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Abstract

Background: Glioma is the most common malignant tumor of the brain. The existence of metastatic tumor cells is
an important cause of recurrence even after radical glioma resection.

Methods: Single-cell sequencing data and high-throughput data were downloaded from GEO database and TCGA/
CGGA database. By means of PCA and tSNE clustering methods, metastasis-associated genes in glioma were
identified. GSEA explored possible biological functions that these metastasis-associated genes may participate in.
Univariate and multivariate Cox regression were used to construct a prognostic model.

Results: Glioma metastatic cells and metastasis-associated genes were identified. The prognostic model based on
metastasis-associated genes had good sensitivity and specificity for the prognosis of glioma. These genes may be
involved in signal pathways such as cellular protein catabolic process, p53 signaling pathway, transcriptional
misregulation in cancer and JAK-STAT signaling pathway.

Conclusion: This study explored glioma metastasis-associated genes through single-cell sequencing data mining,
and aimed to identify prognostic metastasis-associated signatures for glioma and may provide potential targets for
further cancer research.
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Background
Glioma is the most common malignant tumor in the
brain. In recent years, research on glioma especially on the
molecular mechanisms has been increasing. In 2016, the
World Health Organization first applied histology and
molecular classification to define central nervous system
tumors simultaneously [1]. Although with the continuous
improvement of glioma diagnosis and treatment technol-
ogy, the 5-year survival rate of patients with grade IV
glioma is less than 5% [2], and the median survival time is
about 12–15months [3].
Glioma is composed of the tumor core and metastatic

tumor cells. The metastatic tumor cells can be located a few

centimeters away from the tumor core area. The existence
of metastatic tumor cells is an important cause of recur-
rence even after radical glioma resection [4]. The process of
tumor metastasis is generally considered to be divided into
the following four steps: (1) separating of invading cells from
the primary site; (2) adhesion to the extracellular matrix: (3)
degradation of the extracellular matrix; (4) movement of the
invasive cells [5, 6]. In addition, the heterogeneity of the
cells within the tumor also promotes the metastatic capacity
of the tumor cells. However, specific molecular mechanism
of the metastasis of glioma is still unclear.
Traditional high-throughput sequencing data analysis

is difficult to analyze the heterogeneity inside the tumor
[7–9], while the single-cell sequencing technology devel-
oped in recent years allows researchers to view the ex-
pression profile of each cell and explore the expression
heterogeneity of single cells within the tumor mass [10–
12]. The discovery of intracellular difference provides
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the potential for a deeper understanding of tumor in-
ternal characteristics [13]. The purpose of this study is
to analyze the glioma single-cell sequencing data,
analyze the characteristics and marker genes of meta-
static glioma cells, and analyze the prognostic value of
these metastasis-associated genes (MAGs) with the help
of high-throughput sequencing, thereby providing new
targets for basic and clinical research for gliomas. Since
IDH wild-type glioma has a worse prognosis than their
mutant counterparts and shows more malignant bio-
logical behaviors [14, 15], IDH wild-type glioma were se-
lected for study in order to better explore the metastatic
characteristics of glioma.

Methods
Acquisition and quality control of glioma expression
sequencing data
The glioma single-cell sequencing data were sourced
from GSE84465 of the GEO database (Gene Expression
Omnibus, https://www.ncbi.nlm.nih.gov/geo/). “limma”
package of R software was used for preliminary data cor-
rection. “Seurat” package was used to analyze single-cell
sequencing data. Genes expressed in less than 3 cells
and cells expressing less than 50 genes were excluded.
Percentage of mitochondrial sequencing count < 0.05
and the correlation between gene numbers and sequen-
cing depth > 0.4 were used as the threshold to identifying
high-quality single-cell sequencing samples. The high-
throughput sequencing data of IDH wild-type glioma
and patient clinical information were derived from the
TCGA database (https://cancergenome.nih.gov/) and
CGGA database (http://www.cgga.org.cn/). Since all the
original data were downloaded from public databases,
no additional ethical proof was required.

Dimensionality reduction and clustering
In this study, the single-cell sequencing data was firstly
subjected to dimensionality reduction using the principal
component analysis (PCA) method. The t-Distributed
Stochastic Neighbor Embedding (tSNE) analysis were
then introduced based on the P values of each principal
component. According to differentially expressed genes
of each cluster by tSNE clustering and marker genes of
brain tissues reported by previous articles, cells from
each cluster were annotated.

