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Since the concept of immunologic tolerance was discovered in the 1940s, the pursuit of
tolerance induction in human transplantation has led to a rapid development of pharmaco-
logic and biologic agents. Short-term graft survival remains an all-time high, but successful
withdrawal of immunosuppression to achieve operational tolerance rarely occurs outside
of liver transplantation. Collaborative efforts through the NIH sponsored Immune Toler-
ance Network and the European Commission sponsored Reprogramming the Immune
System for Establishment of Tolerance consortia have afforded researchers opportunity to
evaluate the safety and efficacy of tolerogenic strategies, investigate mechanisms of toler-
ance, and identify molecular and genetic markers that distinguish the tolerance phenotype.
In this article, we review traditional and novel approaches to inducing tolerance for organ
transplantation, with an emphasis on their translation into clinical trials.
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INTRODUCTION
Immunologic tolerance was first introduced in 1945 when Ray
Owen observed that placental interchange resulted in red cell
chimerism between dizygotic bovine twins (Owen, 1945). In the
ensuing decade, Peter Medawar, McFarlane Burnet, and colleagues
elaborated upon this phenomenon of acquired immunologic
tolerance with experimental models of transplantation, which
awarded them the Nobel Prize in Physiology or Medicine in 1960.
Most of the work at the time involved non-self antigen exposure
in immunologically immature hosts, until 1959 when Schwartz
and Dameshek demonstrated a marked delay in the adult rabbit
immune response to iodine-labeled injections of human serum
albumin when treated with 6-mercaptopurine (Schwartz and
Dameshek, 1959). Their descriptions of the inhibition of immune
pathways in this “drug-induced immunological tolerance” notably
foreshadowed the era of pharmacologic development for tolerance
induction.

The next 50 years heralded a boom in drug development and
subsequent improvements in graft survival. In contrast to 1-year
graft survival in 1977 of 53 and 78% for deceased and living-related
donors, respectively (Eggers, 1988), modern immunosuppression
has enabled transplant recipients to enjoy very favorable graft sur-
vival. One-year rates having asymptotically approached 93–96%;
therefore, short-term graft survival alone can no longer be held
as the metric of success for new immunosuppressants. Instead, as
10-year graft survival rates still trail at 47–61%, new agents must
address factors leading to chronic rejection as well as the comor-
bidities associated with chronic immunosuppression. The decisive
measure of success is for a therapy to demonstrate allospecific
immunosuppression while minimizing side effects and preserving
immune competence to infectious pathogens and cancer dur-
ing drug administration, and permanent graft survival after its
withdrawal.

While transplant tolerance has been largely elusive in human
organ transplantation, it has been an achievable feat in

animal – particularly murine – models. Non-human primate stud-
ies have identified successful preclinical tolerogenic approaches,
from T cell depletion and mixed chimerism to costimulation
blockade and cellular therapies (Hamawy and Knechtle, 1998;
Kawai et al., 2011). Our experience with FN18-CRM9 CD3
immunotoxin in rhesus macaques showed that T cell depletion led
to graft survival over 600 days, with five of six long-term survivors
demonstrating donor-specific tolerance by skin grafting (Knechtle
et al., 1997; Torrealba et al., 2003). Kawai et al. (1995) reported tol-
erance induction in four cynomolgus macaques that developed
multilineage mixed chimerism. Costimulation (CD154) block-
ade enhanced mixed chimerism and tolerance induction when
added to their chimerism-inducing non-myeloablative regimen
(Kawai et al., 2004). In the above studies, however, a considerable
number of animals developed chronic rejection, sometimes even
years before their grafts were terminally rejected. This underscores
the metastable nature of tolerance, at least in non-human pri-
mates, which is likely mediated by donor-specific regulatory T cells
expressing TGFβ (Knechtle and Burlingham, 2004; Torrealba et al.,
2004; Ashton-Chess et al., 2007).

Tolerance is infrequently achieved outside of liver transplanta-
tion in humans and is often encountered serendipitously due to
non-compliance or physician-driven immunosuppression with-
drawal for severe adverse effects or malignancy. In clinical practice,
operational tolerance is defined as“a well-functioning graft lacking
histological signs of rejection, in the absence of any immuno-
suppressive drugs (for at least 1 year), in an immunocompetent
host” (Ashton-Chess et al., 2007; Orlando et al., 2010). Orlando
et al. (2009) provided a comprehensive review of all successful and
unsuccessful cases of clinical operational tolerance after liver or
kidney transplantation. One hundred of 461 liver recipients (22%)
remained immunosuppression free 1 year after withdrawal; a total
of 163 cases of successful withdrawal were reported (Orlando et al.,
2009). In kidney transplantation, over 200 claimed cases of opera-
tional tolerance of over 1 year were reviewed (Orlando et al., 2010).
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With approximately 28,000 patients undergoing organ trans-
plantation each year, clinicians face a daunting statistic stacked
against them.

In pursuit of tolerance, a concerted international effort was
made to translate promising basic science findings into clin-
ical practice in transplantation. The US National Institute of
Allergy and Infectious Diseases (NIAID) recruited partnerships
through tolerance experts in academia, industry, and foundations,
and established the US National Institutes of Health sponsored
Immune Tolerance Network (ITN) in 1999 (Bluestone et al., 2010).
Similarly, the European Commission funded the multinational
consortium Reprogramming the Immune System for Establish-
ment of Tolerance (RISET) in 2003. These consortia afforded
researchers to evaluate the safety and efficacy of tolerogenic strate-
gies, investigate mechanisms of tolerance, and identify molecular
and genetic markers that distinguish the tolerance phenotype.
Here, we review traditional and novel approaches to inducing
tolerance for organ transplantation (Figure 1; Table 1). We will
discuss within each topic the pre-clinical studies that have or may
lead to clinical trials, to focus this topic on the translation of these
therapies.

