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Abstract: Since the honeybee possesses eusociality, advanced learning, memory ability,
and information sharing through the use of various pheromones and sophisticated symbol
communication (i.e., the “waggle dance”), this remarkable social animal has been one of the model
symbolic animals for biological studies, animal ecology, ethology, and neuroethology. Karl von Frisch
discovered the meanings of the waggle dance and called the communication a “dance language.”
Subsequent to this discovery, it has been extensively studied how effectively recruits translate the
code in the dance to reach the advertised destination and how the waggle dance information conflicts
with the information based on their own foraging experience. The dance followers, mostly foragers,
detect and interact with the waggle dancer, and are finally recruited to the food source. In this
review, we summarize the current state of knowledge on the neural processing underlying this
fascinating behavior.

Keywords: honeybee; waggle dance; distance information; brain; antenna-mechanosensory center;
vibration; sensory processing; standard brain; computational analysis; polarized light processing

1. Behavioral Significance of the Waggle Dance

The honeybee (Apis mellifera) is well known to possess the ability to communicate to its nestmates
to convey the locational information of a profitable food source she has visited [1]. Once a scout bee
has found a profitable food source and returned to the hive, she will perform a dance (round dance
or waggle dance for a short or long distance food source, respectively) to recruit new bees to visit
the food source (Figure 1). During the waggle dance, the bee runs relatively straight with her body
waggling (a waggle run) and circles back to the starting point of the waggle run without wagging
or wing-beating (the return run). On the vertical comb, the direction to a food source from the hive
relative to the sun’s azimuth is encoded according to the angle between the upward direction and the
waggle run direction, and the distance from the hive to the food source is related to the duration of
the waggle run [1]. Bees in close proximity to the dancing bee (followers) receive this information,
and some of them may be recruited to the same food source, with many foragers ultimately visiting
there [2].
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Figure 1. The waggle dance. (A) A dancer (arrow) on the waggle run and many bees (followers) around
the dancer. (B) Encoding a direction of a food source. The direction of a waggle run in relation to the
position of the sun when dancing on a horizontal comb and in relation to upwards/anti-gravity when
dancing on a vertical comb indicates/represents the direction of a food source.

A large number of studies have reported the efficacy of the dance for food collection in a controlled
environment [3-5]. There are, however, only a few studies in which the dance behavior was evaluated
under natural conditions. Sherman and Visscher [6] compared foraging success at natural food
sources by measuring the mass of experimental colonies. They found that bees that were allowed
to perform a dance with the directional information intact (an oriented dance) could generate more
food collection than those who performed a dance in which the directional information was disrupted
(a disoriented dance). Importantly, a significant difference was found only in winter and not in
summer or autumn. Experiments in different habits within a year found that foraging efficiency was
substantially impaired in a tropical forest, but was not significantly impaired in a temperate habitat
when dance information was lost [7]. Recent experiments [8] performed in three cities in three different
years found that physically preventing dance communication enhanced the loss of the colony weight in
autumn (Figure 2A). Although those studies show that the fitness benefits of the dance are influenced
by experimental area-, season-, year-, and colony-specific effects, those studies proposed that these
dances help a bee colony to find food, particularly in habitats in which food is scarce.

