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Abstract 

Objective:  The internal workings ofmachine learning algorithms are complex and considered as low-interpretation 
"black box" models, making it difficult for domain experts to understand and trust these complex models. The study 
uses metabolic syndrome (MetS) as the entry point to analyze and evaluate the application value of model interpret-
ability methods in dealing with difficult interpretation of predictive models.

Methods:  The study collects data from a chain of health examination institution in Urumqi from 2017 ~ 2019, and 
performs 39,134 remaining data after preprocessing such as deletion and filling. RFE is used for feature selection to 
reduce redundancy; MetS risk prediction models (logistic, random forest, XGBoost) are built based on a feature subset, 
and accuracy, sensitivity, specificity, Youden index, and AUROC value are used to evaluate the model classification 
performance; post-hoc model-agnostic interpretation methods (variable importance, LIME) are used to interpret the 
results of the predictive model.

Results:  Eighteen physical examination indicators are screened out by RFE, which can effectively solve the problem 
of physical examination data redundancy. Random forest and XGBoost models have higher accuracy, sensitivity, speci-
ficity, Youden index, and AUROC values compared with logistic regression. XGBoost models have higher sensitivity, 
Youden index, and AUROC values compared with random forest. The study uses variable importance, LIME and PDP 
for global and local interpretation of the optimal MetS risk prediction model (XGBoost), and different interpretation 
methods have different insights into the interpretation of model results, which are more flexible in model selection 
and can visualize the process and reasons for the model to make decisions. The interpretable risk prediction model 
in this study can help to identify risk factors associated with MetS, and the results showed that in addition to the 
traditional risk factors such as overweight and obesity, hyperglycemia, hypertension, and dyslipidemia, MetS was also 
associated with other factors, including age, creatinine, uric acid, and alkaline phosphatase.

Conclusion:  The model interpretability methods are applied to the black box model, which can not only realize the 
flexibility of model application, but also make up for the uninterpretable defects of the model. Model interpretability 
methods can be used as a novel means of identifying variables that are more likely to be good predictors.
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Introduction
Data mining is recognized as a fast and effective method 
to obtain information and create knowledge from com-
plex big data, and has shown good performance and 
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broad application prospects in health examination big 
data research. However, the internal workings of machine 
learning classification algorithms are complex and con-
sidered as low-interpretation "black-box" models, and 
the process of making decisions by the models cannot be 
visualized and transparently demonstrated in most cases, 
which makes it difficult for the application personnel to 
understand and trust these complex models [1]. In addi-
tion, most models developed by data scientists primar-
ily use prediction accuracy as a performance evaluation 
metric and rarely interpret their predictions in a mean-
ingful way [2]. Especially for complex black box models 
such as random forests and neural networks, although 
the accuracy is high, the interpretability is low, and it is 
difficult to explain the model results in a reasonable and 
intuitive way if the model prediction results are used to 
replace the decision making by doctors. It is thus clear 
that the problem of model uninterpretability limits the 
practical application of machine learning in the clini-
cal setting, and therefore, it is imperative to address the 
problem of model interpretability.

Different classifications of interpretation methods 
can be made based on different criteria, grouping them 
according to when they are applied: before, during, and 
after building a machine learning model [3]. Pre-model 
interpretability techniques usually occur before model 
is established, are model-independent, and apply only to 
the data itself, since it is also important to explore and 
fully understand the data before modeling, and mean-
ingful intuitive features and sparsity (a small number of 
features) help to achieve some of the properties of data 
interpretability. The interpretability in the model involves 
the machine learning model, which has inherent inter-
pretability. Post-model interpretability refers to improv-
ing interpretability after the model has been built (post 
hoc). In addition, another important distinction is model-
specific and model-agnostic. Model-specific interpreta-
tion methods are restricted to specific models, e.g., the 
interpretation of weights in a linear model is model-spe-
cific, and by definition, the interpretation of an inherently 
interpretable model is always model-specific. The model-
agnostic approach can be applied to any machine learn-
ing model, applied after the model is trained, relying on 
the inputs and outputs of the analytic pair of elements. 
It is characterized by the possibility of interpreting the 
model without sacrificing its predictive power [4].

Feature selection (FS), as an important data pre-pro-
cessing technique, enables interpretability before mod-
eling. FS constructs a subset of the original feature set 
and does not change the physical meaning of the features 
[5]. In related studies [6, 7], it is shown that FS methods 
reduce the dimensionality of data by removing redun-
dant and irrelevant data features, which can reduce the 

complexity of models and increase their comprehen-
sibility to some extent. In addition, a popular approach 
in current research is to interpret the model after build-
ing it, that is, a post hoc model-agnostic interpretation 
method, which is an interpretation method independent 
of the training model. Even if the prediction results are 
obtained through a "black box" model, the use of post 
hoc-assisted attribution interpretation and visualization 
tools enables explanatory studies of the model [8–10], 
which can help the application personnel understand the 
process and reason of the model’s decision-making.