MOLECULE-BASED APPROACHES
T CELL THERAPIES – DEPLETION
Early attempts at transplantation in humans were fraught with
early graft failure due to a robust alloimmune response mediated
by activated T cells. We have since learned that the suppres-
sion of these alloreactive T cells permits long-term graft survival
and, at times, operational tolerance (Starzl et al., 1963; Meier-
Kriesche et al., 2004; Womer and Kaplan, 2009). In the 1980s,
Strober et al. (1989) observed that some renal transplant patients
undergoing total lymphoid irradiation acquired tolerance to their
allografts after withdrawal of immunosuppression and demon-
strated donor-specific unresponsiveness in vitro. Over 30 years
later, the concept of eliminating alloreactive T cells upon induc-
tion continues to prevail, as T cell depletion remains the most
common induction therapy in the U.S (HHS/HRSA/HSB/DOT,
2009). While steroids, calcineurin inhibitors, rapamycin, and
mycophenolate mofetil comprise essential components of most
immunosuppressive regimens, we will focus our discussion on
induction strategies.

Anti-thymocyte globulin (ATG), the oldest depleting agent dat-
ing back to the late 1890s, has been a mainstay in induction
therapy since the 1960s (Gaber et al., 2010). Due to its potency
and markedly heterogeneous target antigen specificities, ATG is
particularly useful in high-risk recipients as well as in preventing
ischemia-reperfusion injury (Cecka et al., 1993; Shield et al., 1997;
Michallet et al., 2003; Bunnapradist and Takemoto, 2005; Chappell
et al., 2006; Beiras-Fernandez et al., 2009). ATG has been found to
promote regulatory T cells in vitro and in murine studies (Lopez
et al., 2006; Shimony et al., 2012). The NIAID and ITN are cur-
rently conducting a phase II clinical trial using rabbit ATG and
rituximab (plus tacrolimus and sirolimus) for tolerance induction
in living-donor renal recipients (Markmann, 2011).

Alemtuzumab (Campath-1H, Genzyme), a humanized mAb
to CD52 found densely distributed on T and B lymphocytes
and natural killer cells (Magliocca and Knechtle, 2006), has been

an increasingly popular therapeutic, with three ITN-sponsored
trials and over 40 clinical trials registered for liver and kidney
transplantation. Ten years ago, we conducted a pilot study of 29
kidney transplant recipients receiving Campath-1H induction and
a steroid and calcineurin inhibitor-free maintenance regimen, con-
firming its efficacy as an induction agent (Knechtle et al., 2003,
2009). When compared to other induction regimens, patients
treated with Campath-1H experienced less rejection, especially
in patients with delayed graft function, without increased risk
of infection or malignancy (Knechtle et al., 2004). Hanaway et al.
(2011) in a multicenter, randomized, prospective trial, found
that kidney recipients treated with alemtuzumab had significantly
reduced early acute rejection rates compared to induction with
basiliximab in low-risk and rATG in high-risk patients. As alem-
tuzumab has been associated with rapid homeostatic proliferation
of memory T cells after depletion, increased B cell activating factor
(BAFF), and higher rates of alloantibody production and humoral
rejection (Knechtle et al., 2003; Pearl et al., 2005; Trzonkowski
et al., 2008; Bloom et al., 2009; Thompson et al., 2010), strate-
gic pairing with other immunosuppressive agents may overcome
these hurdles. Clinical studies evaluating alemtuzumab in com-
bination therapy with costimulation blockade, regulatory T cell
infusion, and donor stem cell transfusion are some of the novel
approaches to tolerance induction currently in study.

T CELL THERAPIES – COSTIMULATION BLOCKADE
Alloreactive T cell activation requires antigen-specific engagement
of the T cell receptor with major histocompatibility complex
molecules (signal 1), followed by antigen non-specific ligation
of a variety of receptor–ligand combinations, or costimulation
(signal 2; Jenkins and Schwartz, 1987). Blockade of costimulation
effectively prevents T cell activation and allograft rejection (Kirk
et al., 1997; Li et al., 1999). While costimulation blockade ren-
ders the T cell anergic (Schwartz, 1990), these anergic T cells may
express inducible costimulator (ICOS) and play a regulatory role
(Vermeiren et al., 2004). In addition, costimulation blockade does
not require radical ablation of the immune system by lymphocyte
depletion or irradiation, thus shifting the emphasis from induction
to maintenance immunosuppression (Larsen et al., 2006).

Costimulatory signals of the CD28:B7 (CD80/86) immunoglob-
ulin superfamily and CD40:CD154 (CD40L) tumor necrosis factor
(TNF) family are the most studied and potentially most important
activating costimulation pathways. Cytotoxic lympocyte antigen-4
(CTLA-4) shares about 30% homology with CD28, and binds with
10–20-fold higher affinity than CD28 to B7 molecules on the anti-
gen presenting cell (APC). Not only does this potently inhibit
the T cell, but also its ligation with APC B7 molecules induces
indoleamine 2,3-dioxygenase expression, promoting the suppres-
sive functions in CTLA4+ regulatory CD4+ cells (Munn et al.,
2004). Abatacept (Orencia, Bristol-Myers Squibb) and belata-
cept (Nulojix, Bristol-Myers Squibb), fusion proteins composed of
CTLA-4 and immoglobulin IgG1, have utilized this mechanism to
confer potent inhibition of alloreactive T cell responses. Belatacept
was developed to increase affinity for CD86; with an increase in
affinity by fourfold for CD86 and by twofold for CD80, Belatacept
more effectively inhibited T cell activation in vitro compared to
its predecessor CTLA-4Ig (Larsen et al., 2005). Preclinical studies
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FIGURE 1 | Approaches to transplant tolerance induction. (Top left)
Mixed chimerism is achieved by infusing donor bone marrow into
myelo-conditioned recipients, to establish co-existence of donor and
recipient cells in the setting of organ transplantation. The dotted arrows
indicate cell types originating from the bone marrow, unrelated to mixed
chimerism. (Top right) Allospecific T cell responses can be abrogated
through a number of mechanisms, including irradiation, pharmacologic