A waggle dance generally consists of more than one pair of a waggle runand a return run.
Therefore each of the waggle runs conveying directional information contains a certain range (+10-15°)
of error from a mean direction of all waggle runs that a dancer performed [9-11]. The number of
waggle runs in a dance increases as the profitability of an artificial feeder (e.g., concentration of sucrose
solution) increases at both individual [12-14] and colony levels [15]. Consequently, the colony can
rapidly respond to changes in the foraging environment. In Seeley’s experiment [15], two feeders were
placed 400 m away from the hive, one to the south and one to the north. The concentrations of sucrose
solution in the south and north feeders were 2.5 M and 1.0 M, respectively. After 4 h, the concentrations
were changed to 0.75 M and 2.5 M, respectively. They found that the colony altered its feeder visitation
habits in response to the change in the concentration of the sucrose solution. Mathematical modeling
suggests that such adaptive colony-level decision making can be achieved not by a central command
system but on an individual basis [16] and that the dance is beneficial under such a dynamically
changing environment (Figure 2B) [17,18]. Furthermore, such flexible foraging may be achieved by an
error in dance information. Simulation experiments [18] showed that flexibility of foraging depends
on the degree of error. When the error range is large, such as 30° or more, the dance was not beneficial
for food collection. When the error range is small, such as 0° or 5°, the successful rate of foraging was
enormously high but in many cases failed to cause a switch to visiting the best feeder after the foraging
environment changed. In the case of a natural error range such as 10-15°, the dance was beneficial and
the bee colony was able to successfully visit a new feeder when the environment changed.
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Figure 2. Availability of dance for food collection. (A) The daily weight changes. Six colonies were
examined. One colony measured its weight in both dance-preventing (disturbed) and non-preventing
(control) conditions. Dots connected by each line represent each colony. (B) Total number of visits to
feeders of three virtual colonies in terms of visits to feeders. Foraging characteristics is different among
the virtual colonies. Bees in random-search colony (RS) make foraging without locational memory of
food sources or dance communication. Bees in no-communication colony (NC) memorize the location
of the food source if they found and use it for later foraging, but make no dance communication.
Bees in a waggle dance colony (WD) memorize the location of the food source and use it, and perform
waggle dance to transfer locational information. The letters above the boxes represent groups showing
statistically significant differences (ANOVA and post-hoc Tukey-Kramer test). (A,B were modified
from [8,18], respectively).

Recent advances in the understanding of the dance shine a light on the importance of odors during
dancing. Successful foragers may encounter flower odors during nectar collection. If a dancing bee
has an odor that the follower experienced previously during her successful foraging, this follower will
fly to her previous feeder even if the dance indicates another feeder [19]. Dancing bees emit substances
during dancing that encourage bees to fly out from the hive [20]. These findings imply that the effect
of dancing may have two different functions: Informative (transfer the food location) and motivational
(increase the number of bees that fly out to forage) functions.

Although the outcomes of bee activities (e.g., food collection, rate of successful recruitments,
and dance occurrence rate) vary widely among colonies, sometimes negative [21], it is well established
that a colony can achieve an effective collection of food via the dance [22].

2. The Follower’s Behaviors Induced by Various Waggle Dance Signals and How These Signals
Are Sensed

Apis florea, considered the most primitive in Apis, has a habit to build an open-nest, not like
A. mellifera, which suggests this species could use visual signals for their communication including
the waggle dance. Other Apis species, A. mellifera and A. cerana live in lightless hives, which suggests
these species must use other than visual sensory signals. Honeybees possess olfactory communication
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for sharing floral scents. Before and after the waggle dance, the dancers often contact their mouthparts
with their hive mates via trophallaxes [23]. This trophallaxis behavior is useful for transferring not only
the nectar but also a nectar-associated floral odor. During the trophallaxes, the receiver bees can learn
the floral odor. The receivers are subsequently attracted to the waggle dance through this olfactory
memory. Recently it was shown that the antennal contacts alone can act as a reward stimulus in the
olfactory proboscis extension response (PER) learning [24], suggesting the followers might learn some
aspects of the waggle dance via such rewarding contacts. The dancer also emits a non-floral scent
during the waggle dance. The waggle dancer produces and releases two alkanes and two alkenes [20].
These odors increase the number of foraging bees, suggesting that these scents have another potential
cue not only for recruiting foragers but also for drawing attention to the waggle dancer. On the
honeybee antennae there are three morphologically identifiable putative olfactory sensilla: The sensilla
placodea, sensilla trichodea type A, and sensilla coeloconica [25]. In the primary olfactory center,
the antennal lobe, the spatial odor map has been established by Ca?* imaging [26] and associative odor
learning modifies neural representations of the odor map [27]. Unfortunately, we still do not know
how the learned odor information increases both the foraging and attraction to the waggle dancer.

