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SUMMARY

G protein-coupled receptors (GPCRs) in intestinal enteroendocrine cells (EECs) respond to 

nutritional, neural, and microbial cues and modulate the release of gut hormones. Here 

we show that Gpr17, an orphan GPCR, is co-expressed in glucagon-like peptide-1 (GLP-1)-

expressing EECs in human and rodent intestinal epithelium. Acute genetic ablation of Gpr17 in 

intestinal epithelium improves glucose tolerance and glucose-stimulated insulin secretion (GSIS). 

Importantly, inducible knockout (iKO) mice and Gpr17 null intestinal organoids respond to 

glucose or lipid ingestion with increased secretion of GLP-1, but not the other incretin glucose-

dependent insulinotropic polypeptide (GIP). In an in vitro EEC model, overexpression or agonism 

of Gpr17 reduces voltage-gated calcium currents and decreases cyclic AMP (cAMP) production, 

and these are two critical factors regulating GLP-1 secretion. Together, our work shows that 

intestinal Gpr17 signaling functions as an inhibitory pathway for GLP-1 secretion in EECs, 

suggesting intestinal GPR17 is a potential target for diabetes and obesity intervention.

Graphical abstract

In brief

Yan et al. locate GPR17 expression in the enteroendocrine cells of human and rodent intestinal 

epithelium. They find that GPR17 signaling inhibits intracellular rise of cAMP and calcium and 

that loss of intestinal Gpr17 in rodents leads to better glucose tolerance via increased hormone 

secretion in response to nutrient ingestion.
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INTRODUCTION

Enteroendocrine cells (EECs) in the gastrointestinal (GI) tract sense luminal content and 

release gut hormones, which regulate glucose metabolism and feeding through endocrine 

and neuronal mechanisms (Gribble and Reimann, 2016; Kim et al., 2018; Schwartz and 

Zeltser, 2013). The postprandial glucose lowering effect of incretin hormones is often 

blunted in type 2 diabetes (T2D) and enhanced after bariatric surgery (Douros et al., 

2019; Nauck et al., 1986). Glucagon-like peptide-1 (GLP-1) is an incretin hormone 

secreted by preproglucagon-expressing EECs (traditionally named L cells) and is degraded 

rapidly by dipeptidylpeptidase 4 (DPP4) (Holst, 2007). Long-acting GLP-1 analogs and 

DPP4 inhibitors have been developed for the treatment of T2D (Drucker and Nauck, 

2006). A potential alternative treatment strategy for T2D is through the modulation of 

endogenous GLP-1 secretion; however, the factors and pathways involved in the regulation 

of endogenous GLP-1 secretion remain incompletely understood.

G protein-coupled receptors (GPCRs) regulate GLP-1 secretion in EECs by responding 

to the rise of nutrients (e.g., lipids, carbohydrates, and peptides), molecules associated 

with food ingestion (e.g., bile acids), and hormonal and neural factors (e.g., somatostatin, 

calcium, and endocannabinoids) (Reimann et al., 2012), which in turn activate downstream 

signaling pathways that regulate gut hormone secretion through second messengers (Ezcurra 

et al., 2013). As GPCRs are the target of more than a quarter of the Food and Drug 

Administration-approved drugs (Hauser et al., 2017), understanding the biological actions 

of GPCRs in EECs will likely provide insight into developing new diabetes therapeutics by 

promoting endogenous GLP-1 secretion.

GPR17 was initially identified as an orphan GPCR phylogenetically related to purinergic 

and cysteinyl-leukotriene (CysLT) receptors (Ciana et al., 2006; Parravicini et al., 2008) with 

an implicated function in oligodendrocyte myelination (Ceruti et al., 2009; Chen et al., 2009; 

Lecca et al., 2008). We previously identified Gpr17 as the transcriptional target of Forkhead 

box protein O1 (FoxO1) in hypothalamic neurons and demonstrated its physiological role 

in maintaining metabolic homeostasis (Reilly et al., 2019; Ren et al., 2015; Ren et al., 

2012). In this study, we first made the exciting discovery of GPR17 expression in GLP-1-

producing EECs in the GI tract. We further evaluated the metabolic function of intestinal 

Gpr17 by generating constitutive and inducible intestinal Gpr17 knockout mouse models 

and characterized Gpr17 downstream signaling pathways in cultured EECs and intestinal 

organoids. Our results suggest that intestinal GPR17 contributes to the regulation of glucose 

metabolism by modulating GLP-1 secretion.

RESULTS

GPR17 is expressed in GLP-1-producing cells in human and mouse gut epithelium

Existing data within the Genotype-Tissue Expression (GTEx) portal demonstrated the 

expression of GPR17 mRNA in human intestinal tissues (https://www.gtexportal.org/

home/gene/GPR17#geneExpression). Our qRT-PCR showed human GPR17 expression 

increased from the proximal to the distal intestine (Figure 1A), similar to the expression 

pattern of preproglucagon gene GCG (Mojsov et al., 1986). Interestingly, we detected 
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GPR17 expression in flask-shaped cells resembling EECs in the intestinal epithelium 

by immunohistochemistry (IHC), but not in the submucosa or muscular layers (Figure 

S1A). To characterize the GPR17-positive cells, we first performed double staining using 

chromogranin A (CHGA) as a pan-EEC marker (Figure 1B). Our quantified result showed 

that the majority (66.9%) of GPR17-positive cells were also CHGA positive in human 

intestine (Figure 1E). Next, we examined if GPR17 was enriched in a subtype of EECs. 

We found that GPR17 was co-expressed with GLP-1 (Figure 1C), and the majority of 

GLP-1-producing cells (74.4%) were GPR17 positive (Figure 1F). However, GPR17 was not 

observed in glucose-dependent insulinotropic polypeptide (GIP)-producing cells in human 

small intestine (Figure 1D). As antibody specificity is often a concern for GPCR antibodies 

(Michel et al., 2009), we validated the commercial GPR17 antibody by performing double 

staining in permeabilized HEK293 cells transiently expressing an HA epitope-tagged human 

GPR17 construct. Anti-HA and anti-GPR17 antibody staining overlapped in the same cells 

(Figure S1B). GPR17 antibody staining overlapped with more than 90% of HA antibody 

staining cells (Figures S1C and S1D) with minimal nonspecific staining (Figure S1E), 

thereby validating the GPR17 antibody used in our study. Since a substantial fraction 

of GPR17 staining was detected intracellularly in the permeabilized cells (Figures S1B–

S1F), we examined the non-permeabilized cells and found colocalization of anti-HA and 

anti-GPR17 staining on the cell surface (Figure S1G).

We further substantiated our findings using sorted mouse intestinal GLP-1-producing EECs. 

We crossed Gcg-CreERT mice (Shiota et al., 2017) with Rosa-tdTomato reporter mice to 

label GLP-1-producing cells. With tamoxifen-induced Cre expression, GLP-1-producing 

cells were labeled by tdTomato (Figure 2A) and collected by fluorescence-activated cell 

sorting (FACS) (T+ fraction in Figure 2A). The qRT-PCR result showed that Gpr17 
transcripts were enriched in T+ cells (Figure 2B). Consistent with previous reports of 

transcriptional profiles of GLP-1-producing cells (Habib et al., 2012), we also observed 

enriched transcripts of Gcg (encoding preproprotein that is eventually cleaved into glucagon-

like peptides including GLP-1 and GLP-2 in intestine) and Pyy (encoding peptide YY), but 

not Gip (Figures 2C–2E). Together, these results indicated that GPR17 was expressed in 

most GLP-1-producing cells in the gut epithelium.

Inducible intestine-specific Gpr17 knockout mice had improved glucose tolerance

To elucidate the metabolic function of intestinal Gpr17, we generated tamoxifen (TAM)-

inducible intestine-specific Gpr17 knockout mice (Gpr17fl/fl; Vil1Cre-ERT2; namely iKO 

hereafter) (Figure 3A). The Gcg-Cre guided GLP-1-producing cell-specific Gpr17 knockout 

mice are not suitable for our study. There are two major reasons: (1) Gcg-cre is activated not 

only in gut but also in any tissues expressing Gcg, such as islets (Figures S2C and S2D) and 

the nucleus tractus solitarius of the brain stem (Katsurada and Yada, 2016) (data not shown); 

(2) due to the constant gut epithelial renewal, the Gpr17-deficient GLP-1-producing cells 

were quickly replaced by the newly regenerated GLP-1-producing cells with intact Gpr17 
alleles, once the tamoxifen injection was terminated (Figures S2A and S2B). However, Vil-
Cre under the control of the villin promotor targeted epithelial progenitor cells throughout 

the digestive epithelium and persisted throughout adulthood, despite rapid intestinal cell 
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renewal (el Marjou et al., 2004). Therefore, we bred Gpr17fl/fl mice with Vil1Cre-ERT2 mice 

to generate inducible gut epithelium-specific Gpr17 knockout mice for our studies.