lymphodepletion by ATG or alemtuzumab, suppression of activation by
costimulation blockade or IL-2 receptor blockade. (Bottom right) Tolerogenic
cell types, including regulatory T cells, macrophages, and mesenchymal
stromal cells, can inhibit effector T cells through direct ligation or inhibitory
cytokine production. (Bottom left) The humoral response can be suppressed
through B cell depletion, and blockade of survival factors (BAFF), plasma cells,
and complement.

using CD28:B7 blockade were able to demonstrate prolonged graft
survival in non-human primate models of islet transplantation
(Adams et al., 2002).

In a randomized, phase III human clinical trial called Belat-
acept Evaluation of Nephroprotection and Efficacy as First-line
Immunosuppression Trial (BENEFIT), recipients of living or

standard criteria deceased donors underwent basiliximab induc-
tion with mycophenolate mofetil and a steroid taper. Belatacept
maintenance, compared to cyclosporine, resulted in superior renal
function, cardiovascular and metabolic profiles in the first 2 years
(Larsen et al., 2010; Vanrenterghem et al., 2011; Pestana et al.,
2012); extension of the trial to recipients of extended criteria
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Table 1 | Strategies for tolerance induction.This table outlines the pharmacologic, biologic, and cellular therapies discussed in this article,

categorized byT cell agents, B cell agents, and cellular therapies (including mixed chimerism).

Category Therapeutic Mechanism

T cell depletion Anti-thymocyte globulin (ATG) Depleting polyclonal antibodies to thymocytes that express multiple target antigens; possible

induction of regulatory T cells

Alemtuzumab Depleting mAb to CD52, on T, B, NK cells, some monocytes

Costimulation blockade Abatacept CTLA-4 Ig, blockade of CD28:CD80/86 costimulatory pathway

Belatacept CTLA-4 Ig, blockade of CD28:CD80/86 costimulatory pathway

Efalizumab Blockade of LFA-1:ICAM-1 costimulatory pathway

Other T cell therapies Basiliximab Blockade of CD25 (interleukin 2 receptor α chain)

Aldesleukin + rapamycin Interleukin 2 + rapamycin, to increase regulatory T cell proliferation and survival, and stabilize

the expression of Forkhead box P3 (FoxP3)

B cell therapeutics Rituximab Depleting mAb to CD20

Belimumab Blockade of B cell activating factor (BAFF), causing depletion of follicular and alloreactive B cells,

decrease in alloantibody response, and promotion of immature/transitional B cell phenotype and

a regulatory cytokine environment

Atacicept Blockade of BAFF and APRIL

BR3-Fc Blockade of BAFF, causing decrease in peripheral, marginal zone, and follicular B cells

Bortezomib Proteosome inhibitor, causing apoptosis of mature plasma cells

Eculizumab Blockade of complement protein C5, to prevent complement mediated injury due to circulating

alloantibody

Cellular therapy Mixed chimerism Infusion of donor bone marrow into myoablated/immune-conditioned recipient, to produce co-

existence of donor and recipient cells

Regulatory T cells Infusion of expanded regulatory T cells, to inhibit inflammatory cytokine production, down-

regulate costimulatory and adhesion molecules, promote anergy and cell death, convert effector

T cells to a regulatory phenotype, and produce suppressive cytokines IL-10, TGFβ, and IL35

Regulatory T cells + IL-2 As above, plus the addition of IL-2 to promote Treg survival, development, and expansion

Dendritic cells Immunomodulatory effects include their ability to acquire and present antigen, expand and

respond to antigen-specific Tregs, constitutively express low levels of MHC and costimulatory

molecules, produce high IL-10 and TGFβ and low IL-12, resist activation by danger signals and

CD40 ligation, resist killing by natural killer or T cells, and promote apoptosis of effector T cells

Macrophages Immune suppression mediated through the enrichment of CD4+ CD25+ Foxp3 cells and cell

contact- and caspase-dependent depletion of activated T cells

Mesenchymal stromal cells Inhibition of T cell activation and proliferation, potentially due to production of IL-10, NO, and

IDO, and suppression of IFNγ and IL-17

donors found similar protective effects on graft function as mea-
sured by mean calculated glomerular filtration rate (Pestana et al.,
2012). All studies, however, documented increased risk of post-
transplant lymphoproliferative disorder in the belatacept-treated
arm, compared to the cyclosporine-treated arm.

Activated T cells rapidly upregulate CD154 (CD40L) expres-
sion and can bind to CD40, which is constitutively expressed
on B cells, dendritic cells (ss), and macrophages (van Kooten
and Banchereau, 1997a,b). Blockade of this pathway significantly
prolongs allograft survival in non-human primate kidney, heart,
skin, peripheral nerve, alloislet, and xenoislet transplantation
(Kirk et al., 1997, 1999; Pearson et al., 2002; Xu et al., 2002, 2003;

Brenner et al., 2004; Kawai et al., 2004; Adams et al., 2005;
Azimzadeh et al., 2006; Hering et al., 2006; Pearl et al., 2007; Aoy-
agi et al., 2009; Thompson et al., 2011; Badell et al., 2012). Newer
antibodies targeting this pathway have avoided platelet activation-
induced thromboembolic complications observed with older anti-
CD154 mAbs (Koyama et al., 2004). Newer CD40/CD40L blocking
agents have yet to be translated to clinical trials.

