the border between them. An increase in chain lengths
leads to very weak brushes interpenetration. A similar observation was made for grafting
density above σ = 0.3.
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4. Conclusions

The polymerization process and structure of the opposing polymer brushes were
studied using the dynamic lattice liquid (DLL) model, a unique Monte Carlo method based
on the concept of cooperative motion. A dedicated hardware, i.e., Analyzer of Real Com-
plex Systems (ARUZ), was also employed for these studies. The polymerization process
for brushes build stage was performed with realistic parameters. The presented study
provided suggestions concerning the parameters of the polymerization of brushes and
opposing brushes. It was shown that a low polymerization probability (as in ‘real-life’
polymerization) can lead to equilibrium configurations of opposing brushes and no further
equilibration was required. Moreover, proper mass distributions and dispersity were also
reached in the polymerization process. Therefore, the results are relevant to real opposing
brushes. Chains grafted to both surfaces were polydisperse (degrees of polymerization
with a considerable dispersity) and distinguishable from those that were almost uncon-
strained (low degree of polymerization) and those that were highly compressed (high
degree of polymerization). This allows for monitoring the structure as the system was
being compressed.

The main conclusions are related to synthesis conditions of opposing brushes. It
was recognized that the chain configurations obtained from fast polymerizations were
significantly different from those obtained after equilibration during long polymerization.
This put into question some of the Monte Carlo methods, such as the enrichment method:
Ohno et al. [79] simply grew chains using this method, but the profiles and, therefore,
also individual chains changed considerably after a long equilibration, as presented here.
The presented results also showed that the density profiles of unconstrained and weekly
constrained opposing brushes were nearly linear functions of the distance (except the
edges) from the surfaces. This kind of behavior was expected for polydisperse brushes and,
therefore, justifies the choice of simulation model.
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It was also found that, as the chains were increasingly compressed (by employing
longer chains), there was surprisingly little interpenetration of chains from opposite surface.
This is not an obvious finding, although one has to remember that the investigated grafting
density was high. The previous results obtained from the SCFT calculations [77] were
confirmed. The unique configuration predicted and described as a flower conformation,
consisting of a stretched stem and a coiled crown [77], was observed in a polydisperse
sample for longer chains. It was shown that the short chains were oriented in directions
mostly parallel to the grafting surfaces, whereas the long ones were perpendicular to the
surfaces. Convincing arguments have been provided that the results presented herein are
superior to SCFT which do not take into account fluctuations (due to the mean-field nature
of SCFT) and those MC simulations that do not equilibrate the system properly or do not
equilibrate it at all (such as the enrichment method).
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