After tamoxifen injection, Gpr17 expression was almost completely abolished in the small 

intestine and colon of iKO mice, but not in the stomach or hypothalamus (Figure 3B). The 

body weight and composition of iKO mice were comparable to those of the wild-type (WT) 

control before and after tamoxifen treatments (Figures 3C–3E). There was no difference in 

fasting body weight before glucose tolerance testing in WT and iKO mice (Figure 3F). The 

genetic knockout was sustained after the initial tamoxifen injection (Figure 3G). Within 8 

weeks after tamoxifen-induced Gpr17 genetic ablation, male iKO mice showed significantly 

improved oral glucose tolerance (Figure 3H). Similarly, female iKO mice showed even 

greater significant improvement in glucose tolerance after Gpr17 genetic ablation (Figure 

3I). Furthermore, after long-term Gpr17 genetic ablation (1 year post tamoxifen injection) 

(Figure 3J), female (Figure 3L) but not male mice (Figure 3K) still displayed significantly 

improved glucose tolerance.

Knocking out intestinal Gpr17 increased nutrient-stimulated insulin and GLP-1 secretion in 
vivo

To address how intestinal Gpr17 deficiency led to improved glucose metabolism in iKO 

mice, we examined insulin secretion using the oral glucose-stimulated insulin secretion 

(GSIS) assay. Both female and male iKO mice responded to oral glucose gavage with 

increased serum insulin levels (Figures 4A and 4F). Incretin hormones play important roles 

in regulating insulin secretion in pancreatic islet b-cells (Campbell and Drucker, 2013), 

and we have observed Gpr17 expression in GLP-1-producing EECs (Figures 1 and 2). We 

hypothesized that knocking out intestinal Gpr17 increases GLP-1 secretion in response to 

nutrient ingestion. To test this, we measured incretin (GLP-1 and GIP) secretion in iKO and 

WT mice during fasting and after nutrient administration. Fasting GLP-1 (0 min, Figures 4B 

and 4D) and GIP (0 min, Figures 4C and 4E) levels had no difference between male WT 

and iKO mice. Ten minutes after oral glucose dosing, plasma total GLP-1 levels in iKO male 

mice were greater than those in WT mice (Figure 4B), while GIP levels were comparable 

between the two groups (Figure 4C). Meanwhile, iKO males responded to oral corn oil 

dosing with higher concentrations of total GLP-1 (Figure 4D) and similar GIP levels (Figure 

4E). Female iKO mice showed a trend of more GLP-1 secretion after glucose gavage, 

although this finding was not statistically significant (p = 0.088, Figure 4G). Furthermore, 

female iKO mice responded to oral corn oil dosing with higher GLP-1 secretion (Figure 

4I). Female iKO mice had comparable GIP secretion to WT mice after either oral glucose 

or corn oil gavage (Figures 4H and 4J). Neither fasting GLP-1 (0 min, Figures 4G and 

4I) nor fasting GIP (0 min, Figures 4H and 4J) levels were different in female iKO mice 

compared with WT mice. In addition, we did not detect any significant changes in Gcg or 

Gip transcripts in intestinal Gpr17 knockout mice (Figures 4K and 4L).

To further substantiate our finding, we tested whether injection of Ex9, a GLP-1 receptor 

antagonist, could dampen the improvement of glucose metabolism in iKO mice. We 

administrated Ex9 at a dose of 10 µg/mouse, which is 20% of the dose that has been 

previously shown to induce significant glucose intolerance in WT mice (Burmeister et al., 
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2017; Chambers et al., 2017). As expected, compared with the mild effect on intraperitoneal 

glucose tolerance test (ipGTT) in WT mice, Ex9 at 10 µg/mouse exerted more profound 

impact on iKO mice (Figure 4M). Notably, 15 min after glucose dosing, iKO + Ex9 group 

had significantly higher blood glucose than iKO + saline group (Figure 4N). These data 

demonstrate that knocking out intestinal Gpr17 improved glucose tolerance through, at least 

in part, the mechanisms of promoting GLP-1 secretion in response to nutrient ingestion in 
vivo.

Intestinal Gpr17 deficiency did not affect gut morphology, islets, or gut microbiota

We next determined whether changes in gut morphology, pancreatic islet, and/or gut 

microbiota may contribute to the glucose phenotype observed in Gpr17 knockout mice. 

The general morphology of small intestine and colon in adult iKO mice (4 months after 

TAM injection) was no different compared with WT mice (Figures 5A–5D). The villi and 

crypt length in iKO small intestine were similar to those of WT (Figures 5B and 5C). 

The thickness of colonic epithelium (including surface epithelium and crypts) was also 

comparable between iKO and WT mice (Figure 5E). The size and number of pancreatic 

islets were not altered in iKO mice compared with WT mice examined by IHC with insulin 

staining (Figures 5F–5H).

The gut microbiome is one of the integral factors for maintaining metabolic homeostasis in 
vivo (Quigley, 2013). We examined if knocking out intestinal Gpr17 led to changes in gut 

microbiota composition and found no significant difference in the composition and diversity 

of gut microbiome (Figures S3A–S3F). Heat-maps arranged using hierarchical clustering 

methods and principal component analysis of bacteria showed no gene factor-induced 

difference in WT and iKO fecal samples (Figures S3G and S3H). Therefore, we conclude 

that acutely knocking out intestinal Gpr17 caused no change in bacterial composition, 

richness, or diversity of the gut microbiota.

Enhanced GLP-1 secretion in Gpr17 null intestinal organoids

We further investigated the effect of Gpr17 deficiency on incretin secretion using intestinal 

organoid, a three-dimensional ex vivo mini-gut that retains the architectural complexity and 

cellular diversity of gut epithelium (Sato et al., 2009). To obtain Gpr17 null organoids, 

we first generated constitutive intestinal Gpr17 knockout mice (Gpr17fl/fl;Vil1Cre) and then 

derived the Gpr17 null intestinal organoids from these mice. We detected a significant 

reduction (approximately 90%) of Gpr17 mRNA in duodenum and negligible levels of 

Gpr17 mRNA expression in other intestinal segments (jejunum, ileum, and colon) of 

the knockout mice (Figure 6A). qRT-PCR confirmed the lack of Gpr17 in organoids 

derived from intestinal Gpr17 knockouts (Figures 6B and 6C), while neither Gcg nor 

Gip transcription was affected (Figure 6D). Interestingly, Gpr17 null organoids had 

significantly increased GLP-1 secretion under basal condition with 1 mmol/L glucose, 

while GIP secretion remained unchanged (Figure 6E). When stimulated with palmitoleic 

acid (Figure 6F), a monounsaturated fatty acid, and GPBAR-A (Figure 6G), an agonist of 

bile acid receptor (G-protein-coupled bile acid receptor [GPBAR]), Gpr17 null organoids 

demonstrated increased GLP-1, but not GIP secretion. When stimulated with forskolin 

(adenylyl cyclase activator) and 3-Isobutyl-1-methylxanthine (IBMX, phosphodiesterase 
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inhibitor) (Fsk/IBMX), GLP-1 (Figure 6H), but not GIP (Figure 6I), secretion was elevated 

in Gpr17 null organoids with forskolin at indicated concentrations.

Gpr17 deficiency enhanced GLP-1 secretion in cultured GLUTag cells through the Ca2+ 

and cAMP signaling pathways

Our data showed that intestinal Gpr17 knockout led to better glucose metabolism via 

increased GLP-1 and insulin secretion in vivo. However, the exact molecular mechanisms 

are still unclear. To answer this question, we used in vitro cultured GLUTag cells, 

an established murine intestinal EEC line that secretes GLP-1 in a regulated manner 

(Brubaker et al., 1998; Drucker et al., 1994). The rise of intracellular calcium triggers 

exocytosis in various cell types, including neurons (Pang and Südhof, 2010), pancreatic 

beta cells (Satin, 2000), and EECs (Kuhre et al., 2015). We used whole-cell patch clamp 

to monitor the currents of voltage-dependent calcium channels (VDCCs) (Figures 7A and 

7B). Overexpressing Gpr17 (GFP + cells) in GLUTag cells resulted in reduced amplitude 

of Ca2+ current triggered by membrane depolarization with I/V curve shown in Figure 

7C and area under the curve (AUC) shown in Figure 7D. No difference regarding cell 

capacitance between transfected cell and non-transfected cells was observed (Figure 7E). 