The lymphocyte function-associated antigen (LFA-1): intra-
cellular adhesion molecule (ICAM) costimulation pathway has
also been studied through therapeutic blockade in transplan-
tation. Badell et al. (2010) reported that short-term treatment
with LFA-1 prolonged islet allograft in rhesus macaques, and
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suggested its utility in treating CD28-costimulation blockade-
resistant T cell populations. Turgeon et al. (2010) observed that
efalizumab (Raptiva, Genentech/Merck Serono) treated patients
experienced fewer immunosuppression-related events compared
to the standard Edmonton protocol, and also required no addi-
tional islet infusions to achieve insulin independence. Efalizumab
was withdrawn from the market in 2009 due to a reported
increased risk of progressive multifocal leukoencephalopathy
(Carson et al., 2009).

OTHER T CELL THERAPIES
While numerous other surface molecules such as ICOS and very
late antigen 4 (VLA-4) have been targeted (Matthews et al., 2003),
we will limit discussion here to two trials sponsored by the ITN. In
1999, Shapiro and colleagues presented results from a multicen-
ter, international clinical trial evaluating the Edmonton protocol
for islet transplantation, which used interleukin-2 receptor α

chain (CD25) blockade for induction (Shapiro et al., 2006). Fifty-
eight percent of patients achieved insulin independence, although
only 31% of them remained independent after 2 years. While
daclizumab (Zenapax, Hoffmann-La Roche), used in the trial, was
discontinued in 2009, basiliximab (Simulect, Novartis) remains a
popular induction agent. The Kidney Disease: Improving Global
Outcomes (KDIGO) group and European Renal Best Practice
Advisory Board recommended for all non-high risk kidney trans-
plant recipients to receive IL2R blockade as first line induction
therapy (Kasiske et al., 2010).

The ITN is also sponsoring a phase I trial in type I diabetes,
using a combination of IL-2 aldesleukin (Proleukin, Prometheus)
and rapamycin to arrest islet cell destruction. Animal studies have
shown that treatment with IL-2 increases regulatory T cell prolif-
eration and survival (Rabinovitch et al., 2002; Tang et al., 2008).
Combination with rapamycin, which stabilizes the expression of
Forkhead box P3 (FoxP3) and enhances suppression (Battaglia
et al., 2006; Singh et al., 2012), may promote tolerance in these
autoimmune and potentially alloimmune settings.

B CELL THERAPIES
The role of B cells in operational tolerance has yet to be defined.
On one hand, an ITN-sponsored collaboration identified a unique
B cell signature associated with 25 operationally tolerant renal
transplant recipients. Not only did tolerant patients exhibit an
increase in total and naïve B cells, but also the majority of genes
that were increasingly expressed were B cell-specific, particularly of
transitional B cells (Newell et al., 2010). While these transitional
B cells could represent a regulatory B cell population based on
their increased IL-10 production as discussed by Redfield et al.
(2011), no difference in B cell subsets (total, naïve, and transitional
cells) or inhibitory cytokines (IL-10 and TGFβ) was detected when
compared to healthy controls (Newell et al., 2010).

On the other hand, B cells play a major role in chronic rejec-
tion (Kwun and Knechtle, 2009), as donor-specific alloantibodies
(DSA) have been causally linked to chronic rejection and long-
term graft failure (Eng et al., 2008; Lefaucheur et al., 2008; Terasaki
and Cai, 2008; Lee et al., 2009). Patients with pretransplant class I
and II DSA have a 10-year graft survival of 30% compared to 72%
without (Otten et al., 2012). Donor-specific antibodies, present in

approximately 30% of renal transplant candidates on the waiting
list (Jordan and Pescovitz, 2006; Jackson and Zachary, 2008) and
developing de novo post-transplant in 26% of recipients (Terasaki
et al., 2006), are a pervasive problem and relevant to the discus-
sion of tolerance induction. While the mechanisms through which
B cells may mediate tolerance are unclear, B cells and their ther-
apeutics have certainly emerged as a growing field of interest in
transplant immunology.

Long-term allograft acceptance has been achieved by augment-
ing traditional immunotherapy with B cell depleting antibodies. In
cynomolgus macaques, Liu et al. (2007) observed long-term islet
allograft survival when rabbit ATG was combined with CD20+
B cell-depleting rituximab for induction and rapamycin for main-
tenance. B cell reconstitution began 100 days after transplantation;
long-term survivors exhibited immature and transitional B cells
(CD19+ CD27-CD38+ IgM+) in contrast with early rejectors
that attained a mature B cell phenotype (CD19+ CD27+ CD38+
IgM−). DSA production was inhibited only in the setting of con-
tinue rapamycin monotherapy. Compared to cyclosporine alone,
treatment with cyclosporine plus rituximab induction (days – 1,
7, 14, and 21) prolonged graft survival, inhibited DSA produc-
tion, and attenuated chronic rejection in a cynomolgus macaque
heart transplantation model (Kelishadi et al., 2010). Kopchali-
iska et al. (2009) found that renal transplant patients undergoing
B cell depletion for desensitization experienced reconstitution
with transitional CD38+ B cells and a significant delay in donor
HLA-specific CD27+ memory B cell repopulation. These stud-
ies support that selective use or pairing of B cell depleting agents
can generate tolerance promoting B cell phenotypes and elim-
inate factors leading to chronic rejection. As B cell depletion
is inadequate for preventing xeno-specific antibodies (Alwayn
et al., 2001) and has had mixed results in desensitization (Ramos
et al., 2007; Munoz et al., 2008; Vo et al., 2008; Kozlowski and
Andreoni, 2011), further evaluation is needed to optimize its use in
transplantation.