Metabolic syndrome (MetS) is a group of disease syn-
dromes with metabolic abnormalities characterized by 
centripetal obesity, hypertension, hyperglycemia and 
dyslipidemia [11]. The prevalence of MetS has shown an 
increasing trend due to rapid economic growth, aging 
population, sedentary lifestyle, and obesity. Globally, the 
prevalence of MS is about 20–25% [12]. In China, the 
standardized prevalence of MetS is about 24.2% in the 
adult population [13] and about 34.0% in the middle-aged 
and elderly population [14]. MetS leads to an increased 
risk of diabetes, cardiovascular disease, cancer, and even 
death [15, 16] and has become an increasingly seri-
ous public health problem and clinical challenge [17]. 
Therefore, appropriate prevention and control strate-
gies must be adopted to reduce the incidence of MetS. 
Health checkups are the first stage of disease prevention, 
and data mining of physical examination information 
can help identify people at high risk of MetS at an early 
stage, thus moving the gateway to disease prevention and 
control. The construction of MetS risk prediction models 
based on physical examination data is important for the 
prevention and control of MetS.

The study uses data mining methods to construct 
MetS risk prediction models based on physical exami-
nation data, with MetS as the entry point. Feature selec-
tion method is used to select key factors associated with 
MetS from numerous physical examination indicators; 
focuses on post hoc interpretability to increase the prac-
tical application value of MetS risk prediction models. 
The study can accurately predict and identify high-risk 
individuals and provide information reference for the 
prevention and control of MetS, and at the same time, it 
can provide methodological reference for the feasibility 
of applying feature selection combined with model inter-
pretability methods in medical examination data mining.

Methods
Data source
The data are obtained from a chain of health screening 
institutions in Urumqi, Xinjiang Uygur Autonomous 
Region, China, for people who underwent routine health 
screening from 2017 ~ 2019. The study was approved by 
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the Ethics Committee of the First Affiliated Hospital of 
Xinjiang Medical University, all methods were carried 
out in accordance with relevant guidelines and regula-
tions. The physical examination information included 
basic demographic information, questionnaire surveys, 
routine physical examination, and laboratory physiologi-
cal and biochemical index tests.

Questionnaire survey: A self-designed questionnaire 
is used to conduct a face-to-face survey by uniformly 
trained investigators, which includes gender, age, ethnic-
ity, smoking status (never smoked; smoking means those 
who still smoked in the past 30 days at the time of the 
survey; quit means no longer smoked in the past 30 days 
at the time of the survey), alcohol consumption (never 
drank; Occasional drinking refers to drinking < 1 time/
week in the past 1 year; regular drinking refers to drink-
ing ≥ 1 time/week in the past 1 year; quit drinking refers 
to no longer drinking in the past 30 days), previous dis-
ease history (hypertension, diabetes, etc.) and family his-
tory (hypertension, diabetes).

Physical examination: height, weight, waist circumfer-
ence (WC), heart rate and blood pressure are measured 
using a uniform instrument, the instrument is calibrated 
before measurement, and the measurement parameters 
of height, weight and WC are accurate to 0.1 kg or 0.1 
cm. Blood pressure is measured using an electronic auto-
matic blood pressure measuring instrument, and the sub-
jects avoid strenuous exercise and caffeinated beverages 
for 30 min before measurement, and rest for at least 5 
min before the first measurement, with an interval of 1 
to 2 min between each measurement. Body mass index 
(BMI) = weight (kg)/height (m2).

>Laboratory tests: 10 mL of fasting venous blood is 
drawn from the study subjects in the early morning, and 
the physiological and biochemical indexes such as blood 
routine, fasting plasma glucose (FPG), blood lipids, liver 
function and kidney function are measured by automatic 
biochemical analyzer.

Diagnosis of MetS: with reference to the diagnostic 
criteria for MetS recommended in the Chinese Guide-
lines for the Prevention and Treatment of Dyslipidemia 
in Adults (2016 Revised Edition) [18], MetS can be diag-
nosed if at least three of the following items are met.

① Central obesity or abdominal obesity: WC ≥ 90 
cm in men and ≥ 85 cm in women.
② Hyperglycemia: FPG ≥ 6.10 mmol/L or those 
who have been diagnosed and treated for diabetes 
mellitus.
③ Hypertension: systolic blood pressure (SBP) 
≥130 mmHg or diastolic blood pressure (DBP) 
≥85 mmHg or those who have been diagnosed and 
treated for hypertension.

④ Fasting triglycerides (TG) ≥ 1.7 mmol/L.
⑤ Fasting high density lipoprotein cholesterol 
(HDL-C) < 1.04mmol/L.