Gene set enrichment analysis (GSEA)
The “clusterProfiler” package of R software was used to
analyze the MAGs in glioma by Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses, and to explore the potential bio-
logical functions of these genes.

Identification of MAGs and prognostic correlation
According to the cell annotations, differentially
expressed genes of metastatic glioma cells and nonmeta-
static glioma cells were identified. Heat-map and
volcano-map of MAGs were drawn accordingly. In order
to study the prognostic correlation of these MAGs, we
extracted the expression profiles of these MAGs and pa-
tient survival information from glioma high-throughput
sequencing data. Because glioma patients in TCGA data-
base included normal brain tissue samples, we used
TCGA database as the training cohort while CGGA
database as the validation cohort. Firstly, univariate Cox
regression was used to analyze the prognostic genes in
the training cohort. Then multivariate Cox regression by
Efron approximation was used to establish the risk score,
which was expressed as: risk score = βgene1 × Expression-
gene1 + βgene2 × Expressiongene2 + βgene3 × Expression-

gene3 + ... + βgenen × Expressiongenen. Using this model,
the ROC curve (Receiver operating characteristic) and
Kaplan-Meier survival curve were drawn in both the
training cohort and the validation cohort respectively.
The sensitivity and specificity of the model for the prog-
nosis of glioma were analyzed.

Results
Quality control of single-cell sequencing profiles
A total of 3589 cell expression data were obtained from
the 4 tumor tissues and 4 surrounding peritumor tissues
from the GSE84465. The number of gene types and total
number of genes expressed in each sample and the correl-
ation between the number of sequenced genes and the
depth of sequencing in each sample were shown in Fig.
S1. With Pearson correlation greater than 0.4 as the
threshold, 4 surrounding peritumor tissues and 2 tumor
samples (N_BT_S1, T_BT_S2, N_BT_S2, N_BT_S4, T_
BT_S6, and N_BT_S6) were screened. These 6 eligible
samples were used for subsequent analysis. The number
of gene types and total number of genes expressed in the
eligible samples were shown in Fig. 1a-b. In addition, all
the percentages of mitochondrial sequencing count of
samples were very low (Fig. 1c), which may be due to the
single cell sorting process by antibodies before performing
single-cell sequencing, resulting in very few apoptosis or
lysed cells. Figure 1d-e showed the distribution of the 500
genes with the most intercellular expression differences
and the names of the top 10 differentially expressed genes
(including PLP1, CHI3L1, TF, MAG, FCGBP, DCN,
CTGF, THBS1, MBP and IBSP).

Clustering and cell annotation
The PCA analysis results of single-cell sequencing data
were shown in Fig. 2a. The glioma cells were differenti-
ated clearly by the PC_1 and PC_2 clusters. In addition,
Fig. 2b-c listed top 20 principal genes and corresponding
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Fig. 1 Overview of single-cell sequencing profiles. a The description of feature genes of the profiles. b The description of total gene numbers of
the profiles. c Percentage of mitochondrial genes detected in each sample. d-e Diagrams of differentially expressed genes between cells
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heat-maps of PC_1 and PC_2 clusters. P value of each
principal component was calculated, as shown in Fig. 2d.
Significant principal components were further intro-
duced to the tSNE dimensionality reduction in order to
make glioma cells better clustered. The results of tSNE
dimensionality reduction were shown in Fig. 2e. From
the figure, we found that glioma cells were divided into

13 clusters named 0–12, and the glioma cells were more
clearly distinguished than the PCA method. Among
them, cluster 6 was only derived from tumor tissues, and
cluster 7 and cluster 11 were only derived from sur-
rounding peritumor brain tissue. According to existing
literature reports [16–18], we analyzed the expression of
marker genes of different brain tissues in various clusters