Recent studies have used selective targeting of B cell acti-
vation and signaling pathways to overcome the problems of
DSA and desensitization. BAFF, a member of the TNF family
involved in B cell survival, proliferation, and maturation, has
been correlated with increased panel reactive antibodies, DSA,
B cell repopulation, and C4d+ renal allograft rejection (Schnei-
der et al., 1999; Mackay et al., 2003; Xu et al., 2009a,b; Zarkhin
et al., 2009). Its blockade using human recombinant mAb beli-
mumab (Benlysta, Human Genome Sciences/GlaxoSmithKline)
promoted tolerance in murine cardiac and islet allograft models
by (1) depleting follicular and alloreactive B cells, (2) promot-
ing an immature/transitional B cell phenotype, (3) abrogating the
alloantibody response, and (4) sustaining a regulatory cytokine
environment (Zarkhin et al., 2009; Vivek et al., 2011). The same
group evaluated belimumab in a phase II clinical trial for the
desensitization of kidney transplant candidates, but recently ter-
minated the study for not reaching efficacy in its primary goals
(clinicaltrials.gov ID: NCT01025193). Atacicept (ZymoGenet-
ics/Merck Serono) and BR3-Fc (Briobacept, Genentech/Biogen
Idec, discontinued in 2011) are two other BAFF pathway-targeting
agents that have demonstrated reduction of alloantibodies and
peripheral B cells in non-human primates (Vugmeyster et al.,
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2006). As Atacicept has failed to show efficacy in clinical trials for
rheumatoid arthritis and multiple sclerosis (EMD Serono, 2011;
Nanda, 2011), the utility of BAFF/APRIL blockade in human B
cell pathology remains to be answered.

Other strategies have focused on plasma cell and complement
inhibition for diminishing the humoral response. Bortezomib
(Velcade, Millennium), a proteosome inhibitor developed for mul-
tiple myeloma and mantle cell lymphoma (Richardson et al.,2003),
is an antineoplastic agent causing apoptosis of mature plasma cells.
It has been shown to remove alloantibodies and improve allograft
function after antibody-mediated rejection (AMR) in kidney, lung,
and heart transplant recipients, particularly when combined with
plasmapheresis and intravenous immunoglobulin (Patel et al.,
2011; Morrow et al., 2012; Stuckey et al., 2012; Sureshkumar et al.,
2012), but has had less success in desensitization of renal can-
didates and late cardiac antibody-mediated rejection (Guthoff
et al., 2012; Hodges et al., 2012). Waiser et al. (2012) found that
bortezomib was more effective at preserving renal function than
rituximab, when given in conjunction with standard therapy for
antibody-mediated renal allograft rejection. Currently, three clin-
ical trials are listed for the use of bortezomib in desensitization
and clonal deletion of kidney recipients and candidates (clini-
caltrials.gov, ID: NCT01349595, NCT00722722, NCT01408797).
Eculizumab (Soliris, Alexion) is a recombinant humanized mAb
to complement protein C5. Several clinical trials are currently
evaluating its efficacy in reducing AMR in DSA + candidates,
improving graft function in DSA + recipients, and preventing
AMR in ABO blood group incompatible living donor kidney trans-
plantation (clinicaltrials.gov, ID: NCT01327573, NCT01399593,
NCT01106027, NCT00670774, NCT01095887).

CHIMERISM-BASED APPROACHES
Chimerism is the concept that cells of different donor origins can
coexist in the same organism, i.e., a form of tolerance. Chimerism
itself can be defined into two broad categories: “mixed” or “micro-
chimerism” and “full” or “macro-chimerism.” Mixed chimerism
is defined as the presence of both donor and recipient cell lin-
eages coexisting in the recipient bone marrow. Full chimerism
implies complete elimination of recipient hematopoietic lineages
and population of the recipient bone marrow by 100% donor cells
(Jankowski and Ildstad, 1997).

As described earlier, Owen was one of the first to describe
this finding in the circulating red blood cells of freemartin cat-
tle in which genetically different populations of red blood cells
existed in the same animal (Owen, 1945). Its potential application
to transplantation was revealed through the work of Medawar
and colleagues who found that these same cattle could accept skin
grafts from related, but non-identical donors with no immuno-
suppression (Billingham et al., 1953). Since that time, the idea
of hematopoietic chimerism, as a mechanism for tolerance in
transplant allograft recipients, has captured the imagination of
physicians and researchers working the in the field of organ
transplantation.

Practical implementation of this strategy in the clinic has only
come to fruition in recent years. The lag in Medawar’s observa-
tions and the clinical implementation of his and his colleagues’
findings in solid organ transplant recipients suggests a number

of barriers needed to be overcome before clinical application of
chimerism could be successful (Jankowski and Ildstad, 1997). The
most significant of those barriers is the conditioning of donors
and recipients to produce an environment where both donor
and host hematopoietic cells can co-exist (Jankowski and Ild-
stad, 1997; Sachs et al., 2011). In somewhat simplistic terms, a
mature host immune system has had time to develop and pro-
duce a presumably robust and crowded repertoire of immune
cell populations. In order to produce a mixed population of
cells, that crowded repertoire must be reduced in size to allow
donor hematopoietic cells to exist. Furthermore, recipients must
be conditioned to accept these donor cells. Finally, donor cells
that could attack the host and cause graft-versus-host disease
(GVHD) also need to be eliminated while at the same time pre-
serving the recipient’s ability to produce immune populations
that can defend against infections (Jankowski and Ildstad, 1997;
Sachs et al., 2011).