Data pre‑processing
The original physical examination data contains rich 
physical examination information, but also contains 
various " corrupted data", for example, data entry errors 
resulting in abnormal values and missing values, which 
can increase the complexity and difficulty of statistical 
analysis, therefore, data cleaning and sorting are per-
formed before data analysis. A total of 44,547 medical 
examiners’ information is collected for the study, and the 
medical examination data are checked for outliers, and 21 
cases of outlier data (e.g., age = 178 years, height = 2.56 
m, etc.) are removed. The data of 5392 cases with miss-
ing diagnostic variables of MetS are deleted, and finally 
39,134 physical examination data are left. Other missing 
data in the physical examination data are filled using mul-
tivariate imputation chained equations (MICE). MICE 
belongs to the multiple interpolation technique, which is 
a popular method for handling missing data with flexibil-
ity and robustness characteristics [19].

Feature selection
FS is a common and effective feature reduction method 
when selecting a suitable low-dimensional subset from an 
initial high-dimensional dataset [20–22]. Recursive fea-
ture elimination (RFE) belongs to wrapper method in the 
feature selection method, which is a method that relies 
on the learning algorithm and uses the results of the 
learning algorithm as evaluation criteria to select a subset 
of features [23]. RFE uses a machine learning model to 
perform multiple rounds of training, eliminating a num-
ber of features corresponding to the weight coefficients 
at the end of each round, and then performing the next 
round based on the new set of features. The performance 
of the RFE algorithm depends on which classifier is used 
for the iteration.

The RFE steps are as follows:

① Initializing the feature set F .
② Select the classifier C.
③ Calculate the weight of each feature fi in F  (the 
criterion is the accuracy of the classifier prediction).
④ Remove the minimum weight feature fi and 
update F .
⑤ Repeat steps ③ and ④ until only one feature 
remains in F .
⑥ Feature importance ranking.
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Data mining prediction models
Three MetS risk prediction models, logistic regression 
(LR), random forest (RF), and extreme gradient boosting 
(XGBoost), are constructed using whether the study sub-
jects had MetS as the target variable and each influencing 
factor as the input variable to compare and evaluate the 
robustness of predictive classification models.

Logistic regression
LR is one of the classical regression modeling methods 
with advantages in interpreting model results and com-
putational costs [24], and is widely used in medicine and 
epidemiology. The MetS target variable is assumed to be 
a binary variable taking values of no disease(X = 0) and 
disease(X = 1). P(y = 1|X) denotes the probability of an 
individual developing disease when the exposure fac-
tor is X, the ratio of the probability of disease (P) to the 
probability of no disease (1-P) is the odds ratio (OR) and 
logit(P) is the natural logarithm of OR.

The LR model:

Random forest
RF is an integrated learning algorithm based on statistical 
learning theory proposed by Breiman [25] in 2001, which 
is essentially a combinatorial classifier containing mul-
tiple decision trees. Random forest combines Bootstrap 
resampling technique and decision trees to construct 
a collection of tree classifiers containing multiple basic 
classifiers, and the category with more decision votes 
H(x) is used as the category to which the final sample 
belongs, using a simple majority voting method.

Extreme Gradient Boosting
XGBoost is a boosted tree model, which is based on mul-
tiple decision trees, using gradient boosting as a frame-
work and stages in a way to combine multiple weak 
classifiers, using a minimization loss function to create 
strong classifiers. The objective function during training 
consists of two parts, the first part is the gradient boost-
ing algorithm loss and the second part is the regulariza-
tion term, the loss function is defined as:

(1)logit(P) = ln
P

1− P

(2)logit(P) = α +

k∑

j=1

βjxj

(3)L(φ) =
∑

i

l
(
ŷi, yi

)
+

∑

k

�(fk)

l is the loss for a single sample, which is assumed to be 
a convex function to measure the difference between the 
prediction ŷi and the target yi.

The complexity of the model is defined using the regu-
larization term:

γ and � are manually set parameters, w is the vector 
formed by the values of the leaf nodes of the decision 
tree, and T  is the number of leaf nodes.

Post hoc model‑agnostic interpretation methods
Post hoc model-agnostic interpretation methods are 
divided into global interpretability and local interpret-
ability. A crucial aspect of dividing the interpretability 
methods is based on the scale of interpretation, where 
local interpretability providesan explanation only for a 
specific instance, and global interpretability explains the 
whole model [26]. Global interpretability helps to under-
stand the modeling relationship and distribution of the 
predicted target based on the input variables, and local 
interpretability helps to understand the model prediction 
of a single instance [26, 27]. The two methods used in 
combination can mutually explain the decision results of 
the model. The study conducted the global interpretation 
of the model through variable importance and partial 
dependence plot (PDP), and local interpretable model-
agnostic explanations (LIME) for local interpretation.

Variable importance
Variable importance measures the contribution of each 
input variable by the increase in the prediction error of 
the model after displacing the variable [28], and a fea-
ture is considered important if displacing it increases the 
error rate (reduces performance) [29]. The basic principle 
of variable importance is to calculate the predicted value 
after perturbation by perturbing a feature xjand compar-
ing the new feature value with the original feature value; 
the larger the difference shows that the variable is more 
important.