Reduced amplitude of Ca2+ current indicated less Ca2+ flux into intracellular space when 

Gpr17-expressing EECs responded to nutrient stimulation. The cAMP signaling pathway is 

well known to potentiate Ca2+-induced exocytosis in a variety of secretory cells including 

EECs (Ezcurra et al., 2013; Seino and Shibasaki, 2005). We measured cAMP levels in live 

GLUTag cells cotransfected with GloSensor, a cAMP biosensor (Buccioni et al., 2011), 

and mouse Gpr17 (mGpr17) to determine whether Gpr17 regulates cAMP generation in 

EECs. The cAMP level was lower in cells expressing mGpr17 as compared with empty 

vector, suggesting constitutive activity consistent with Gαi coupling (Figure 7F). Treatment 

with the synthetic GPR17 agonist, MDL29,951, had concentration-dependent effects on the 

cAMP response in cells expressing mGpr17 (Figure 7F). Specifically, a biphasic pattern was 

observed where inhibition of cAMP was detected for MDL29,951 concentrations between 

~10 nM and 300 nM, but stimulation of cAMP was observed at MDL29,951 concentrations 

≥ ~30 µM. GloSensor cAMP signal differences were also observed between empty vector 

and mGpr17-expressing cells upon addition of 3 µM forskolin (Figure 7G), suggesting 

constitutive receptor activity suppressing cAMP levels in these cells. MDL29,951 further 

inhibited the forskolin-stimulated GloSensor cAMP response in a concentration-dependent 

manner (Figure 7G). However, MDL29,951 had no effect on GloSensor cAMP responses 

in empty vector-transfected cells (Figure 7G), suggesting that the effects of MDL29,951 are 

mediated by mGpr17. Time course recording showed that MDL29,951 inhibited forskolin-

stimulated induction of luminescence in GLUTag cells expressing mGpr17 (Figures 7H 

and 7I). Taken together, these experiments suggest that mGpr17 expression constitutively 

inhibits cAMP levels in GLUTag cells through Gαi -coupling. Furthermore, agonist 

activation of mGpr17 had biphasic effects on basal cAMP levels that were dependent on 

MDL29,951 concentration, but exclusively inhibitory effects on forskolin-stimulated cAMP.

Activation of several GPCRs could directly inhibit VDCCs (Ruiz-Velasco and Ikeda, 2000; 

Sun et al., 2001) and cAMP production (Robichaux and Cheng, 2018) via Gβγ and Gαi 

subunits, respectively. To directly prove the Gαi/Gβγ coupling of GPR17, we performed 
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bioluminescence resonance energy transfer (BRET) assay in HEK293 cells transiently 

expressing TRUPATH Gαβγ biosensor (Olsen et al., 2020). BRET was reduced in mGpr17-

expressing cells, but not in empty vector- or human neurotensin receptor type 1 (NT1R)-

expressing cells, when treated with 100 nM MDL29,951 (Figure 7J), suggesting GPR17 was 

coupled to Gαi and its activation could induce Gαi/Gβγ dissociation.

In summary, we showed that GPR17 acts as a brake to negatively regulate GLP-1 secretion 

in EECs by inhibiting Ca2+ signaling and cAMP generation in response to nutrient 

stimulation (Figure 7K). Inhibition of GPR17 signaling could potentiate nutrient-stimulated 

GLP-1 secretion, and consequently improve glycemic control in vivo.

DISCUSSION

GLP-1 and GIP are incretin hormones secreted by enteroendocrine cells in the intestinal 

epithelial lining within minutes after meal ingestion (Ezcurra et al., 2013; Holst, 2007). 

GLP-1 and GIP regulate glucose homeostasis and appetite via endocrine and neural 

mechanisms (Kim et al., 2018; Steinert et al., 2017). In T2D, the overall incretin effect 

is reduced (Nauck et al., 1986). The cellular mechanisms and intestinal luminal cues 

governing endogenous GLP-1 secretion are subjects of intense investigation yet remain 

poorly understood. Here we demonstrated that an orphan GPCR, GPR17, was expressed in 

GLP-1-producing enteroendocrine cells in the human and rodent intestinal epithelium using 

complementary approaches (IHC- and FACS-based gene expression characterization). The 

presence of GPR17 in intestine and its colocalization with GLP-1 led us to further evaluate 

its previously unrecognized physiological roles in glucose metabolism. We generated 

the acute inducible (iKO) intestine-specific Gpr17 loss-of-function mouse models. Both 

female and male iKO mice showed improved glucose tolerance with increased oral GSIS. 

Furthermore, iKO mice also responded to oral nutrient (glucose or lipid) ingestion with 

increased GLP-1 secretion. Finally, our in vitro studies showed that Gpr17 signaling in 

cultured EECs inhibited Ca2+ influx and cAMP production via coupling with Gαi. Gpr17 

null intestinal organoids also showed increased GLP-1 secretion. Collectively, these findings 

demonstrated that inhibiting intestinal Gpr17 signaling improved glucose metabolism via 

potentiating nutrient-induced GLP-1 secretion from enteroendocrine cells.

GPCRs constitute a large family of proteins that engage in regulating various physiological 

responses by sensing a diverse array of ligands and coupling with discrete downstream 

cellular signaling cascades. For instance, GPCRs expressed in EECs can be activated by 

luminal nutrients, microbiome metabolites, and basolateral stimulations from the enteric 

nervous system or the circulation (Hauser et al., 2017; Husted et al., 2017; Mace et al., 

2015). Efforts have been made to identify EEC-specific GPCRs (Haber et al., 2017; Panaro 

et al., 2014), though sequencing depth and library preparation often impose limitations to 

detect GPCR transcripts with low abundance in single-cell RNA sequencing (scRNAseq) 

studies (Mawla and Huising, 2019; Wang and Kaestner, 2019). We took direct experimental 

approaches and found Gpr17 mRNA and protein expression in the GLP-1-producing EECs 

of the rodent and human gut epithelium. Our in vivo physiological and in vitro molecular 

mechanism studies supported our hypothesis that Gpr17 intestinal knockout improves 

glucose homeostasis by promoting GLP-1 secretion. In addition to demonstrating increased 
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GLP-1 secretion in iKO mice and organoids, we unbiasedly tested and subsequently ruled 

out the following alternative hypotheses. First, the improved glucose tolerance phenotype is 

not secondary to defects in nutrient intake, as Gpr17 intestinal iKO mice exhibited normal 

weight, body composition, and gut morphology with ad libitum feeding on normal chow 

diet. Second, we performed extensive profiling and found no difference in the gut microbiota 

composition of Gpr17 intestinal iKO mice. Last, the number and size of the pancreatic 

islets in the acute Gpr17 intestinal iKO mice were comparable to the measurements of the 

WT mice. Taken together, the results from these control experiments further strengthen our 

initial hypothesis that intestinal Gpr17 plays an important role in glucose homeostasis by 

modulating GLP-1 secretion.

We previously identified Gpr17 as an effector of FoxO1 orexigenic signals in the brain (Ren 

et al., 2012). Loss of Gpr17 in the brain confers increased hypothalamic neuronal sensitivity 

to insulin and leptin, leading to reduced ad libitum feeding and increased relative energy 

expenditure (Ren et al., 2015). Other groups reported that loss of Gpr17 mitigates brain 

damage through a FoxO-dependent mechanism (Lecca et al., 2008; Marschallinger et al., 

2015). In the intestine, we reason that FoxO1 is less likely to mediate the effects GPR17, 

since FoxO1 expression was restricted in the chromogranin A-positive endocrine cells 

and serotonin (5HT)-positive cells, but not GLP-1-producing cells (Bouchi et al., 2014). 

Moreover, knocking out Gpr17 is less likely to affect the transcription factor upstream. 

Indeed, in our inducible Gpr17 knockout mice, Gpr17 ablation did not cause a compensatory 

increase of FoxO1 transcripts in the intestine (data not shown).

As a result of physiological compensation and developmental adaption, germ-line knockout 

models of established metabolic factors often showed lack of body weight phenotype or 

surprisingly milder glucose phenotype (Qian et al., 2002; Scrocchi et al., 1996; Scrocchi 

and Drucker, 1998), which limits the interpretation of negative data as a true absence of 

function (Chambers et al., 2013). This could be the case for the lack of phenotype in one 

Gpr17 germ-line knockout model (Mastaitis et al., 2015), although another study reported 

beneficial metabolic effects (Ou et al., 2019). Being aware of the potential confounding 

factors of germ-line knockout approaches, we tested the inducible tissue-specific knockouts 

in our studies. Our inducible intestine-specific knockout mice yielded largely consistent 

phenotypes for both sexes and revealed metabolic functions of Gpr17 signaling in the gut 

that are distinct from our previously reported role in the brain. Therefore, we speculate 

that inhibiting Gpr17 signaling in brain and gut yields concerted improvement of metabolic 

outcomes through different cellular mechanisms and complementary endocrine pathways.