These barriers favored a strategy of pursuing mixed chimerism
in solid organ transplant recipients, as total marrow ablation asso-
ciated with full chimerism was thought to be too risky in patients
undergoing a semi-elective procedure who would otherwise do
well with standard immunosuppression regimens (Sachs et al.,
2011). Numerous groups but particularly those of Ilstad and Sachs
demonstrated in animal and non-human primate studies that
partial irradiation of the recipient bone marrow with peripheral
deletion of recipient T cells allowed for the development of both
donor and recipient hematopoietic cells and induction of tolerance
to donor tissue without the need for full myoablation (Ildstad and
Sachs, 1984; Sharabi and Sachs, 1989; Kaufman and Ildstad, 1994;
Colson et al., 1995). Mixed chimerism was also found to be bene-
ficial over full chimerism from an infectious risk standpoint both
in Ilstad and Sachs’ work as well as in humans undergoing bone
marrow transplantation for hematopoietic malignancies (Rayfield
and Brent, 1983; Ruedi et al., 1989). While non-myeloablative
conditioning only promoted transient mixed chimerism in the
HLA-mismatched setting, long-term renal allograft survival was
achieved in most patients (Kawai et al., 2011).

Sachs and colleagues took their experimental findings and then
went on to implement these strategies in the clinic (Kawai et al.,
2008; Spitzer et al., 2011). To date, their group has published
two series on induction of mixed chimerism in kidney transplant
recipients and subsequent induction of tolerance. Having found
that tolerance in chimerism has both a central and peripheral
component, their induction strategy now includes thymic irra-
diation to allow for development of a donor T cell reservoir in
these solid organ recipients (Kawai et al., 2008; Sachs et al., 2011;
Spitzer et al., 2011).

The results from the aforementioned studies indicate that in
both HLA-matched and -mismatched recipients induction of
mixed chimerism may be a viable strategy for inducing toler-
ance in solid organ recipients. To date, of the HLA-matched
recipients, seven of eight experienced no episodes of rejection
with the single patient with rejection being treated and back
on standard immunosuppression. All of these patients also had
multiple myeloma so they underwent concomitant bone marrow
transplantation. Unfortunately, despite the success of their solid
organ transplants, three of the recipients have had recurrence of
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their multiple myeloma (Sachs et al., 2011; Spitzer et al., 2011).
Among the HLA-mismatched patients, one of nine experienced
acute rejection, which was effectively treated, and one of nine
currently has chronic allograft injury (Kawai et al., 2008; Sachs
et al., 2011). The Stanford group recently published their expe-
rience of sixteen patients undergoing HLA-matched kidney and
hematopoietic cell transplants (Scandling et al., 2012). Condition-
ing with total lymphoid irradiation and ATG promoted increased
proportions of CD4+ CD25+ regulatory T cells (compared to
naïve CD4 T cells) and chimerism in 15 patients. Eight patients
had successful withdrawal of immunosuppression for 1–3 years,
and only four were unable to withdraw due to recurrent disease
or rejection.

These results, though limited, indicate an exciting future for
chimerism as a strategy for inducing tolerance in solid organ trans-
plant recipients. They serve as evidence that observations in basic
science serve as the basis for new discovery of effective clinical
immunosuppressive therapies in the field of transplant surgery.

OTHER CELL-BASED APPROACHES
REGULATORY T CELLS
The immune repertoire of experimental animal models and
operationally tolerant patients strongly suggests a major role of
regulatory T cells (Tregs) in inducing and maintaining tolerance
(Graca et al., 2002; Levitsky, 2011). The mechanisms by which
these CD4+ CD25+ T cells exert regulatory control of immune
responses are diverse. Upon allorecognition via direct or indi-
rect pathways, Tregs can suppress other T cells through inhibition
of cytokine production, down-regulation of costimulatory and
adhesion molecules, promotion of anergy and cell death, and con-
version of effector T cells to a regulatory phenotype (Wood and
Sakaguchi, 2003; O’Garra and Vieira, 2004). A key transcription
factor in Treg development and function, Forkhead box protein 3
(Foxp3) has been commonly used to distinguish this population
(Hori et al., 2003; Collison et al., 2007), although FoxP3− T cells
producing suppressive cytokines IL10 (type I), TGFβ (type 3),
and IL35 (type 35) have been identified (Nakamura et al., 2004;
Vieira et al., 2004; Collison et al., 2007).

In vitro expansion of Tregs has been shown to preserve sup-
pressive function (Levings et al., 2001; Godfrey et al., 2004), thus
making it an attractive tolerogenic therapy. Polyclonal expansion
using magnetic beads coated with CD3 and CD28 antibodies may
yield a several hundred-fold expansion of antigen non-specific
Tregs that maintain classic surface and intracellular Treg markers
and more importantly their regulatory function (Bluestone, 2005).
Hoffmann et al. (2004) documented up to 40,000-fold expan-
sion in vitro by repeatedly stimulating with CD3 and CD28 and
high dose interleukin 2. While using this technique significantly
inhibits graft-versus-host disease (GVHD) as well as allo- and
auto-immunity (Taylor et al., 2002; Xia et al., 2006), the inhibitory
effect is more pronounced when antigen-specific Tregs are admin-
istered (Masteller et al., 2005; Trenado et al., 2006; Nagahama et al.,
2007; Zeng et al., 2009; Brennan et al., 2011).