As mentioned above, the honeybees are attracted toward the learned odor, as it is associated with
a reward. In the hive it is difficult to analyze the odor-induced behavior because it is often disturbed
by congestion. Therefore, in our study, tethered insects with a fixed dorsal tergum on a floating ball
were used to analyze the behavior of individuals free of such disturbance. We analyzed the locomotion
patterns induced by reward-associated odor on proboscis extension response (PER) conditioning.
In response to the learned odor, bees walked locally with alternate left and right turns during odor
stimulation to search for the reward-associated odor source. Just after the learned odor stimulation,
bees walked long paths with large turn angles to explore the odor plume [28]. It suggests that the bees
search around the learned odor source by alternating left and right turn walking, and when the bees
lose the odor plume they explore the odor in a long path with large turn angles.

The waggle dance produces two types of vibration: First, at low frequency (15-25 Hz) through
abdominal movements from one side to the other side and second, at high frequency (250 Hz) through
wingbeats. These vibrations can be transmitted on the surface of the “dance floor” [29]. The forager
bees dancing on open, empty combs recruit three times as many nestmates to feeding sites as those that
dance on capped brood combs, because of the smaller resonance, suggesting the vibrations propagate
better and therefore have higher amplitudes on an open, empty comb [30]. On the other hand, it was
suggested the vibrations were too weak and probably unreliable as a source of specific information
about the velocity and direction of the dancer during the waggle run [31]. Furthermore, anecdotal data
suggests dancing robots not touching the wax comb surface could recruit followers successfully [32].
Vibrations on the comb seems to serve to attract unemployed foragers to the dancers, but not to include
the specific information about the location of the food source.

2.1. Distance

Since von Frisch’s discovery, it has not yet been clarified which sensory signals in the waggle
dance are critical parameters for encoding the distance to the profitable flower. Frisch and Lindauer [1]
analyzed various parameters related to the movements, and finally suggested the duration of waggle
run as the index of distance. A mechanical model mimicking the waggle dance movements and
producing similar olfactory and mechanical signals revealed that both wagging movements and sound
during the waggle run are critical for recruiting followers via the waggle dance [32,33]. The following
study suggested that the waggle dancer produces an inaudible, pulsed sound while on the waggle
run [34]. The waggle dancer typically produces near-field sounds during the waggle run. Honeybees
may be able to detect this particle velocity sound, but not the pressure component of sound [35]
and responded to particle velocity vibrations of less than 500 Hz [36]. The rate of pulse vibration is
rather consistent with the distance to the dancer’s indicated flower [37]. The pulses are produced
by dorso-ventral wingbeats with one to five beats separated by intervals of motionless wings [38].
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The pulse rate is also constant, independent of the food profitability [34]. Since the number of pulses
increases linearly with the duration of waggle run, one possible parameter in the near-field sound for
encoding the distance to the flower was thought to be the number of pulses in the waggle run [31,36],
in addition to the duration of the waggle run (WD) (Figure 3) [36].

Near-field sound is detected by the vibration-sensitive sensory organs in the antennae, called
Johnston’s organs (JO) [39]. It has been suggested that the JO plays an important role in detecting
particle velocity vibrations caused by dance. For example, graded ablation experiments of the antenna
revealed that the follower bee with one amputated antenna (including JO) was not recruited to an
artificial feeder [40]. Although an unspecific effect due to the damage made to the antennae could not
be excluded, both antennae have to be used for the follower (receiver) to obtain the information from
the waggle dance. Additionally, the mechanical characteristics of matured honeybee antennae and the
response properties of JO neurons are best tuned to detect 250-300 Hz sound generated during waggle
run [41]. The JO seems not to detect vibrations with low frequency caused by wagging movements,
however may extract the low frequency vibration through the central processing (see the next section).

The central projection of JO has been identified [42,43]. The sensory afferents are divided into
three antennal mechanosensory centers, the dorsal lobe (DL), the medial posterior protocerebral lobe
(mPPL), and the dorsal gnathal ganglion (dAGNG). The axon terminals only in the mPPL show some
degree of somatotopy, but this is not the case in the other neuropiles, DL and dGNG. This suggests that
there is a functional difference in the processing between mPPL and the other neuropiles. In Drosophila,
the antennal mechanosensory center including the arborization of the vibration-sensitive interneurons
has been identified and is referred to as the antennal mechanosensory and motor center (AMMC).
The AMMUC has five zones, A-E, which have somatotopy [44]; nevertheless, it is still difficult to discuss
the corresponding regions in the honeybee.

Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are
moved or rubbed together. Greggers et al. [45] suggested the electric fields emitted by dancing bees
induce passive antennal movements in stationary bees. They recorded the neuron response from JO to
electric field stimuli. The electric fields emanating from the surface charge of bees might function as
stimuli for mechanoreceptors to detect the particle velocity vibrations caused by the waggle dance.

2.2. Direction

The dancer indicates the azimuth to a target by their body orientation in the waggle run. How does
the follower detect the dancer’s body orientation? Most followers face the dancer laterally and extend
their antennae towards her body to get in direct contact [46]. In the study, it was found that the
higher the number of the dancer’s wagging movements, the higher the number of the follower’s
antennal deflections and that the time pattern of the follower’s antennal deflections depend on the
angular position of the follower to the dancer during the waggle run. It suggests that the followers
could detect the dancer’s body orientation by the time pattern. Gil and De Marco [46] suggested that
mechanosensory input, presumably processed by neurons of the antennal joint hair sensilla, contributes
to detect the time pattern of the antennal deflections for estimating the dancer’s body orientation in
the waggle run.

3. Neural Processing of Distance Information Encoded in Waggle Dance

The duration of the waggle run increases proportionally with the distance to the flower source [1].
During the duration of the waggle run, the dancers vigorously shake their abdomens with low
frequency at 15-25 Hz, while beating their wings at about 265 Hz. The other individuals follow the
dancer’s abdomen, receiving low frequency vibration pulses composed of the dancer’s wing beats with
high frequency. How could the follower bees encode the highly complex vibrations? The pulses have a
constant pulse duration (PD) of around 16 ms and a pulse period (PP) of around 33 ms (Figure 3A).
Anatomical and physiological evidence suggests a neural circuit for processing vibration pulses in the
honeybee brain [47]. An identified DL neuron, DL-Int-1, is a GABAergic inhibitory neuron (Figure 3B).
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DL-Int-1 shows spontaneous activity, but when trains of pulses with short pulse period (short PPs) are
applied to the antenna, DL-Int-1 shows remarkable hyperpolarization and the spontaneous spikes
disappear (Figure 3C, left column). A post-inhibitory rebound (PIR) excitation (Figure 3C, arrowheads)
appeared upon the offset of the pulse train. Under such stimulus conditions, DL-Int-2, a presumed
postsynaptic neuron of DL-Int-1, evokes continuous spikes (Figure 3C, top left). In contrast, when trains
of pulses with long PPs are applied to the antenna, DL-Int-1 shows intermittent spikes during the train
of pulses (Figure 3C, right column, asterisks), and DL-Int-2 often shows a lack of spikes with remarkable
inhibitory postsynaptic potentials (IPSPs) (Figure 3C, dots). These data suggest that the honeybee
may use a disinhibitory network to encode the WD: DL-Int-2 spiking upon excitatory input from JO
afferents is elicited by an inhibition of the presynaptic inhibitory neuron DL-Int-1 (Figure 3D). DL-Int-2
spikes in response to stimulation by trains of pulses with short PPs (Figure 3C, left), presumably as a
result of the short-PP selectivity of the inhibition from DL-Int-1. Therefore, the disinhibitory network
contributes to the coding of not just the WD, but also the short PP. These experimental results suggest a
motif that resembles the functions of a “stopwatch” [48].
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a waggle run and a return run. The distance to the flower source is encoded as the duration of the
waggle run (WD) of the dance. (Bottom) Thoracic vibration velocities recorded during the waggle run.
Intermittent vibration pulses occur with a constant pulse duration (PD) of about 16 ms and a pulse phase
(PP) of about 33 ms. (B) Morphology of DL-Int-1. (Left) Gross image of the DL-Int-1. (Right) Magnified
image of arborization in the dorsal lobe (DL) indicated by a square region in the left image. Ca: Calyx
of mushroom body; GNG: Gnathal ganglion; D: Dorsal; L: Left. (C) Intracellular records of dorsal lobe
interneurons 1 (DL-Int-1, middle) and 2 (DL-Int-2, top) in the antennal mechanosensory center of the
honeybee in response to vibratory mechanical stimulation to an antenna (bottom). Left: When the PPs
are shorter than 50 ms, the DL-Int-1 receives strong inhibition that allows no spikes during the pulse
trains and exhibits a post-inhibitory rebound (PIR) excitation (arrowheads) upon the offset of the pulse
train. DL-Int-2 exhibits elevated spiking activity during stimulation. Right: DL-Int-1 shows spikes
(asterisks) intermittently during the inter-pulse interval phase when the PP of the stimulus is longer
than 50 ms. Under these conditions, the DL-Int-2 often shows a lack of spikes with remarkable inhibitory
postsynaptic potentials (IPSPs) (dots). (D) Putative neural circuits for processing the temporal structure
of vibration signals. JO: Johnston’s organ. Modified from [34] with the permission of Company of
Biologists for A, and from [48].
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In addition to the particle velocity vibrations caused by wingbeats, waggling movements both
cause tactile contact of a follower’s antenna with the dancer’s body and modulate the electrostatic field.
They may also function as a signal related to the waggle dance and pick up the low frequency component
of abdomen wagging [3,31,46]. The tactile contact and the modulated electrostatic field deflect the
antenna, which may be detected by neurons in the antennal joint hair sensilla. These sensory afferents
also project to the dorsal lobe [42,43], implying that the identified dorsal lobe interneurons discussed
here might also be involved in the processing of the low frequency component of abdomen wagging.