In gut EECs, our data revealed that GLP-1 secretion was regulated by GPR17 and the 

downstream signaling pathways mediated via G protein subunits: Gαi and Gβγ (Figure 7K). 

Previous Gpr17 signaling studies using the heterologous expression models have yielded 

complicated and sometimes even paradoxical results (Ciana et al., 2006; Hennen et al., 

2013; Simon et al., 2016). Adding to the complexity of the issue, GPCRs in metabolic 

organs have the capacity to signal through multiple pathways in cell-type-specific manners, 

and it is often not clear which pathway is associated with a given biological effect for a 

particular receptor (Husted et al., 2017). To better understand the physiological function 

of GPR17, we used physiologically relevant models, including inducible tissue-specific 
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knockout animals, intestinal organoids, and cultured EECs. Our results indicate that GPR17 

engaged Gαi signaling pathway is physiologically relevant for regulating incretin secretion 

in the enteroendocrine cells. First, Gαi subunits released from the coupled GPCR directly 

inhibit adenylyl cyclase activity and consequently reduce cAMP production. Second, Gβγ 
subunits released from Gαi modulate membrane potential through activation of G protein-

gated inwardly rectifying K+ channels (GIRKs) and inhibition of voltage-dependent Ca2+ 

channels (VDCCs) (Lüscher and Slesinger, 2010; Smrcka, 2008; Sun et al., 2001). In the 

voltage-clamp setting, which would bypass the modulation of Ca2+-influx through GIRK-

channel, we found GPR17 overexpression inhibited voltage-gated Ca2+ channels, suggesting 

the constitutive activation of GPR17 could directly inhibit VDCCs. The activation of Gαi-

coupled GPCR causes voltage-dependent inhibition of Ca2+ channels (Bean, 1989; Ikeda 

and Dunlap, 1999) mediated by Gβγ subunits (Ruiz-Velasco and Ikeda, 2000), a process 

that has been well documented in neuronal cells (Dunlap et al., 1995). Given the many 

shared features of neuronal transmitter release in neurons and gut hormone secretion in 

EECs, we hypothesized that activation of GPR17 could directly modulate voltage-gated 

Ca2+ channels through Gβγ subunits in EECs. Gpr17 signaling through the Gαi/Gβγ 
pathway has been reported in several articles (Ciana et al., 2006; Hennen et al., 2013; 

Inoue et al., 2019; Merten et al., 2018; Simon et al., 2016). Furthermore, by application of 

Gabg TRUPATH biosensor (Olsen et al., 2020), we directly proved that GPR17 is coupled 

to Gαi, and its activation could dissociate Gβγ from Gαi. Therefore, we conclude that 

GPR17 functions as a brake to negatively modulate nutrient-stimulated GLP-1 secretion by 

inhibiting cAMP and Ca2+ signaling through Gαi and Gβγ subunits.

Limitations of the study

There are limitations with our current studies. First, the nature of the endogenous ligand(s) 

for GPR17 is still unclear. Several groups have performed initial studies on defining GPR17 

ligands. Candidates include uracil nucleotides, cysteinyl leukotrienes (CysLTs), and other 

synthetic compounds (Ciana et al., 2006; Hennen et al., 2013; Parravicini et al., 2010; 

Parravicini et al., 2008; Pugliese et al., 2009). Although results were inconsistent among 

these studies (Simon et al., 2017), cysteinyl-leukotriene receptor (CysLTR) inhibitors did 

consistently show antagonistic activity for GPR17 signaling (Hennen et al., 2013; Merten 

et al., 2018), which raises the possibility of endogenous GPR17 agonists sharing structural 

similarity with cysteinyl leukotrienes, a class of inflammatory lipids. Although beyond the 

scope of our current study, identifying the endogenous Gpr17 ligand will provide valuable 

insights to Gpr17 biology and warrants future investigation. Second, not all GPR17-positive 

cells were stained positive for GLP-1, suggesting GPR17 may regulate other gut hormone 

secretion in different types of EECs. It remains to be determined whether or how Gpr17 

signaling impacts the secretion of other gut hormones in EECs. We acknowledge that the 

increased GLP-1 secretion in knockout animals in vivo and intestinal organoid cultures 

in vitro may be one of the mechanisms leading to better glucose homeostasis. Other 

enteroendocrine mechanisms may also contribute to the glucose phenotype, which warrants 

future investigation. Third, we observed sexual dimorphism in glucose tolerance after 

longterm knockout. Sex differences in metabolic regulation have been well documented 

in animal and human studies (Gannon et al., 2018; Tramunt et al., 2020), such as the 

landmark paper revealing the essential role of incretin hormones in the double incretin 
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receptor knockout (DIRKO) mice (Hansotia et al., 2004). Sexual dimorphism was observed 

in three aspects of glucose metabolism dependent or independent of the incretin receptors 

genetic knockout. First, female and male single and double incretin receptor knockout mice 

displayed different degrees of impaired glucose tolerance during the oral and intraperitoneal 

glucose tolerance tests. Second, islets isolated from female and male DIRKO mice showed 

different degrees of impaired glucose-stimulated first and second phase insulin secretion 

during the perifusion experiment. Third, islets isolated from female mice had half of the islet 

insulin content of the male counterparts, regardless of the genotypic differences. Likewise, 

human studies reported women exhibited more insulin secretion for a given glucose load 

(Basu et al., 2017; Basu et al., 2006; Horie et al., 2018). At the molecular level, sex 

hormones have been reported to regulate GLP-1 secretion. Estradiol positively regulates 

proglucagon-derived peptide secretion in mouse and human alpha and L cells (Handgraaf 

et al., 2018). Testosterone binding to androgen receptor enhances cAMP production and 

the incretin effect on insulin secretion in islet beta cells (Navarro et al., 2016). Though we 

cannot pinpoint the exact mechanism for the sex differences we observed after longterm 

Gpr17 genetic ablation in this study, we will address the potential interaction of Gpr17 

and gonadal hormones in molecular signaling pathways and its implication for cellular 

physiological function in gut and islet tissues in future studies.

In conclusion, our results demonstrated the role of GPR17 signaling in the gut epithelium 

related to incretin secretion and the regulation of glucose metabolism. Additional insights 

into GPR17 biology may lead to more targeted therapies for T2D and obesity.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Hongxia Ren (renh@iu.edu).

Materials availability—All unique/stable reagents generated in this study are available 

from the Lead Contact with a completed Materials Transfer Agreement.

Data and code availability—Mouse fecal microbiome data have been deposited at NCBI 

Bioproject and are publicly available as of the date of publication. Accession number is 

listed in the key resources table. IHC raw images and quantified data have been deposited 

at IU DataWorks and are publicly available as of the date of publication. DOI is listed in 

the key resources table. This paper does not report original code. Any additional information 

required to reanalyze the data reported in this paper is available from the lead contact upon 

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human intestinal samples—Human gut full thickness biopsies were obtained from two 

deceased donors (male, aged 26 and 30 years old) by transplant surgeon at IU School of 

Medicine during organ procurements. Fresh samples were maintained and transported in 

cold DMEM/F12 medium (Invitrogen, Carlsbad, CA); and processed for qRT-PCR within 24 
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h after resection. Human jejunum and colon were fixed in 4% PFA for 24 h and sectioned 

for immunohistochemistry staining. Consent for research was obtained from the next of 

kin of deceased donors by Indiana Donor Network. The study was reviewed and Indiana 

University Human Research Protection Program (IU HRPP) staff determined the project is 

not human subjects research and does not require further IU Institutional Review Boards 

(IRB) review.

Animals—B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J (#007909, Rosa-tdTomato), B6.Cg-

Tg(Vil1-cre)997Gum/J (#004586, Vil1-Cre), and B6; 129S-Gcgtm1.1(cre/ERT2)Gkg/J 

(#030681, Gcg-CreERT) mice were purchased from the Jackson Laboratory (JAX). Vil1Cre-
ERT2 mice were kindly shared by Dr. Lori Sussel. Gpr17fl/fl mice were generated as 

described before (Ren et al., 2015) and were bred with Vil1-Cre mice (Madison et al., 2002) 

to generate control WT (Gpr17fl/fl) and constitutive intestine-specific Gpr17 knockouts 

(Gpr17fl/fl;Vil1Cre). Inducible intestine-specific Gpr17 knockouts (iKO) were generated 

by mating Vil1Cre-ERT2 mice (el el Marjou et al., 2004) with Gpr17fl/fl mice. Gcg 
expressing-dependent tdTomato reporter mice were generated by mating Rosa-tdTomato 
with Gcg-CreERT mice. Cre recombinase was activated by oral gavage of 10 mg/mL 

tamoxifen (Sigma-Aldrich, St. Louis, MO)/corn oil solution (200 µL/mouse/day) for 5 

consecutive days. Experiments were conducted using 3~16-month-old male and female 

mice as indicated in the figure legends. All animals were bred and housed under specific 

pathogen-free conditions and handled in accordance with the guidelines for animal care of 

Indiana University School of Medicine Animal Care and Use Committee.