The calculation method:

① Input the trained model, the feature matrix X, the 
target vector Y, and the error function L(Y , Ŷ ).
② Calculate the original prediction error.
③ For each feature (j = 1, 2, · · · p) , generate the per-
turbed feature matrix Xpermj by perturbing the j fea-
ture.
④ Calculate the new error eperm

(
f̂
)
= L(Y , f̂

(
Xpermj

)
).

(4)�
(
f
)
= γT +

1

2
��w�2
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⑤ Calculating the importance parameter 

FIj =
eperm

(
f̂
)

eorig

(
f̂
)  , or FIj = eperm

(
f̂
)
− eorig (f̂ ).

⑥ Arrange each FIj by size.

Partial Dependence Plot
PDP shows the marginal impact of features on the pre-
diction results of a machine learning model and helps 
to visualize the relationship between variables and pre-
diction results [30, 31]. PDP relies on the model itself 
and requires training the model first (e.g., training the 
XGBoost model) and then interpreting a feature based on 
the model in relation to the target variables based on the 
model. The partial correlation function of the regression 
is defined as:

The set xS is the dependent variable for which the PDP 
is to be drawn, and xS usually contains one or two fea-
tures; xC is the rest of the dependent variables used in the 
machine learning model f̂  . The dependent variables in 
xC are marginalized so that only the relationship between 
the dependent variable and the variables in xS is shown.

Assuming that the relationship between the target vari-
able and feature X1 is to be studied, then the PDP is about 
the predicted value of the model as a function of feature 
X1 . The XGBoost model ( XGB_model ) is first fitted, 
and then the i-th feature of the k-th sample in the train-
ing set is denoted by Xk

i  . The bias function is estimated 
by a Monte Carlo method, that is, the average of the N 
instances of the training data is calculated as follows:

Locally interpretable model‑agnostic explanations
LIME is a post hoc local explanation method that uses 
locally interpretable models (linear models, decision 
trees, etc.) to explain the individual predictions of any 
black box machine learning model (in the vicinity of the 
prediction to be explained instances) [32]. The LIME 
approach proceeds by adding a slight perturbation to 
the input sample, observing the change in the output of 
the black box model, determining the degree of influ-
ence of different features on the prediction results by the 
degree of change, and then assigning weights based on 
the distance between the perturbed data points and the 
original data to train an interpretable model based on the 

(5)f̂xS (xS) = ExC

[
f̂ (xS , xC)

]
=

∫
f̂ (xS , xC)dP(xC)

(6)

∫
(Xi) =

1

n

n∑

k=1

XGB_model

(
X1,X

k
2 ,X

k
3 , · · · ,X

k
n

)

perturbed sample. LIME generates an interpretation of 
instance x according to Eq. 7:

where G is a class of interpretable (linear) models, an 
ensemble of simple models; f  is the model to be inter-
preted; L is the loss function that minimizes the function; 
πx is the proximity measure between instances z and x 
(kernel defines locality); and �

(
g
)
 is an optional regulari-

zation term to control (limit) the model complexity.

Statistical processing
Excel 2019 software is used to establish a data warehouse, 
to summarize and organize the physical examination 
data, and R software (version 3.6.0, http://​www.r-​proje​
ct.​org) was applied for statistical analysis. The MICE 
method was first used to fill in the missing data, and then 
the RFE method in the feature selection method was 
used for variable screening. The MetS risk prediction 
model was constructed based on LR, RF and XGBoost 
models, and the performance of the model was evaluated 
based on accuracy, sensitivity, specificity, Youden index 
[33] and area under the receiver operating characteristic 
curve (AUROC), with all values ranging from 0 to 1. The 
closer to 1, the better the model prediction performance. 
The definitions and formulas for accuracy, sensitivity, 
specificity, and Youden index are provided in Supple-
mentary file S3. The AUROC values and 95%CIs of the 
models were calculated and compared using MedCalc 
statistical software (version 15.6.1, https://​www.​medca​
lc.​org), where the 95% CIs of the AUROC values were 
calculated using the binomial exact confidence interval 
method and the differences in the AUROC values were 
compared using the DeLong method [34]. Finally, the 
post hoc interpretability of the model is studied based on 
variable importance, PDP and LIME.

The study randomly divides 39,134 cases of research 
subjects into training set (70%) and test set (30%) 
according to the ratio of 7:3. The prediction model is 
constructed by the training set, and the model effect eval-
uation is carried out by the test set. Among them, 27,394 
cases in the training set, 4080 cases (14.9%) are diag-
nosed with MetS, and 11,740 cases in the test set, 1693 
cases (14.4%) were diagnosed with MetS.