Fig. 2 Clustering and cell annotation. a PCA results of single-cell sequencing profiles. b Top 20 principal genes of PC_1 and PC_2 clusters. c Heat-
maps of PC_1 and PC_2 clusters. d P value of each PCA component. e tSNE results of single-cell sequencing profiles. f Expression of classical
genes in various clusters
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(as shown in Fig. 2f). First, cluster 7 and 11 were adopted
only from peritumoral brain tissue, indicating that they
were not tumor cells. Cell-specific genes provide more im-
portant proofs for cell annotation. Meanwhile, Ye Zhang’s
suggests that CCL3 can be the cell-specific gene for
microglia/macrophages, AGXT2L1 for astrocytes, and
SYT1 for neurons [18]. In addition, Spyros Darmanis
points out in their study that endothelium-derived cells
tend to express DCN, OPC cells tend to express GPR17,
and oligodendrocytes tend to express MOG. More im-
portantly, EGFR can discriminate glioma cells with high
sensitivity and specificity [16]. From the above, cells be-
longing to cluster 2,3,6 and derived from peritumor brain
tissue were defined as metastatic tumor cells. The differ-
entially expressed genes between metastatic tumor cells
and non-metastatic tumor cells were identified.

Gene set enrichment analysis
The expression and survival information were extracted
from IDH wild-type glioma high-throughput sequencing
data from the TCGA and CGGA database. The shared
genes of TCGA and CGGA database were extracted for
subsequent analysis. Wilcox test was applied to find the
differentially expressed genes between IDH wild-type gli-
oma and normal brain tissue. The intersection differen-
tially expressed genes in IDH wild-type glioma and
metastatic cells were defined as MAGs. The MAGs were
analyzed by GO and KEGG enrichment analysis for their
potential functions. The results were shown in Fig. 3.
With P < 0.05 as the statistical standard, GO enrichment
analysis suggested that genes were enriched on items such
as regulation of protein catabolic process, regulation of
proteolysis involved in cellular protein catabolic process.
Meanwhile, KEGG enrichment analysis suggested that

these genes may be involved in signal pathways such as
p53 signaling pathway, transcriptional misregulation in
cancer, JAK-STAT signaling pathway.

Construction of prognostic model based on MAGs
Univariate Cox regulation was used to analyze the
MAGs to find out the prognostic genes and 79 MAGs
were associated with overall survival of IDH wild-type
glioma patients. Using the multivariate Cox regression in
the training cohort, a total of 3 MAGs were identified
for constructing the prognostic model, including GNS
(glucosamine (N-acetyl)-6-sulfatase), LBH (LBH regu-
lator of WNT signaling pathway) and SCARA3 (scav-
enger receptor class A member 3). The Cox results of
these genes were shown in Table 1. Risk score = 0.516
* Expression GNS + 0.422 * Expression LBH + 0.211 *
Expression SCARA3. The value for Likelihood ratio test
was 19.84 (P < 0.001), 18.94 for Wald test (P < 0.001)
and 18.95 for Score (logrank) test (P < 0.001). Based
on the risk score calculated by the prognostic model,
the ROC curves and Kaplan-Meier survival curves for
the training and validation cohorts were drawn in
Fig. 4a-d.
The results showed that the AUCs (the area under

ROC curves) for 1-year and 3-years OS (overall survival)
of the training cohort were 0.661 and 0.701, respectively;
the AUC for the 3-year and 5-year OS of the validation
cohort were 0.563 and 0.605, respectively. In addition,
the P values of Kaplan-Meier survival curves of the
training and validation cohorts were 0.003 and 0.000 re-
spectively. The prognostic model based on MAGs
showed an excellent prognostic ability for IDH wild-type
glioma. Furthermore, the relationship between the risk
scores and overall survival were shown in Fig. 4e.

Fig. 3 Gene set enrichment analysis of the MAGs. a GO enrichment results. b KEGG enrichment results
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Discussion
The metastasis is an important reason for the difficulty
of glioma treatment. This study combined single-cell se-
quencing and high-throughput sequencing to study the
characteristics of MAGs of IDH wild-type glioma. First,
through quality control, we selected six eligible single-

cell sequencing profiles for further research. Second, the
PCA and tSNE dimensionality reduction were used to
classify all cells into 13 clusters according to the differen-
tially expressed genes between cells. According to the cell
annotation results, cluster 2, cluster 3 and cluster 6 were
identified as glioma cells. A small percentage of cells in
cluster 2 and cluster 3 originated from surrounding peri-
tumor tissue, and theses cell were defined as metastatic
cells. MAGs of glioma were gained by comparison be-
tween metastatic cells and non-metastatic cells.
Due to the small number of patients with single-cell

sequencing, it is difficult to complete survival analyses of
MAGs. Therefore, we extracted high-throughput se-
quencing data of glioma from the TCGA database for
prognostic analyses of MAGs. GSEA results suggested