Cell lines—Murine enteroendocrine cells, GLUTag cells, were kindly made available to the 

community by Dr. Daniel J. Drucker (Toronto, Canada) and cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) containing 1 g/L glucose, as described previously (Ghanem et al., 

2016). HEK293 cells and HeLa cells were cultured in Minimum Essential Medium (MEM), 

10% fetal bovine serum (FBS), and 1x Penicillin-Streptomycin solution and maintained at 

37°C and 5% CO2.

METHOD DETAILS

qRT-PCR—Gut segment dissection was performed as previously described (Panaro et al., 

2014). In brief, gut was removed from the stomach to the rectum. Segments measuring 1 cm 

were removed from the glandular stomach (distal end), duodenum (adjacent to the pyloric 

sphincter), jejunum (halfway between the pyloric sphincter and the ileocecal valve), ileum (3 

cm above the ileocecal valve), and colon (halfway between the cecocolic junction and anus). 

Total RNA for gut segments were extracted by Trizol (Invitrogen) and reverse transcribed 

with Superscript II reverse transcriptase (Invitrogen). We performed quantitative real-time 

PCR (qRT-PCR) in CFX Connect Real-Time system (Bio-Rad, Hercules, CA) using primers 

spanning introns. Primer sequences are listed in Table S1.

Immunohistochemistry staining—Immunohistochemistry staining of human small 

intestine (jejunum) and colon were performed by using antibodies for GPR17 (NLS4229; 

Novus, Centennial, CO), Chromogranin A (SC-393941; Santa Cruz Biotechnology, Dallas, 

Texas), GIP (ab30679; abcam, Cambridge, MA) and GLP-1 (NBP1–50697; Novus). Images 
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and quantified results were deposited in IU DataWorks (Yan et al., 2021). Insulin and 

glucagon staining in pancreatic sections were performed by CDMD islets core facility using 

methods described previously (Tong et al., 2016).

GPR17 antibody was validated in HEK293 cells and HeLa cells transiently transfected 

by pcDNA3.1-HA-hGPR17 plasmids. Cells were transfected with pcDNA3.1-HA-hGPR17 

plasmids for overnight. GPR17 (NLS4229; Novus) and HA (#901513; Biolegend, San 

Diego, CA) antibodies were used for immunostaining. Cells were permeabilized by 0.1% 

Triton X-100 for total GPR17 staining or non-permeabilized for cell-surface GPR17 

staining. Chamber slides were imaged under LSM-700 confocal microscope (ZEISS, 

Oberkochen, Germany). 10–22 randomly selected cells per image and total 10 images were 

quantified for staining intensity by using Image J (NIH).

Fluorescence-activated cell sorting (FACS) of Gcg-expressing cells in mouse 
gut epithelium—The whole colon and the last quarter of the small intestine from Gcg-
CreERT;Rosa-tdTomato mice were isolated and rinsed in cold PBS. Intestine epithelium 

tissues were collected by scraping and resuspended in TrypLE Express (Thermo Fisher 

Scientific, Waltham, MA) at 37°C for 20 min to dissociate into single cell suspension. Cells 

were re-suspended in 1mL 1X PBS containing 1% BSA and 10 µM Y27632 (STEMCELL 

Technologies, Cambridge, MA). Cells were stained by DAPI before subjected to flow 

cytometry sorting by FACSAria 2 SORP (Becton Dickinson, Franklin Lakes, NJ) and data 

were analyzed on FACSDiva 8.0.1 software (Becton Dickinson). Forward scatter and size 

scatter were used to get single cells based on granularity and height. DAPI negative gate was 

used to get live cells. tdTomato positive cells with a fluorescence signal measured above 103 

were gated to collect the Gcg-CreERT positive (i.e. GLP-1-producing) cells. We collected 

the tdTomato-positive (T+), and tdTomato-negative (T-) live cells for RNA extraction with 

Trizol LS reagent (Invitrogen).

oGSIS in vivo—Adult mice were fasted overnight. Insulin levels (#EZRMI-13K; 

Millipore, Burlington, MA) were measured in tail serum samples collected before and 15 

min after oral glucose (3 g/kg) administration.

Glucose tolerance tests—Adult mice were fasted for overnight or 4–6 h for glucose 

tolerance tests. Tail blood glucose levels were measured by AlphaTRAK2 glucose meter at 

0, 15, 30, 60, 90, 120 min after glucose administration via intraperitoneal (i.p.) injection or 

oral gavage. The dose of glucose for each experiment was noted in the figure legends.

Small intestine and colon histology—The mouse entire small intestine (SI), from 

the gastric pylorus to the ileocecal valve, and the colon, from cecocolic junction to 

anus, were dissected from anaesthetized mice (3–4 months old). The SI and colon were 

opened longitudinally and wrapped as a ‘‘Swiss roll’’ (Moolenbeek and Ruitenberg, 

1981), respectively. Swiss rolls were fixed in 4% paraformaldehyde (PFA) for 24–48 h, 

cryoprotected with 30% sucrose (w/v PBS), and sectioned (10 mm) for H&E staining.

Gut incretins secretion in vivo—Adult mice were given glucose (3 g/kg) via oral 

gavage after being deprived of food for 4–6 h. Tail blood was collected from tail at 0min 
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and 10 min after glucose administration. Blood was collected and mixed with an inhibitor 

cocktail (Aprotinin, A6279, Sigma-Aldrich; DPP-IV inhibitor, DPP4–010, Millipore; 0.5M 

EDTA, AM9261, Invitrogen. 1:1:1, 10 mL mixture for each sample.). On another occasion, 

tail blood was collected at 0 min and 60 min after 100% corn oil (10 µL/g BW) via 

oral gavage after 4~6 h fasting. Total GIP (#EZRMGIP-55K; Millipore) and total GLP-1 

(#K1503PD-1; MSD, Rockville, MD) measurements were measured in plasma samples.

Mouse intestinal organoids culture—Mouse intestinal organoids were cultured in 

mouse IntesiCultTM Organoid Growth Medium (STEMCELL Technologies, Cambridge, 

MA) by following the manufacturer’s instruction. 20 cm of small intestine proximal to 

stomach were harvested for culturing intestinal organoids, as this region allows optimal 

efficiency for generating organoids (Zietek et al., 2015). Organoids were used for 

experiments after two passages from primary culture or frozen.

GLP-1 and GIP secretion studies in intestinal organoids—Intestinal organoids 

were cultured in 24-well plates with a density of 200–300 organoids per well for 7–10 

days. Secretion experiments were performed by incubating the organoids with test regents 

in treated solution (138 mM NaCl, 4.5 mM KCl, 4.2 mM NaHCO3, 1.2 mM NaH2PO4, 

2.5 mM CaCl2, 1.2 mM MgCl2, and 10 mM HEPES supplemented with 0.1% (wt/vol) 

fatty acid-free BSA and 1% DPP-IV inhibitor, pH 7) for 2 h at 37°C. At the end of 

the incubation period, supernatant was collected, and the organoids were lysed in RIPA 

buffer supplemented with protease inhibitor and DPP-IV inhibitor. Incretins in supernatant 

and lysates were assayed using ELISA kit for GIP (#EZRMGIP-55K; Millipore) and total 

GLP-1 (#K1503PD-1; MSD). Secretion was first calculated as the percentage of secreted 

GLP-1 (supernatant) in total GLP1 (both supernatant and cell lysates) and then normalized 

to the basal secretion in WT organoids in parallel on the same day.

Whole-cell patch clamp—The voltage-gated Ca2+ currents in GLUTag cells were 

recorded by the standard whole-cell patch clamp with a procedure adapted from previous 

reports (Reimann et al., 2005; Rogers et al., 2011). Cells and plasmid (pcDNA3.1-mGpr17-

GFP) mixture were cultured onto glass cover slips in 12-well plate. After overnight 

transfection, the medium was replaced with fresh growth medium, and the cells were 

subjected to patch clamp 1 day after that. Single cells and well-defined cells in small 

clusters were patched. GFP positive or negative cells were identified by using an upright 

microscope (E600FN, Nikon, Japan) fitted with fluorescence optics. Microelectrodes were 

pulled from borosilicate glass capillary (1B150F, WPI, Sarasota, FL) by a Micropipette 

Puller (P-1000, Sutter Instrument, Novato, CA) and had 4~6 MΩ when filled with pipette 

solution. Recordings were acquired with an MultiClamp 700B (Molecular Devices, San 

Jose, CA), a DigiData 1322A (Molecular Devices) and analyzed with pClamp10 software 

(Molecular Devices). The bath solution contained (mmol/L): 4.5 CsCl, 118 NaCl, 4.2 

NaHCO3, 1.2 NaH2PO4, 2.6 CaCl2, 1.2 MgCl2, 10 HEPES, 20 TEA, 1 glucose (pH7.4). 