Results
Feature selection
The cross-validation result curve of the accuracy of 
RFE screening variables is shown in Fig.  1, which 
shows that the highest accuracy and better feature 
selection effect was achieved when the number of 
variables was 18, and the variables screened were: 

(7)explanation(x) =
argmin
gǫG

L
(
f , g ,πx

)
+�

(
g
)

http://www.r-project.org
http://www.r-project.org
https://www.medcalc.org
https://www.medcalc.org
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WC, HDL-C, TG, FPG, previous diabetes, SBP, gen-
der, previous fatty liver, DBP, age, previous hyper-
tension, uric acid, glutamyl transpeptidase, total 
cholesterol (TC), alkaline phosphatase, creatinine, 
erythrocyte distribution width coefficient of varia-
tion, eosinophil percentage.

Construction of MetS risk prediction model
With the subset of features screened by RFE as input var-
iables, and whether to have MetS as the target variable (Y: 

1 = yes, 0 = no), three MetS risk prediction models were 
constructed by logistic, random forest, and XGBoost, 
respectively.

Based on feature selection dataset
According to Table 1, the performance evaluation results 
of constructing MetS risk prediction models based on 
RFE feature subset showed that RF and XGBoost mod-
els had higher accuracy, sensitivity, specificity, Youden 
index, and AUROC values compared with logistic 
regression, and XGBoost models have higher sensitivity, 

Fig. 1  RFE cross-validation result curve.A point in the graph represents a variable, which is a different variable

Table 1  Performance evaluation of MetS risk prediction in the test set

a indicates AUROC values of the XGBoost model compared with LR, Z = 30.986,P< 0.001
b indicates AUROC values of the XGBoost model compared with RF, Z = 3.920,P< 0.001

Classification model Accuracy(%) Sensitivity(%) Specificity(%) Youden index AUROC (95%CI)

LR 92.3 64.5 97.0 0.615 0.807(0.800 ~ 0.815)a

RF 99.5 96.9 100 0.969 0.984(0.982 ~ 0.987)b

XGBoost 99.7 98.5 99.9 0.984 0.992(0.990 ~ 0.993)
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Youden index, and AUROC values compare with RF. The 
ROC curve plots of LR, RF and XGBoost models based 
on the subset of RFE features show that the ROC curve 
of XGBoost model is closest to the upper left corner of 
the coordinate axis and has a higher AUROC value, as 
shown in Fig. 2.

Research on the interpretability of risk prediction models
Since the XGBoost model is a better classification 
model, the study uses the variable importance, PDP 
and LIME to study the interpretability of the XGBoost 
model.

Importance of variables
Figure  3 shows the 10 most important variables in the 
XGBoost model construction process, in descending 
order of importance: TG, WC, SBP, FPG, HDL-C, DBP, 
previous diabetes, previous hypertension, gender, and 
age.

LIME
Two subjects with MetS and two subjects without MetS 
are randomly selected from the training set subjects, and 
the specific data of the four subjects are shown in Table 2. 
The visualized heat map of the combination of variables 
for the four subjects based on the LIME method is shown 
in Fig.  4, and the interpretation of the predicted values 

for the four subjects individually is shown in Fig. 5, which 
shows the 10 most important variables associated with 
the occurrence of MetS and the 10 most important vari-
ables without MetS, respectively, as well as the direction 
and intensity of the effect of each influencing factor on 
the outcome, for example, triglycerides > 1.78 mmol/L is 

Fig. 2  ROC curve of MetS risk prediction model in the test set

Fig. 3  Variable importance of XGBoost model based on training set showing the top 10 variables
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shown in red in the left graph as an opposing factor with-
out MetS and in blue in the right graph as a supporting 
factor for MetS, so triglycerides > 1.78 mmol/L is a risk 
factor for the occurrence of MetS.

Combining the LIME results, we can obtain: TG, HDL-
C, erythrocyte distribution width coefficient of varia-
tion, previous hypertension, previous diabetes, alkaline 
phosphatase, FPG, SBP, DBP, gender, WC, and uric 
acid are associated with MetS, with TG ≤ 0.81 mmol/L, 
HDL-C > 1.21 mmol/L, 12.1 < erythrocyte distribution 
width coefficient of variation ≤ 13.0, no previous hyper-
tension, no previous diabetes, 48 U/L < alkaline phos-
phatase ≤ 59 U/L, 4.35 mmol/L < FPG ≤ 4.66 mmol/L, 
111 mmHg < SBP ≤ 123 mmHg, 68 mmHg < DBP ≤ 83 
mmHg, female, and WC < 73 cm are protective factors 
for the development of MetS; TG > 1.78 mmol/L, creati-
nine ≤ 59 μmoI/L, previous hypertension, uric acid > 300 
μmol/L, FPG > 5.05 mmol/L, SBP > 135 mmHg, DBP > 83 
mmHg, male, and WC > 89 cm are risk factors for the 
development of MetS.