4. The Evaluation of the Neural Circuits for Processing Distance Information Encoded in the
Waggle Dance Using the Honeybee Standard Brain (HSB)

All the studies focusing on the potential neural substrates of distance coding have been limited
to the pulses of high frequency airborne signals as received by the JO. Although the duration of the
waggle run correlates well with the distance flown by the dancer, the other components of the waggle
run correlate also with the distance, the number of waggles, the length of the waggle run and the
duration of the whole round including waggle run and return run. Furthermore, the high frequency
components of airborne signals from the vibration of the wings are just only one of several stimuli
produced by the waggling dancer. It will be important for future work to include all these signals and
study the whole range of frequency components. The picture emerging from the data collected so far
allows to propose a first glance into the potential neural circuitry of distance coding.

A fundamental approach to the analysis of local neural circuits with a specific function is the
measurements of neural response to a stimulus related to the behavior. For analysis of a local circuit
for waggle dance information processing, neural responses in the DL, were recorded to a waggle
dance-mimicking vibration stimulus on the antenna [47]. The recorded neuron was stained through
the injection of a fluorescent dye, and it was then imaged by confocal microscope. In order to clarify
the synaptic connection between neurons, simultaneous recording of multiple neurons is required,
but this is not easy to accomplish. Due to the constraints of the experiment, one or only a few
neurons are visualized in one brain sample using an intracellular staining technique. Even when using
other staining techniques, only a limited number of neurons are visible in one brain. It is therefore
necessary to integrate structural information taken from different brain samples for analyzing the
connectivity between neurons. With such experimental difficulties, computational approaches based
on the experimental results could be useful for analyzing the local neural circuit.

Morphological modeling and morphometric analysis of neurons could represent a useful approach
for analyzing the neural circuit. Neurons have a complex structure similar to tree branches, and they
have own characteristics in their arborization patterns. Software for automatic extractions of
morphology from confocal and electron microscopy images are being developed and applied to
various neural segmentations, but trial and error approach is still needed to extract complex neural
structure. For example, we are currently extracting morphologies and constructing the model of neurons,
which are arborizing in the DL region, by combination of automatic and manual segmentations [49].
Currently, morphological models have been generated for various neurons and shared in an online
database [50-53]. In many morphological modeling projects for neurons, the structure of the neuron is
described and shared in the SWC format [54]. Model neuron structures in SWC format can be visualized
and used with imaging data by various software packages, such as Vaa3D [55] and neuTube [56].