The pipette solution contained (mmol/L): 107 CsCl, 1 CaCl2, 7MgCl2, 11 EGTA, 10 

HEPES, 5 Na2ATP (pH7.4). Tetrodotoxin (TTX, 0.3 µmol/L) was added into the bath 

solution to block Na+ currents.
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GloSensor cAMP assay—GLUTag cells were transiently transfected with pGloSensor-

cAMP-22F (Promega, Madison, WI) together with either pcDNA3.1(−) empty vector or 

pcDNA3-HA-mGpr17 (mGpr17) plasmids and cultured in poly-D-lysine coated 96-well 

plates. Transfection mix was replaced with fresh growth media the next day. The following 

day, growth media was removed, cells were washed with CO2-independent media (Gibco, 

Life Technologies Corporation, Grand Island, NY), and cells were loaded with equilibration 

buffer (CO2-independent media containing 2% GloSensor cAMP reagent) (Promega, 

Madison, WI) for 2 h at 37°C and 5% CO2. Cells were then allowed to equilibrate to 

ambient room temperature for 30 min. Luminescence was read at ambient room temperature 

every 2 minutes using a SpectraMax iD5 plate reader (Molecular Devices, San Jose, CA). 

Initial baseline luminescence was measured for 8 minutes. Subsequently, drug treatments 

were added to wells, followed by luminescence measurements. Specifically, luminescence 

was measured for 10 min following each of IBMX and MDL29,951 additions. Finally, 

forskolin was added and luminescence was measured for 30 min.

Data were expressed as the difference in RLU form the average initial baseline, divided by 

the average initial baseline for each individual well (∆RLU/RLU) and represent the Mean 

± SEM of two independent experiments performed with duplicate wells. Concentration 

response curves for MDL29,951 were from the 4 minute time point after MDL29,951 

addition. Concentration response curves for MDL29,951 in the presence of 3 µM forskolin 

represent the average of the 16–30 min time points following forskolin addition.

Bioluminescence resonance energy transfer (BRET) assay—BRET assay was 

performed using TRUPATH biosensor (Addgene, Watertown, MA) as described previously 

(Olsen et al., 2020). HEK293 cells were seeded into 6-well plates at a density of 600,000 

cells/well. The following day, cells were transiently transfected with 1:1:1:1 ratio of 

either pcDNA3.1(−) empty vector, pcDNA3.1(+)-hNT1R, or pcDNA3-HA-mGpr17 together 

with pcDNA5/FRT/TO- Gαi 1-Rluc8, pcDNA3.1-Gβ3, and pcDNA3.1-Gγ9-GFP2 using 

Lipofectamine 3000. 24 h post-transfection, cells were dissociated from the plate with 

0.05% trypsin-EDTA, resuspended in MEM containing 1% FBS and seeded into poly-D-

lysine-coated white, opaque, 96-well plates at 30,000 cells/well. The next day, cells were 

washed with Hank’s balanced salt solution (HBSS)-based assay buffer (HBSS, 20 mM 

HEPES, pH 7.2), followed by addition of 80 µL/well assay buffer, and then loaded with 

10 µL/well 50 µM coelenterazine 400a diluted in assay buffer for 5 min at ambient room 

temperature. 10 µL/well of the indicated treatments were added in triplicate and incubated 

for 5 min at room temperature before filtered luminescence was read at 410 nm and 515 nm 

on a SpectraMax iD5 plate reader. BRET ratios for each well were calculated as the ratio of 

luminescence emission at 515 nm divided by 410 nm. The net BRET response represents the 

BRET ratio for each well subtracted by the mean BRET ratio response of the vehicle-treated 

wells for each receptor transfection condition. Data were represented as the Mean ± SEM of 

three or four independent experiments performed with triplicate wells.

Microbiome analysis—Fresh fecal samples were collected in the morning during ad 
libitum feeding. Frozen fecal samples were sent to the University of Missouri for DNA 

isolation and 16S rRNA gene V4 sequencing using the Illumina MiSeq platform as 
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previously described (Ericsson et al., 2018). Briefly, DNA was extracted using PowerFecal 

kits (Qiagen) according to the manufacturer’s instructions, with the exception that samples 

were homogenized in the provided bead tubes using a TissueLyser II (Qiagen, Venlo, 

Netherlands) for 3 min at 30/s, rather than performing the initial homogenization of samples 

using the vortex adapter described in the protocol, before proceeding according to the 

protocol and eluting in 100 µL of elution buffer (Qiagen). DNA yields were quantified via 

fluorometry (Qubit 2.0, Invitrogen, Carlsbad, CA) using quant-iT BR dsDNA reagent kits 

(Invitrogen) and normalized to a uniform concentration and volume.

Extracted fecal DNA was processed at the University of Missouri DNA Core Facility. 

Bacterial 16S rRNA amplicons were constructed via amplification of the V4 region of the 

16S rRNA gene with universal primers (U515F/806R) previously developed against the 

V4 region, flanked by Illumina standard adapter sequences (Caporaso et al., 2011; Walters 

et al., 2011). Oligonucleotide sequences are available at proBase (Loy et al., 2007). Dual-

indexed F and R primers were used in all reactions. PCR was performed in 50 µL reactions 

containing 100 ng metagenomic DNA, primers (0.2 µM each), dNTPs (200 µM each), and 

Phusion high-fidelity DNA polymerase (1U, Thermo Fisher). Amplification parameters were 

98°C(3min) + [98°C(15sec) + 50°C(30sec) + 72°C(30sec)] x 25 cycles +72°C(7min). Amplicon 

pools (5 µL/reaction) were combined, mixed, and then purified by addition of Axygen™ 

Axyprep MagPCR clean-up beads to an equal volume of 50 µL of amplicons and incubated 

for 15 min at room temperature (RT). Products were then washed multiple times with 80% 

ethanol and the dried pellet was resuspended in 32.5 µL EB buffer (Qiagen), incubated for 

2 min at RT, and then placed on a magnetic stand for 5 min. The final amplicon pools 

were evaluated using an Advanced Analytical Fragment Analyzer automated electrophoresis 

system, quantified using quant-iT HS dsDNA kits, and diluted according to Illumina’s 

standard protocol for sequencing as 23250 bp paired-end reads on the MiSeq instrument.

DNA sequences were assembled and annotated at the MU Informatics Research Core 

Facility. Primers were designed to match the 5′ ends of the forward and reverse reads. 

Cutadapt (Kechin et al., 2017) (version 2.6; https://github.com/marcelm/cutadapt) was used 

to remove the primer from the 5′ end of the forward read. If found, the reverse complement 

of the primer to the reverse read was then removed from the forward read as were all bases 

downstream. Thus, a forward read could be trimmed at both ends if the insert was shorter 

than the amplicon length. The same approach was used on the reverse read, but with the 

primers in the opposite roles. Read pairs were rejected if one read or the other did not match 

a 5′ primer, and an error-rate of 0.1 was allowed. Two passes were made over each read 

to ensure removal of the second primer. A minimal overlap of three bp with the 3′ end of 

the primer sequence was required for removal. The QIIME2 (Bolyen et al., 2019) DADA2 

(Callahan et al., 2016) plugin (version 1.10.0) was used to denoise, de-replicate, and count 

ASVs (amplicon sequence variants), incorporating the following parameters: 1) forward and 

reverse reads were truncated to 150 bases, 2) forward and reverse reads with number of 

expected errors higher than 2.0 were discarded, and 3) Chimeras were detected using the 

“consensus” method and removed. R version 3.5.1 and Biom version 2.1.7 were used in 

QIIME2. Taxonomies were assigned to final sequences using the Silva.v132 (Pruesse et al., 

2007) database, using the classifysklearn procedure.
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QUANTIFICATION AND STATISTICAL ANALYSIS

We analyzed data with Student’s t–test or one–way or two-way ANOVA using GraphPad 

Prism software. All of the statistical details of experiments can be found in the figure 

legends. No method was used to determine whether the data met assumptions of the 

statistical approach. We used the customary threshold of p < 0.05 to declare statistical 

significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Gpr17 is expressed in GLP-1-producing EECs in human and rodent gut 

epithelium

• Loss of gut Gpr17 increases insulin release and improves glucose tolerance in 

mice

• Gpr17 deficiency increases GLP-1 secretion in mice and intestinal organoids

• Gpr17-Gαi/βγ signaling regulates GLP-1 secretion by inhibiting cAMP and 

VDCCs
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Figure 1. Co-expression of GPR17 and GLP-1 in EECs in human intestine
(A) qRT-PCR result of GPR17 mRNA in human gut segments and pancreas (n = 8–10). 