Partial Dependence Plot
From variables importance and LIME, it can be obtained 
that the important variables associated with MetS 
include: TG, WC, SBP, FPG, HDL-C, DBP, age, creati-
nine, alkaline phosphatase, previous diabetes, previous 

hypertension, and gender, and the relationship between 
the continuous variables and the predicted probability of 
MetS was visualized using PDP plots, as shown in Fig. 6. 
From the figure, it can be concluded that a nonlinear 
relationship was observed between each variable and the 
probability of MetS occurrence.

(a)	 The probability of MetS in subjects with DBP 
between 68 and 83 mmHg is lower than that of 
DBP < 60 mmHg and DBP > 83 mmHg, and the 
probability of MetS at DBP around 83 mmHg is 
significantly higher than that of MetS at DBP < 60 
mmHg.

(b)	 The probability of MetS is low when SBP < 110 
mmHg of the subject, and the probability of MetS 
begins to increase when the SBP is around 110 
mmHg, and increases significantly when the 
SBP > 135 mmHg.

(c)	 The probability of MetS in the subject increases 
with increasing FPG, and at FPG > 7 mmol/L, the 
probability of MetS stabilizes and shows small fluc-
tuations with increasing FPG.

(d)	 The probability of MetS in the subjects increases 
with increasing WC and tends to stabilize at 
WC > 90 cm.

(e)	 The probability of MetS in the subject begins to 
decrease at HDL-C around 0.5 mmol/L, decreas-
ing to the lowest probability and stabilizing at 1.21 
mmol/L.

(f )	 The probability of MetS is low at TG < 1.7 mmol/L 
in subjects, and the probability of MetS increased 
significantly at about 1.7 mmol/L. After TG > 1.7 
mmol/L, the probability of MetS showed small fluc-
tuations as TG increased.

(g)	 The probability of MetS is low at age < 35 years, 
increases with age at age ≥ 35 years, and stabilizes 
at about 70 years.

(h)	 The probability of MetS increases significantly 
at around 200 umol/L uric acid and stabilizes at 
around 500 umol/L.

(i)	The probability of MetS is low for alkaline phos-
phatase < around 100 U/L and significantly higher 
and stabilized at around 100 U/L.

(j)	The risk of MetS is higher at creatinine ≤ 59 μmoI/L 
than at creatinine 59–130 μmoI/L, and the prob-
ability of MetS is significantly higher and stabilized 
at around 130 μmoI/L.

Discussion
Application value of risk prediction model
In recent years, with the development of computer sci-
ence and technology, various types of risk prediction 

Table 2  Specific data for 4 subjects in the training set

Variables Physical examiner number

3271 6506 25,392 10,557

Gender (0 = female, 1 = male) 0 1 1 0

Age (years) 26 61 45 59

eosinophil percentage 8.3 3.3 2.6 1.6

erythrocyte distribution width coef-
ficient of variation

12.4 14.4 12.9 12.2

creatinine (μmoI/L) 79 52 54 72

uric acid (μmoI/L) 386 260 304 373

glutamyl transpeptidase (U/L) 32 44 16 48

alkaline phosphatase (U/L) 48 115 56 69

previous fatty liver (0 = no, 1 = yes) 0 1 1 1

previous hypertension (0 = no, 1 = yes) 0 0 0 1

previous diabetes (0 = no, 1 = yes) 0 0 0 0

WC (cm) 72 91 84 90

SBP (mmHg) 139 154 122 169

DBP (mmHg) 71 85 83 109

FPG (mmol/L) 4.4 5.13 5.18 6.38

TC (mmol/L) 3.76 5.16 5.19 6.22

TG (mmol/L) 0.77 2.49 1.79 2.98

HDL-C (mmol/L) 1.54 1.22 1.67 1.33

MetS (0 = no, 1 = yes) 0 1 0 1
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models have been widely used in various fields of medi-
cine. Risk prediction models use statistical models to 
estimate the risk of developing future outcomes for indi-
viduals based on one or more underlying characteristics 
[35]. Healthcare interventions or lifestyle changes are 
targeted to those at increased risk of developing the dis-
ease. These models can also be to screen individuals to 
identify those who are at an increased risk of having an 
undiagnosed condition, for which diagnosis management 
and treatment can be initiated and ultimately improve 
patient outcomes [36]. Šoštarič A et  al. [37] used logis-
tic regression models to construct a prediction model for 
MetS based on lifestyle, simple anthropometric indica-
tors and blood parameters for identifying young individ-
uals with increased risk of MetS, and the model had good 
interpretability. Kanegae H [38] used 18,258 patients’ 
health examination data from 2005–2016 to build 

prediction models based on machine learning methods 
(XGBoost, ensemble learning) and traditional statistical 
methods (logistic regression), and according to the test 
dataset model results showed that the AUROC values 
of XGBoost, ensemble learning and logistic regression 
models were 0.877, 0.881 and 0.859, respectively, and 
the prediction performance of machine learning mod-
els was better than that of traditional statistical models; 
Chang W [39] proposed a prediction method for prog-
nostic outcomes based on physical examination indica-
tors in hypertensive patients, using four classification 
algorithms: support vector machine, C4.5 decision tree, 
random forest and XGBoost to predict patients’ progno-
sis, and among the four classifiers XGBoost had the best 
prediction performance with accuracy, F1 and AUROC 
values of 94.36%, 0.875 and 0.927. The machine learning 
models showed superior predictive performance in the 