The standard brain of the honeybee, HSB, is used as the platform for integrating morphological
information of neurons [57]. The registration, which is transformed neuron morphology fitted into
the standard brain or reference brain image, is an important process. The rigid and non-rigid image
transforms are applied to register the brain region and neuron into the standard brain. Various image
processing software and libraries, such as Fiji [58] and Insight Toolkit (ITK) [59], are providing functions
for registration. Registered neuron morphologies provide us with the information on the connection
among neurons (Figure 4). For an example, by measuring the distance among the branch terminals of
registered neurons, it is possible to estimate the synaptic strength of connections between two neurons
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because a close distance between the terminals of the branches is considered to be a necessary condition
for forming a synapse.

Figure 4. (A) An example of interneurons shown a response to a vibration stimulus presented to the

antenna. Each interneuron is shown in a different color. (B) Zoom of arborization area of interneurons
in the antennal mechanosensory center of the honeybee brain. Presumable synaptic connections could
be estimated from locations of neurite terminals.

At present, the estimation of synaptic strength is generally analyzed based on the positional
relationship between axons and dendrites of neurons based on light microscope images.
However, further experimental studies would be necessary for determining synaptic strength more
accurately. A detailed analysis based on the electron microscope image would be suitable for analyzing
details of the synaptic connection morphologically. However, questions still remain, for example,
about what the functional or actual strength is. Simultaneous measurement of multiple neuron
responses by multiple electrodes or optical recording method might provide us with the dynamical
properties of neural connections [60]. By applying these experimental methods on the brain region
related to waggle dance processing, it can be expected that mathematical models showing the actual
neural circuit structure and function could be reconstructed.

5. Computational Analyses of the Neural Circuits Processing the Distance Information Encoded
in the Waggle Dance

While waggle dance communication of honeybees has been studied at the behavioral level
for decades, investigation of the underlying neural processes has only recently begun [41-43],
and open questions remain even at the early stages of processing of the waggle dance vibration
signals [47]. Particular insights however have been gained from advanced computational analyses and
modeling studies.

Interneurons DL-Int-1 and DL-Int-2 in the antennal mechanosensory center of the honeybee
respond to stimulation of the antennae with artificial vibration pulses similar to those elicited
by dancer bees during the waggle dance (see above). Properties and timing of the responses of
these neurons suggest a disinhibitory circuit involved in the processing of waggle dance vibration
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pulses (Figure 3D). Disinhibition and PIR have been implicated in achieving high temporal precision
in sensory encoding, not only in insects (for review see [48]) but also in vertebrates, on various
time scales (e.g., [61,62]). It seems feasible that these mechanisms might also play a role in
representing the temporal signals of the honeybee waggle dance. To clarify the plausibility of
the proposed circuitry, model simulations have been performed [63]. The putative circuit with
input from JO and inhibition between DL-Int-1 and DL-Int-2 (Figure 3) was simulated with model
neurons (http://modeldb.yale.edu/239413). When stimulation with vibration stimuli of different
pulse parameters was simulated, the model neurons showed responses that qualitatively resembled
the corresponding experimental data (Figure 5A). The inhibitory connection from DL-Int-1 was
essential for the dependence of DL-Int-2 responses on stimulation pulse parameters in the model [64].
Thus, disinhibition is likely to play a role in encoding the timing of waggle dance vibration pulses in
the follower honeybees. Disinhibition might be efficient in achieving precisely timed responses by
separating the timing mechanism from the response generation.

A PD:16ms, PP:33ms PD: 16ms, PP: 100ms B
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Figure 5. (A) Responses of model DL-Int-1 neurons in network simulations of the disinhibitory circuit
(see Figure 3D) to antennal vibration pulse trains. Black traces: Antennal stimulus. Blue traces: Model
membrane potential. Spike times are in addition indicated by blue vertical lines. Modified from
Kumaraswamy et al. [63]. (B) Region-dependent changes in dendritic density between young and
forager bees. Co-aligned morphologies of 12 DL-Int-1 neurons. Color indicates regions of decrease
(red) and increase (blue) of local average dendritic density in neurons of foragers relative to neurons of
newly emerged adults. Modified from [64].