Gene expression was calculated as 2^-∆∆ct. RPLP0 was used as an internal control.

(B) Co-immunostaining of GPR17 and CHGA, a pan-EEC marker, in human small intestine 

(top) and colon (bottom).

(C) Co-immunostaining of GPR17 and GLP-1 in human small intestine (top) and colon 

(bottom).

(D) Co-immunostaining of GPR17 and GIP in human small intestine.

(E) Quantification of cells expressing CHGA in GPR17 + cells (n = 117 cells from two 

human samples were analyzed), and cells expressing GLP-1 in GPR17 + cells (n = 282 cells 

were analyzed).

(F) Quantification of cells expressing GPR17 in GLP-1-producing cells (n = 181 cells from 

two human samples were analyzed). Data are displayed as means ± SEM. See also Figure 

S1.
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Figure 2. Enrichment of Gpr17 in GLP-1-producing cells in mouse intestine
(A) (F) FACS of intestine epithelial cells dissociated from Gcg-CreERT;Rosa-tdTomato 
mouse post tamoxifen injection. Gcg-expressing cells were labeled by red fluorescence 

(tdTomato) and sorted by FACS within 1 week after tamoxifen treatment (2 mg/d for 5 days 

by oral gavage).

(B–E) qRT-PCR analysis of Gpr17 (B), Gcg (C), Pyy (D), and Gip (E) mRNA in sorted cells 

(n = 7 mice). Gene expression was calculated as 2^-∆∆ct. β-actin was used as an internal 

control. Gene expression was expressed relative to input fractions. Unpaired two-tailed 

Student’s t test, *p < 0.05. Data are displayed as means ± SEM.
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Figure 3. Inducible intestine-specific Gpr17 knockout mice displayed improved glucose tolerance
(A) Experimental setup for inducible intestinal Gpr17 knockout mice. Gpr17fl/fl (WT) and 

Gpr17fl/fl;Vil1Cre-ERT2 (iKO) mice were subjected to experiments at least 1 week after 

tamoxifen treatment (2 mg/d for 5 days by oral gavage).

(B) Gpr17 mRNA expression in mouse gut and hypothalamus from iKO (n = 9) and WT (n 

= 6) mice at 1 week after tamoxifen injection. Gene expression was calculated as 2^-∆∆ct. 

β-actin was used as an internal control. p values were calculated by unpaired two-tailed 

Student’s t test.

(C–E) Body weight (C), lean mass percent (D), and fat mass percent (E) of male mice before 

and after tamoxifen injection (n = 8 mice for each group).

(F) Fasting body weight before glucose tolerance tests (n = 17~50 mice for each group).

(G) Time course study measuring Gpr17 mRNA in duodenum following tamoxifen injection 

(n = 3 mice). p values were calculated with unpaired two-tailed Student’s t test.

(H) Oral glucose tolerance (oGTT, 3 g/kg) in overnight-fasted male iKO (n = 12) and WT (n 

= 12) mice within 2 months after tamoxifen injection.

(I) oGTT (3 g/kg) in overnight-fasted female iKO (n = 14) and WT (n = 12) mice within 2 

months after tamoxifen injection.

(J) Gpr17 mRNA in duodenum in WT and iKO mice 1 year after initial tamoxifen injection.
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(K) oGTT (3 g/kg) in 4-h-fasted male iKO (n = 7) and WT (n = 11) mice 1 year after 

tamoxifen injection.

(L) oGTT (3 g/kg) in 4-h-fasted female iKO (n = 10) and WT (n = 6) mice 1 year after 

tamoxifen injection.

Two-way ANOVA and unpaired two-tailed Student’s t test were performed for glucose curve 

and AUC, respectively. *p < 0.05, **p < 0.01, ***p < 0.001. Data are displayed as means ± 

SEM. See also Figure S2.
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Figure 4. Gpr17 deficiency enhanced insulin and GLP-1 secretion in response to nutrients in vivo
(A) Oral glucose-stimulated insulin secretion (oGSIS) in overnight-fasted male iKO mice 

versus WT mice after tamoxifen injection (post-TAM). Serum insulin levels were measured 

before and 15 min after an oral glucose load (3 g/kg) (n = 10–12 mice). Unpaired two-tailed 

Student’s t test was performed. (B and C) Plasma total GLP-1

(B) and GIP (C) levels in response to an oral glucose load (3 g/kg) in male inducible 

intestinal Gpr17 deficient mice (iKO, n = 6) and WT mice (n = 11). Tail blood samples 

were collected at 0 min and 10 min after oral glucose intake in 4~6 h fasted mice. Two-way 

ANOVA was performed. (D and E) Plasma total GLP-1

(D) and GIP (E) levels in response to an oral corn oil load (10 µL/g) in male inducible 

intestinal Gpr17 deficient mice (iKO, n = 6) and WT mice (n = 11). Tail blood samples 

were collected at 0 min and 60 min after oral glucose intake in 4~6 h fasted mice. Two-way 

ANOVA was performed.

(F) Oral glucose-stimulated insulin secretion (oGSIS) in overnight-fasted female iKO mice 

versus WT mice after tamoxifen injection (post-TAM). Serum insulin levels were measured 

before and 15 min after an oral glucose load (3 g/kg) (n = 4~6 mice). Unpaired two-tailed 

Student’s t test was performed.

(G and H) Plasma total GLP-1 (G) and GIP (H) levels in response to an oral glucose load (3 

g/kg) in female iKO mice (n = 10) and WT mice (n = 6). Tail blood samples were collected 

at 0 min and 10 min after oral glucose intake in 4~6 h fasted mice. Two-way ANOVA was 

performed.

(I and J) Plasma total GLP-1 (I) and GIP (J) levels in response to an oral corn oil load (10 

µL/g) in female iKO mice (iKO, n = 10) and WT mice (n = 6). Tail blood samples were 
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collected at 0 min and 60 min after oral glucose intake in 4~6 h fasted mice. Two-way 

ANOVA was performed.

(K and L) Gcg (K) and Gip (L) mRNA levels in the gut of inducible Gpr17 deficient mice 

(iKO) by qRT-PCR (n = 6~9 mice).

(M) ipGTT (3 g/kg) in mice pretreated with GLP-1R antagonist exendin-(9–39) (Ex9, 10µg, 

[I]p.) (n = 3~5 mice). Two-way ANOVA, *p < 0.05 WT + Saline versus iKO + Saline. #p < 

0.05, ##p < 0.01 iKO + Saline vs iKO + Ex9.

(N) Blood glucose levels at 15 min time point in ipGTT. Unpaired two-tailed Student’s t test 

was performed.

*p < 0.05, **p < 0.01, ***p < 0.001. Data are displayed as means ± SEM.
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Figure 5. Gpr17 deficiency did not affect gut morphology and islets in intestinal Gpr17 KO mice
(A–C) H&E staining showing the histology of small intestine (A). Villi (B) and crypt length 

(C) were quantified; 8~25 villi and crypts for each segment were measured per mouse. Data 

show the average of three mice for each group.

(D and E) H&E staining showing the histology of colon (D). Colon epithelium thickness (E) 

(including surface epithelium and crypts) was quantified (n = 3 mice); 9~17 spots for each 

segment were measured per mouse. Data show the average of three mice for each group.

(F–H) IHC staining of mouse pancreas (WT and iKO) using insulin antibody (n = 4 mice) 

(F). β-cell size (G) and amount (H) were quantified. Unpaired two-tailed Student’s t tests 

were performed.

Data are displayed as means ± SEM. See also Figure S3.
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Figure 6. GLP-1 secretion is enhanced in Gpr17-deficient intestinal organoids derived from 
Gpr17fl/fl;Vil1Cre mice
(A) Gpr17 mRNA expression in the gut of Gpr17fl/fl (WT) and Gpr17fl/fl;Vil1Cre (KO) 

mice. Gene expression was calculated as 2^-∆∆ct. β-actin was used as an internal control. 

Gene expression was expressed relative to duodenum (n = 5 mice for WT, n = 10 mice for 

KO). Unpaired t tests were performed for statistical analysis.

(B) Bright-field images of intestinal organoids derived from adult WT and constitutive 

Gpr17 KO mice.

(C) qRT-PCR of Gpr17 mRNA in organoids (n = 3 mice). Gene expression was normalized 

to β-actin. Representative gel electrophoresis image of qRT-PCR products was shown. 

Unpaired two-tailed Student’s t test was performed.