Fig. 4  Visualized heat map of the variable combination of four medical examiners (training set) based on LIME. The direction of feature action is 
shown by color, blue (feature weight > 0) means the feature supports the outcome variable, red (feature weight < 0) means the feature opposes the 
outcome variable; the color shade refers to the degree of influence of the feature on the outcome variable, and the dark color indicates that the 
feature has a large influence on the metabolic syndrome
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related studies, but the transparency and interpretability 
of the models were low.

The study found that compared with logistic regres-
sion model, Random Forest and XGBoost model both 
have better classification prediction performance. Logistic 
regression is a classical approach in statistics and the most 
commonly used model for disease risk prediction, which 
requires many important assumptions to be satisfied in 
its application (e.g., independence of observations and no 
multicollinearity between variables). In contrast, machine 
learning algorithms make fewer assumptions about the 
underlying data, which results in algorithms that are usu-
ally more accurate for prediction and classification [40]. In 
addition, machine learning relies on computers to learn 
the complex nonlinear interactions between variables by 
minimizing the error between predictions and observa-
tions [41, 42], and therefore, machine learning algorithms 
have shown superior performance in most studies. Among 

the three MetS risk prediction models, the XGBoost 
model has the best predictive performance, which is simi-
lar to the results of Congxin Dai et al. [43]. Some scholars 
have shown that the high flexibility that XGBoost allows 
for fine-tuning may make its performance slightly better 
than random forest [44]. XGBoost uses parallelization and 
distributed computing to ensure efficient computing time 
and resources. It is an optimization model that combines 
a linear model with a Boosting tree model, using not only 
the first derivative of the loss function but also the second 
derivative of the loss function to reduce the possibility 
of overfitting, adjusting for errors generated by existing 
models and improving their effectiveness [45]. However, 
the functional relationship between the input and output 
of XGBoost model is difficult to understand, especially in 
medical applications, where the "black box" property of 
the model may make the model unpredictable and risky 
or make biased decisions.

Fig. 5  Interpretation of individual prediction (training set) based on LIME diagram. The length of the bars is proportional to the strength of the 
characteristic effect
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Fig. 6  PDP diagram of important variables in the XGBoost model (training set)
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Application value of model interpretability methods
The research focuses on the interpretation of mod-
els after they are built, that is, post-hoc model-agnostic 
interpretation methods, which are used to interpret 
complex machine learning prediction models and can 
help application personnel understand the process and 
rationale for the decisions made by the models. Variable 
importance and PDP provide global explanations. Vari-
able importance quantifies the relationship between the 
independent and dependent variables in the model and 
visually shows the relative strength of the independent 
variables’ influence on the model. PDP is graphical repre-
sentations of predictive functions that help visualize the 
relationship between variables and predicted outcomes, 
and can show whether the relationship between objec-
tives and features is linear, monotonic, or more complex. 
For example, when applied to a linear regression model, 
PDP always shows a linear relationship. However, LIME 
is a local interpretation of the model, which can be inter-
preted for each individual’s prediction results, suggest-
ing specific cut-off values for disease risk factors, which 
is more early warning for individual disease prevention 
than logistic regression. But the disadvantage of its appli-
cation is the instability of interpretation [46]. The variable 
importance, PDP, and LIME methods have the character-
istics of freedom and flexibility in the choice of models 
compared with the nomograms that are often used cur-
rently. The nomogram is a transparent and interpretable 
analysis based on a specific model, which builds on logis-
tic regression analysis and transforms complex regres-
sion equations into visual graphs that intuitively show 
the contribution of predictor variables to the results, 
making the results of the predictive model more readable 
[47]. Therefore, the black box model combined with the 
model interpretability method can not only realize the 
flexibility of model application, but also make up for the 
uninterpretable defects of the model, which will help to 
accurately find high-risk individuals with MetS from the 
physical examination data.

Different interpretability techniques can reveal differ-
ent insights into the behavior of the model, where global 
interpretation can enable clinicians to understand the 
entire conditional distribution modeled by the trained 
response function. On the contrary, local interpretation 
can promote a partial understanding of the conditional 
distribution of a particular instance. Various interpret-
ability techniques may interpret the behavior of machine 
learning models differently. The advantage of global 
interpretability technology is that it can be extended to 
the entire population, suggesting the general trend of 
influencing factors on the outcome, while local inter-
pretability technology focuses on interpretation at the 
instance level and can facilitate insight into the predicted 

outcomes for a particular research object. According to 
the needs of the application, these two methods can be 
equally effective, and both are effective methods to assist 
clinicians in the medical decision-making process.