Evidence for the relevance of the interneuron circuits in the honeybee antennal mechanosensory
center for the waggle dance communication comes from investigations of changes in these neurons
during maturation [64]. Adult honeybees spend the first days after emerging within the hive with
cleaning and nursing tasks and do not take part in foraging. Only after several days do they begin to
leave the hive for foraging trips and to participate as followers in the waggle dance [65].

Kumaraswamy et al. [64] analyzed the morphologies of DL-Int-1 from young honeybees that were
just emerged and compared them to neurons from older forager honeybees. A novel alignment method
was used to achieve spatial registration of neuron morphologies without the need of landmarks or
other information [66]. This enabled the calculation of quantitative, spatially resolved statistics of the
branching properties of the neurons of bees of different age classes. While the overall morphological
structure was found not to differ between neurons of young and forager bees, the analysis revealed
gradual, localized changes in dendritic density (Figure 5B) in specific regions of the arborization
that could be associated with input and output regions of the neuron [64]. This suggests that,
while the coarse neural circuitry for vibration processing is already established when the bee emerges,
a refinement process is ongoing that further adapts the neurons to the sensory demands as the bee
takes on new tasks.
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Consistent with the specific changes observed in morphology, the responses of DL-Int-1 neurons
showed changes indicating specific adaptations in signal processing. While the main features and
overall pattern of response (i.e., on-phasic excitation, tonic inhibition, and post-inhibitory rebound)
were preserved across age groups, there were quantitative changes between young and forager bees,
notably an enhanced difference between baseline and inhibitory response, and increased response
amplitudes in on-phasic response as well as post-inhibitory rebound [64]. These changes consistently
indicate that the circuitry that signals vibration pulse patterns achieves a higher signal-to-noise ratio in
forager bees as compared to newly emerged bees.

While the question remains open whether the observed differences between young and older
honeybees are a result of a predetermined maturation process or of sensory experience, these findings
are in line with patterns of development in other structures [67,68] and indicate a refinement of
connectivity and cellular response properties for reliable encoding of the information conveyed in the
waggle dance.

6. The Mechanism for Detecting the Azimuth and Distance toward the Feeding Site

The honeybee recruits that decipher the spatial information encoded in the waggle dance start their
flights at the hive entrance. During the foraging flight the foragers orientate themselves to the indicated
direction. As a result of sunlight scattering in the atmosphere, the skylight is partially plane-polarized,
and the celestial e-vectors (electric-field vectors of the light waves) are arranged in a concentric pattern
around the sun [69,70]. It is well known that many insects, including honeybees, exploit this skylight
polarization to deduce orientation (for review see [71,72]). When an artificially polarized light is
presented to a dancer performing its dance on a horizontal comb, the dance orientations are significantly
shifted depending on the e-vector orientation of the light [1,73]. Under unpolarized light, the forager
shows directionally random dances (i.e., it totally fails to transfer the directional information to the
food source) [6]. Moreover, it has been reported that the dance directions are also modulated by the
e-vector orientations of the light that the animal experienced during the foraging trip [74]. These facts
clearly indicate that the honeybees utilize polarized skylight as an orientational cue for dance behavior.
In contrast to many such investigations regarding the waggle dance orientation, only a few studies
have been conducted to examine behavioral responses of a flying bee to celestial e-vector information.
Kraft et al. [75] showed that bees trained to fly in a four-armed maze to a feeder, in which the bees
received polarized light stimulus from above, chose their foraging routes as they received e-vector
information, similar to what they experienced during the training. This suggests that the bees actually
sense the e-vector orientation from the sky during the flight and use it for navigation.