(D) qRT-PCR of Gcg and Gip mRNA in organoids (n = 5 mice).

(E) GLP-1 (n = 19 replicates for each group) and GIP (n = 7 replicates for each group) 

secretion from intestinal organoids under basal conditions (1 mmol/L glucose) for 2 h. 

Unpaired two-tailed Student’s t test was performed.

(F) Gpr17 deficiency enhanced fatty acid-induced GLP-1 secretion (n = 7 replicates for 

each group), but not GIP (n = 5 replicates for each group). Organoids were incubated with 

palmitoleic acid, a monounsaturated fatty acid, at 40 µmol/L for 2 h.

(G) Gpr17 deficiency enhanced bile acid receptor agonist-induced GLP-1 secretion (n = 11 

replicates for each group), but not GIP (n = 5 replicates for each group). Organoids were 

incubated with GPBAR-A, an agonist of bile acid receptor (TGR5), at 20 µmol/L for 2 h.

(H and I) Gpr17 deficiency enhanced cAMP-elevating agents-induced GLP-1 secretion (n 

= 3~13 replicates) (H), but not GIP (n = 3 replicates) (I). Organoids were incubated with 

cAMP-elevating agents, forskolin (0, 0.3, 1, 3, and 10 µmol/L) and 10 µmol/L IBMX for 2 

h. p values were calculated using two-way ANOVA test. Percentage of GLP-1 secretion was 

calculated by measuring GLP-1 levels in the supernatants and cell lysates and normalized 
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to WT organoids in parallel on the same day. Data were obtained from at least three 

independent experiments.

*p < 0.05, **p < 0.01, ***p < 0.001. Data are displayed as means ± SEM.
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Figure 7. Gpr17 regulates GLP-1 secretion through Ca2+ and cAMP signaling
(A) Whole-cell patch clamp recording voltage-gated Ca2+ currents in GLUTag cells that 

were transiently transfected with pcDNA3.1-mGpr17-GFP. All cells were patched under 

IR-DIC optics and GFP-positive cells were identified by using an upright microscope fitted 

with fluorescence optics.

(B) Ca2+ current responses to 150 ms voltage steps of 10 mV increments from a holding 

potential of −70 mV. The inset shows the voltage pulse protocol. Tetrodotoxin (TTX) at 0.3 

µmol/L was added to block Na+ currents.

(C) Current–voltage relationship of the voltage-gated Ca2+ currents recorded in Gpr17-

overexpressed GLUTag cells (GFP+; n = 27 cells) and nontransfected cells (GFP−; n = 25 

cells). Statistical comparisons between groups in were performed using two-way ANOVA 

and Sidak’s post hoc tests.

(D) Averaged AUC for voltage-current curve of Ca2+ currents.

(E) Cell capacitance were comparable between Gpr17-overexpressed GLUTag cells (GFP+) 

and nontransfected cells (GFP−).

(F) Gpr17 expression and agonist stimulation, MDL29,951, inhibited GloSensor cAMP 

response in GLUTag cells without forskolin addition.

(G) Gpr17 expression and MDL29,951 inhibited forskolin-stimulated GloSensor cAMP 

response in a concentration-dependent manner in GLUTag cells. Data for (F) and (G) were 
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represented as the mean ± SEM of two independent experiments performed with duplicate 

wells.

(H and I) Time course recording showing MDL29,951 inhibited forskolin-stimulated cAMP 

response in mouse Gpr17-overexpressing GLUTag cells (n = 4 replicates) (H). Peak RLU 

were quantified (I). Vehicle (Veh) or MDL29,951 (1 µmol/L) were incubated for 10 min 

before forskolin addition. Unpaired two-tailed Student’s t test was performed.

(J) GPR17-Gαi/Gβγ coupling is identified by TRUPATH in HEK293 cells transiently 

transfected with either pcDNA3.1 (−) empty vector, pcDNA3.1 (+)-hNT1R, or pcDNA3-

HA-mGpr17 together with pcDNA5/FRT/TO-Gαi1-Rluc8, pcDNA3.1-Gβ3, and pcDNA3.1-

Gγ9-GFP2. The net BRET response represents the BRET ratio for each well subtracted by 

the mean BRET ratio response of the vehicle-treated wells for each receptor transfection 

condition. hNT1R, human neurotensin receptor type 1. Data are represented as the mean ± 

SEM of three or four independent experiments performed with triplicate wells.

(K) Schematic diagram illustrates the molecular mechanisms of how GPR17 negatively 

regulates nutrient-induced GLP-1 secretion in EECs. GPR17 signals through Gαi pathway 

to reduce cAMP production in enteroendocrine cells, in turn dampening nutrient-stimulated 

cAMP rise and Ca2+-stimulated exocytosis. Gβγ subunits released from Gαi reduce 

Ca2+ influx upon nutrient stimulation through activation of G-Protein-Coupled Inwardly 

Rectifying Potassium (GIRK) channels and inhibition of VDCCs. On the other hand, GPR17 

deficiency increases cAMP and intracellular Ca2+ rise, thereby potentiating nutrient-induced 

GLP-1 secretion.

*p < 0.05, **p < 0.01, ***p < 0.001. Data are displayed as means ± SEM.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-GPR17 (1:200) Novus Cat#NLS4229; RRID: AB_2232678

Mouse monoclonal anti-Chromogranin A (1:200) Santa Cruz Biotechnology SC-393941; RRID: AB_2801371

Mouse monoclonal anti-GIP (1:100) Abcam Cat# ab30679, RRID: AB_2109682

Mouse monoclonal anti-GLP1 (1:50) Novus Cat# NBP1–50697, RRID: AB_11016296

Mouse monoclonal anti-HA (1:1000) BioLegend Cat# 901513, RRID: AB_2565335

Goat anti-Rabbit IgG (H+L) (1:500) Thermo Fisher Scientific Cat# A-21428, RRID: AB_2535849

Goat anti-Mouse IgG (H+L) (1:500) Thermo Fisher Scientific Cat# 35502, RRID: AB_844397

Biological samples

Human gut tissue IU Health Methodist Hospital NA

Chemicals, peptides, and recombinant proteins

Aprotinin Sigma-Aldrich A6279; CAS: 9087–70-1

DPP-IV inhibitor Millipore Cat#DPP4–010

Exendin-3 (9–39) amide (Ex9) Tocris 2081; CAS: 133514–43-9

Forskolin Tocris 1099; CAS: 66575–29-9

IBMX Sigma-Aldrich I7018; CAS: 28822–58-4

MDL29,951 Laboratory of Donald Landry and 
Andrew Wasmuth

NA

Pertussis toxin (PTX) Sigma-Aldrich P2980; CAS: 70323–44-3

Tamoxifen Sigma-Aldrich T5648; CAS: 10540–29-1

Tetrodotoxin (TTX) Tocris 1069; CAS: 18660–81-6

Y27632 STEMCELL Technologies Cat#72302

NT(8–13) Sigma-Aldrich N5266; CAS: 60482–95-3

Critical commercial assays

GLP-1 ELISA kit Meso Scale Discovery Cat#K1503PD-1

GIP ELISA kit Millipore Cat#EZRMGIP-55K

Insulin ELISA kit Millipore Cat#EZRMI-13K

TRUPATH kit Gift from Bryan Roth Addgene#1000000163

Deposited data

Mouse Fecal Microbiome Data This paper SRA: PRJNA756295

IHC raw images and quantified data This paper https://doi.org/10.7912/D2/22

Experimental models: Cell lines

HEK293 ATCC CRL-1573

GLUTag Gift from Sonia M. Najjar NA

HELA ATCC CCL-2

Experimental models: Organisms/strains

Mouse: B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J The Jackson Laboratory CAT#007909

Mouse: B6.Cg-Tg(Vil1-cre)997Gum/J The Jackson Laboratory CAT#004586

Mouse: B6;129S-Gcgtm1.1(cre/ERT2)Gkg/J The Jackson Laboratory CAT#030681
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: B6.Cg-Tg(Vil1-cre/ERT2)23Syr/J The Jackson Laboratory CAT#020282

Mouse: Gpr17fl/fl Columbia University Transgenic 
Mouse Core Facility

NA

Oligonucleotides

See Table S1 for a list of all primers and oligonucleotides This paper NA

Recombinant DNA

pcDNA3.1 (2021(−) (Conley et al., 2021) NA

pcDNA3.1-mGpr17-GFP (Conley et al., 2021) NA

pcDNA3.1-HA-hGPR17 (Conley et al., 2021) NA

pcDNA3.1(+)-hNT1R CDNA NTSR100000

pcDNA3-HA-mGPR17 This paper NA

pGloSensor™-22F Promega E2301

Software and algorithms

pClamp 10.7 Molecular Devices NA

Prism 9 GraphPad NA
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