Factors influencing the risk of developing MetS
According to the diagnostic criteria for MetS proposed by 
the World Health Organization (WHO), the Adult Treat-
ment National Cholesterol Education Program Group 
(ATP III), the European Group for Insulin Resistance 
Research (EGIR) and the International Diabetes Federa-
tion (IDF), the included components are WC, BMI, TG, 
HDL-C, FPG and blood pressure, which are risk factors 
for MetS. In addition, MetS has been reported to be asso-
ciated with other possible risk factors in related studies. 
The interpretable risk prediction model in this study can 
help to identify risk factors associated with MetS, and 
the results showed that in addition to the traditional risk 
factors such as overweight and obesity, hyperglycemia, 
hypertension, and dyslipidemia, MetS was also associ-
ated with other factors, including age, creatinine, uric 
acid, and alkaline phosphatase.

Studies have found that age is positively correlated with 
the risk of MetS. The probability of MetS increased with 
age when the age was ≥ 35 years, and the probability of 
MetS stabilized at about the age of 70 years, which was 
roughly similar to the results of related studies. Wang S 
[48] showed that age was a significant predictor of MetS 
in the working population, with older individuals having 
a higher risk of developing MetS. In a survey of the prev-
alence of MetS in the United States from 2003 to 2012, 
a comparison of the prevalence of MetS based on three 
age groups, 20–39, 40–59, and ≥ 60 years old, showed 
that the prevalence of MetS increased with age [49]. So 
far, the mechanism of the association between serum 
creatinine and MetS is unclear. The results of a cross-
sectional study of 1,017 consecutive morbidly obese 
patients showed a negative association between serum 
creatinine and T2DM when serum creatinine levels were 
below 69 and 72 μmol/l in women and men, respectively 
[50]. More recently, Kengo Moriyama [51] found that 
the ratio of serum uric acid to creatinine was associated 
with a higher risk of MetS. Our study showed segmental 
changes in the association between serum creatinine and 
MetS. The risk of MetS was higher in physical examiners 
with creatinine ≤ 59 μmoI/L than in those with creatinine 
of 59 to 130 μmoI/L, and the risk of MetS increased sig-
nificantly at about 130 μmoI/L and then stabilized. This 
result is complementary to the current study.

This study showed that the probability of MetS was 
higher at alkaline phosphatase levels greater than 
about 100 U/L, suggesting that high levels of alkaline 
phosphatase are a risk factor for MetS. An association 
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between serum alkaline phosphatase activity and MetS 
has been reported by researchers, but this association 
has not received a uniform answer. In a community-
based cross-sectional survey of the association between 
osteocalcin and MetS in Korean men and postmeno-
pausal women, the association between alkaline phos-
phatase activity and MetS was found to be statistically 
insignificant after adjustment for age, BMI, and osteo-
calcin [52]. Furthermore, in another nationally repre-
sentative cross-sectional study, high levels of alkaline 
phosphatase were associated with a high prevalence of 
MetS after adjusting for potential confounding variables 
[53]. Several mechanisms could explain the significant 
relationship between serum alkaline phosphatase activ-
ity and MetS, and although the pathophysiology of the 
MetS is not fully understood, insulin resistance and 
subclinical low-grade inflammation play a key role in 
the development of the MetS [53]. The results of this 
study showed that the probability of developing MetS 
was significantly higher in physical examiners with 
uric acid greater than 200 umol/L. Uric acid is the final 
enzymatic product of purine metabolism in the body, 
and related studies suggest that hyperuricemia, as an 
independent risk factor for atherosclerosis and coronary 
heart disease, is closely associated with many risk fac-
tors for MetS (e.g., obesity, abnormal lipid metabolism, 
hypertension, etc.) [54].

Our study also has some limitations. First, the study is 
based on a cross-sectional study, Machine learning mod-
els combined with interpretable methods can help iden-
tify factors associated with MetS that may be associated 
with prognostication and risk stratification in healthy 
populations, but cannot be justified. Second, the study 
used the LIME method to interpret the individual predic-
tion results, but the interpretation of the results for two 
study individuals with very close values differed signifi-
cantly, and the method still has the shortcoming of insta-
bility at present.

Conclusion
Based on health examination data, the study takes MetS 
as the entry point and uses data mining classification 
models combined with model interpretability methods to 
build high classification performance and easy-to-under-
stand MetS risk prediction models. The interpretability 
methods can be used as a novel means of identifying var-
iables that are more likely to be good predictors. These 
predictors can be evaluated as features in other models 
developed with more appropriate datasets. In addition, it 
can also provide a methodological reference for the fea-
sibility of applying the model interpretability method in 
health examination data mining.
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