Polarization vision in insects is mediated by a specialized region in the compound eye called the
dorsal rim area (DRA), in which the ommatidia have extremely high polarization sensitivity because of
their structural and physiological properties. In honeybees, the rhabdom is non-twisted and contains
orthogonally arranged microvilli [76,77], which act as e-vector analyzers. The optical property of the
ommatidia is also different from that of other eye regions. The cornea of the DRA contains light-scattering
pore canals [78], such that the visual field of the photoreceptors could be increased. The photoreceptors
in DRA are known to be UV-sensitive [79], and therefore a UV range of light is necessary for the
honeybees to detect the celestial e-vector. Central neural processing for e-vector information in
the brain has been investigated in various insect species such as locusts [80-82], crickets [83,84],
dung beetles [85], monarch butterflies [86], and nocturnal bees [87]. In these insects, various types of
polarization-sensitive neurons are found in the central complex (CX) and the CX is strongly suggested
to derive compass information from zenithal polarized light input. In the honeybee brain, as far as
we know, no polarization-sensitive neurons have yet been identified. However, the possible neural
pathway from DRA to CX has been anatomically revealed [88,89]. Considering that the morphological
and physiological properties of the polarization-sensitive neurons in the CX are highly conserved
among species, a similar compass system likely exists in the honeybee brain.
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Skylight polarization is a line symmetrical pattern in which the solar meridian is the axis.
Therefore, e-vector information from the sky indicates the orientation of the animal’s body axis relative
to the solar meridian. However, the e-vector alone is not sufficient to deduce the heading azimuth
(i.e., the bee cannot discriminate certain azimuth ¢ from the azimuth ¢ + 180°). How does the bee
uniquely identify its heading azimuth? It has been reported that the bee discriminates between the
solar and the antisolar half of the sky based on the spectral cue of the skylight [90]. In addition to the
polarization pattern, sunlight scattering in the atmosphere also produces spectral gradients along the
sky because of the difference in scattering efficiency based on the light wavelength. It causes a different
spectral contrast between the solar and the antisolar half: The light of long wavelength dominates
in the solar half while a relatively smaller content of long wavelength light does so in the antisolar
half [91]. When dancing foragers are given a patch of unpolarized long-wavelength (green) light,
they interpret it as sun. In contrast, a short-wavelength (UV) light is expected to exist somewhere
within the antisolar half of the sky [90]. Integration of polarization and spectral information of the
skylight may help the bee find a correct heading azimuth. In locusts, it has been suggested that the
anterior optic tubercle, which sends polarized light information to the CX via the lateral accessory lobe,
may contribute to such an integration [92].

Behaviorally, it has been proven that honeybees estimated their travel distances by optic flow,
an image flow caused by self-motion. Foragers flying through short, narrow tunnels with visually
textured walls perform waggle dances that indicate an overestimated flight distance [93,94]. Behavioral
tests with the optic flow stimulus of various color and contrast combinations have revealed that the
motion detection in honeybees is colorblind and that the green receptor signal is used for distance
estimation [95]. The neural mechanism underlying such an odometer based on the optic flow is still
largely unknown. However, in a nocturnal bee species, a group of neurons in the noduli, one of the
input sites of the CX, was found to encode the direction and speed of the optic flow stimulus, indicating
that they can potentially convey travel distance information to the CX [87]. Because, as mentioned
above, the CX is considered to be an internal compass, it has been strongly suggested that, in the CX,
the information on azimuth and distance towards the feeding site are integrated during the foraging
trip and the computational process for path integration is conducted [96], which is necessary not only
for returning to the nest but also dancing in the nest [97]. It is still unknown whether the CXis the
premotor center executing the waggle dance in the brain and the manner in which the premotor center
controls the waggle dance movements, but the encoded azimuth and distance information in the CX
during the foraging trip must be decoded as two parameters: The orientation and the duration of
the waggle run. Recent studies suggested the majority of bees needed two or more foraging trips to
update dance duration and also showed intermediate dance durations during the update process,
which implied that it takes several processing steps to update the information for transposing flight
navigation information to the dance behavior [98]. Moreover the dance follower could orientate by
using the distance and azimuth information learned from the waggle dancer. It is also interesting how
the foraging flight could be navigated by the spatial information decoded from the waggle dance.

7. Conclusions

In this review we summarized the current research related to waggle dance communication and its
potential neural mechanisms. We are still far from understanding the complete neural mechanisms for
encoding and processing the waggle dance information, but our neuroethological approach combined
with computational analyses using the HSB has been fruitful in the past and offers a promising path
for future progress.
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