Antigen-specific Tregs can be generated in several ways. Cohen
et al. (2002) co-cultured purified CD4+ CD25+ CD62L+ T cells
with irradiated splenocytes and observed a significant delay
in GVHD development in a murine model. Interestingly, the

treated mice later developed severe GVHD, suggesting a lim-
ited half-life of these ex vivo expanded Tregs. Joffre et al. (2008)
observed long-term tolerance in irradiated mice were treated with
alloantigen-specific Tregs in bone marrow, and subsequent skin
and cardiac allograft models. In a rat liver transplant model,
Pu et al. (2007) found that donor-specific splenocyte-stimulated
Tregs prolonged graft survival when compared to third party
splenocyte stimulated Tregs and freshly isolated syngeneic Tregs.
Short-term tacrolimus administration with donor-specific Tregs
further enhanced long-term graft acceptance. Yamazaki et al.
(2006) observed that dendritic cells were more effective than
splenocytes at expanding Tregs and sustaining their Foxp3 expres-
sion. Golshayan et al. (2007) used autologous dendritic cells pulsed
with an allospecific peptide to promote skin graft tolerance; this
approach was later implemented on murine cardiac allografts and
paired with short-term rapamycin treatment to achieve indefinite
graft survival in three of four mice (Tsang et al., 2009). Peptide-
MHC multimers can also be used to create antigen-specific Tregs.
Masteller et al. (2005) employed beads coated with recombinant
islet peptide mimic-MHC class II plus CD28 antibodies and IL-2;
expanded islet peptide mimic-specific Tregs were more efficiently
able to suppress autoimmune diabetes in non-obese diabetic mice
than polyclonally activated Tregs. Antigen-specific Tregs have also
been generated using lentiviral T cell receptor gene transfer into
polyclonally expanded cells (Brusko et al., 2010). Finally, Tregs
expanded up to 50 million fold by artificial APC s have been shown
to maintain suppressor function and reduce GVHD lethality
(Hippen et al., 2011). The ability to massively expand functional
Tregs in such ways may overcome the challenge of extracting
enough circulating Tregs for therapeutic preparation.

In vivo expansion of antigen-specific Tregs has also been
described in a mouse model (Nishimura et al., 2004). Yamazaki
et al. (2003) described the use of antigen-loaded dendritic cells to
stimulate CD4+ CD25+ T cell proliferation in vivo, and induce
expansion of adoptively transferred CD4+ CD25+ T cells as well.
Walker et al. (2003) found that Tregs deemed anergic based on
in vitro stimulation assays were capable of proliferating in vivo
in response to immunization. These studies suggest that thera-
peutically administered antigen-specific Tregs can continue to be
expanded in vivo.

The initial clinical trials utilizing Treg immunotherapy for
hematopoietic stem cell transplantation (HSCT) have shown
promising results (Edinger and Hoffmann, 2011). Brunstein et al.
(2011) recently published the University of Minnesota experi-
ence, where umbilical cord blood (UCB) derived Tregs were
CD3/CD28/IL2 expanded and infused after double UCB trans-
plantation. UCB Tregs were detectable for 14 days, were free of
infusion toxicities, and reduced the incidence of severe GVHD. Di
Ianni et al. (2011) from the University of Pergia, Italy, observed
that co-infusion of Tregs with conventional T cells in the absence
of concurrent immunosuppression prevented lethal GVHD and
promoted immune reconstitution and protective immunity in 28
patients undergoing HLA-haploidentical HSCT. As interleukin-
2 has been found to be critical for Treg survival, development,
and expansion (Nelson, 2004; Malek, 2008), it has been admin-
istered in clinical trials of autoimmunity and refractory chronic
GVHD to augment Treg numbers (Koreth et al., 2011; Saadoun
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et al., 2011). An important consideration to make of Treg therapy
is its cost, with Treg expansion costing $32,000–48,000 per patient
(Leslie, 2011).

TOLEROGENIC DENDRITIC CELLS, MACROPHAGES, AND
MESENCHYMAL STROMAL CELLS
Tolerogenic dendritic cells recently have invoked interest in trans-
plantation. Their tolerogenic properties include the ability to
acquire and present antigen, expand and respond to antigen-
specific Tregs, constitutively express low levels of MHC and
costimulatory molecules, produce high IL-10 and TGFβ and low
IL-12, resist activation by danger signals and CD40 ligation, resist
killing by natural killer or T cells, and promote apoptosis of effector
T cells (Thomson et al., 2009). Turnquist et al. (2007) demon-
strated indefinite cardiac allograft survival in mice treated with
rapamycin-conditioned alloantigen-pulsed dendritic cells. Tregs
stimulated by rapamycin-conditioned DCs compared to control
Tregs more effectively suppressed antigen-specific T cell prolifera-
tion. The regulatory function of DCs mediated by allospecific Treg
expansion has also been confirmed in a murine GVHD model
(Fujita et al., 2007). To prepare for translation to clinical prac-
tice, Boks et al. found that IL-10-generated human tolerogenic
DCs were optimal in producing highly suppressive Tregs, com-
pared to conditioning with vitamin D3, dexamathasone, TGFβ,
and rapamycin (Boks et al., 2012). They recommended maturing
IL-10 DCs with a cocktail of TNFα, IL-1β, and prostaglandin E2

(PGE2) for optimal migration and stability in pro-inflammatory
conditions.