Table 1 Univariate analysis and multivariate Cox results of
metastasis-associated genes

RNA Univariate Analysis Multivariate Analysis

HR (95%CI) P HR (95%CI) P

GNS 1.661 (1.161–2.378) 0.006 1.676 (1.131–2.482) 0.010

LBH 1.499 (1.118–2.010) 0.007 1.524 (1.117–2.081) 0.008

SCARA3 1.146 (1.119–1.791) 0.004 1.234 (0.956–1.593) 0.106

Fig. 4 Cox regression. a 1-year and 3-year ROC curves in the training cohort. b Kaplan–Meier survival analysis between high-risk group and low-
risk group in the training cohort. c 1-year and 3-year ROC curves in the validation cohort. d Kaplan–Meier survival analysis between high-risk
group and low-risk group in the validation cohort. e The relationship between the risk scores and overall survival
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that these MAGs might be involved in signal pathways such
as regulation of proteolysis involved in cellular protein cata-
bolic process (CLU/HSP90AB3P/MDM2/OS9/RNF180/
SDCBP/TRIB2), p53 signaling pathway (CASP3/CCND2/
CDK4/CDKN1A/IGFBP3/MDM2), transcriptional misre-
gulation in cancer (CCND2/CDKN1A/IGFBP3/MDM2/
PLAT/ZEB1) and JAK-STAT signaling pathway (CCND2/
CDKN1A/FHL1/GFAP/STAT1). For example, MDM2, a
negative regulator of P53, inhibits P53 transcription and
promotes ubiquitination and degradation of P53 through
proteasome [19]. CDKN1A, whose gene promoter region
contains TP53 binding sites, can be a mediator of p53
signaling pathway [20]. Moreover, CCND2 is a cyclin
expressed mainly in glioma stem cells. Knockdown of
CCND2 can decrease levels of E2F1, E2F2 and cyclin B1,
leading to a significant increase in the proportion of G1
phase cells [21]. In addition, STAT1 has an antagonistic ef-
fect on cellular proliferation and apoptosis through the
JAK-STAT signaling pathway [22]. Interestingly, STAT3,
also a member of the STAT protein family, has been
found in many studies to be phosphorylated and me-
diate drug resistance in cancer therapy [23, 24]. With
P < 0.05 as the statistical threshold, STAT3 was
highly expressed in metastatic glioma cells, which also
indicated the accuracy and application prospect of
single-cell sequencing research.
Through Cox regression, this study selected 3 MAGs

(GNS, LBH and SCARA3) to construct the prognostic
model. The ROC curves and Kaplan-Meier survival
curves of the training cohort and the validation cohort
indicated that the model had good prognostic ability.
This study identified the MAGs of IDH wild-type gli-

oma and the prognostic model was constructed by genes
including GNS, LBH and SCARA3. Many of these genes
have been reported in previous studies. For example, LBH
is highly expressed in glioma. Under hypoxic conditions,
LBH is directly regulated by HIF-1, and promotes glioma
angiogenesis in human brain microvessel endothelial cells
through the VEGFA-mediated ERK signaling pathway
[25]. SCARA3 mRNA is highly expressed in breast cancer
[26]. Besides, SCARA3 promotes drug resistance in mul-
tiple myeloma [27]. The mechanism of more metastasis-
associated genes of glioma remains to be discovered.
Studies on the analyses of RNA sequencing and predic-

tion of the prognosis of IDH wild-type glioblastoma have
been reported [28]. Since metastasis is generally considered
as a pivotal factor of prognosis of glioma, the innovation of
this paper is to identify the molecular characteristics of
metastatic glioma cells by analyzing single-cell sequencing
of glioma, and to use high-throughput sequencing for prog-
nostic validation. The study may help provide deeper
insight into genes involved in glioma cell metastasis.
This study also has some shortcomings, such as lack-

ing of overexpression/deletion studies and validation

in vivo experiments which may further examine the
function and mechanism of candidate genes.

Conclusions
In conclusion, this study explored glioma MAGs
through single-cell sequencing data mining, and studied
the prognostic value of these genes for glioma patients.
The aim of this study is to identify prognostic
metastasis-associated signatures for glioma and may pro-
vide potential targets for further cancer research.
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