The RISET consortium has supported two clinical trials in the
use of transplant acceptance-inducing cell (TAIC) to promote
renal allograft survival. The concept of TAIC, an immunoreg-
ulatory macrophage, originated from animal models of trans-
plantation and autoimmunity. First, intraportal infusion of rat
embryonic stem cell lines in thymus competent rats induced mixed
chimerism and allowed permanent acceptance of cardiac allografts
(Fandrich et al., 2002). The same group extended this technique
of infusing donor-derived TAIC cells to prolong allograft sur-
vival in a porcine lung transplant model (Warnecke et al., 2009).
In a murine model of inflammatory bowel disease, the infusion
of interferon gamma-stimulated monocyte-derived cells (IFNγ-
MdC) procured from mouse spleen, blood, and bone marrow
reduced inflammation from chronic colitis. These IFNγ-MdC,
described as a non-dendritic cell and more mature form of rest-
ing macrophages expressing F4/80, CD11, CD86, and PDL-1,
mediated their suppressive effects through the enrichment of
CD4+ CD25+ Foxp3 cells and cell contact- and caspase-dependent
depletion of activated T cells (Brem-Exner et al., 2008).

In a phase I/II clinical trial, 12 renal transplant recipients under-
went postoperative intravenous infusion of macrophages derived
from isolated donor splenic monocytes (Hutchinson et al., 2008b).
Three of the 12 patients completed their immunosuppression min-
imization protocol of sequentially withdrawing steroids, sirolimus,
and minimizing tacrolimus. Upon confirming the safety of TAIC
infusion, a second clinical trial was conducted in five living-related
kidney recipients. The induction regimen differed from the first
trial, with ATG administered with steroids, tacrolimus, and a
preoperative infusion of a greater number of TAICs. Although

a higher rate of early acute rejection was observed, three patients
were weaned to low-dose tacrolimus monotherapy and one off
all immunosuppression for at least 8 months (Hutchinson et al.,
2008a). None of the patients in either trial were sensitized to donor
antigens using this technique.

Mesenchymal stromal cells (MSCs) have also been evaluated in
the transplant setting. Their immunomodulatory properties are
several, including their capacity to inhibit T cell activation and
proliferation, possibly due to the production of nitric oxide and
indoleamine-2,3-dioxygenase (Singer and Caplan, 2011). In addi-
tion, upon coculturing with purified immune subpopulations,
Aggarwal and Pittenger (2005) described bone marrow-derived
MSCs as increasing Treg proportions, decreasing TNFα and IFNγ

production by mature DCs, TH1 cells, and NK cells, and increas-
ing IL-10, IL-4, and PGE2 . Co-infusion of MSCs with donor bone
marrow has been shown to enhance mixed chimerism, reverse
GVHD, and improve vascularized skin grafts in rats (Aksu et al.,
2008). In a rat islet transplantation model, Solari et al. (2009)
demonstrated long-term islet allograft survival, normal serum
insulin levels, and normoglycemia when autologous MSCs were
co-transplanted with marginal islet masses. Promising results from
a phase II clinical trial showed that 39 of 55 patients with steroid-
resistant, severe acute GVHD responded to MSC therapy and
experienced a significant survival benefit (Le Blanc et al., 2008).
Phase III randomized, placebo-controlled clinical trials, how-
ever, failed to show benefit in the setting of refractory GVHD
(Allison, 2009; Ankrum and Karp, 2010).

Recently, MSCs harvested from term fetal membranes have
been shown to significantly suppress allogeneic lymphocyte pro-
liferation in mixed lymphocyte reactions, by suppressing IFNγ

and IL-17 production and increasing IL-10 production (Karlsson
et al., 2012). Duijvestein et al. (2011) found that coadministra-
tion with immunosuppressive agents used in inflammatory bowel
disease (azathioprine, methotrexate, 6-mercaptopurine, and anti-
TNFα antibodies) did not affect MSCs suppressive function
in vitro, and even had an additive inhibitory effect with some
drugs. This suggests that the use of MSCs may be effective in
the setting of immunosuppressive drugs used for transplantation
as well.

Cell-based approaches to tolerance induction are promising,
but further investigation in how these cell populations regulate
alloimmune responses is necessary. Moreover, this technology
may be limited due to prohibitive costs, availability (with only
a few centers capable of amplifying cell populations to sufficient
numbers), and issues of standardization and biologics regulation
(Bluestone et al., 2007).

CONCLUSION
Operational tolerance in organ transplant patients continues to
be an elusive clinical goal but has stimulated a broad variety
of approaches. Research in tolerance has elucidated mechanis-
tic pathways of rejection, T cell regulation, and T cell activation
previously unknown. In concert with therapeutic approaches
to tolerance, diagnostic assays to identify tolerance and distin-
guish it from “non-tolerance” are needed, and progress continues
in this area relying in part on microarray analysis of tolerant
patients. For instance, Li et al. (2012) have identified a small set of
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13 genes common to both adult and pediatric liver transplant
patients demonstrating operational tolerance. The work by the
group of Sanchez-Fueyo continues to publish on biomarkers asso-
ciated with operationally tolerant liver transplant recipients and
their data suggest that both blood and liver tissue gene expres-
sion can predict the outcome of immunosuppression withdrawal
(Bohne et al., 2012). Interestingly, the genetic signature of tol-
erance in liver transplantation may differ significantly from that
of kidney transplantation for reasons that are unknown at this
time (Sagoo et al., 2010). While most clinical work on tolerance

focuses on liver transplantation since this organ lends itself best
to transplant tolerance, only a miniscule fraction of liver trans-
plant patients appear to have achieved stable tolerance to date,
and efforts in this arena need to be conducted under strict clin-
ical guidance in protocols designed to protect the patients’ best
interests (Levitsky, 2011). Nevertheless, it would appear likely that
as immunologic monitoring evolves into a clinical reality in the
coming years, that some patients may benefit from successful with-
drawal of immunosuppression while maintaining excellent graft
function and intact host defenses.
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