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The success of immunotherapy that targets inhibitory T cell receptors for the treatment of
multiple cancers has seen the anti-tumor immune response re-emerge as a promising
biomarker of response to therapy. Longitudinal characterization of T cells in the tumor
microenvironment (TME) helps us understand how to promote effective anti-tumor
immunity. However, serial analyses at the tumor site are rarely feasible in clinical
practice. Malignant pleural effusions (MPE) associated with thoracic cancers are an
abnormal accumulation of fluid in the pleural space that is routinely drained for patient
symptom control. This fluid contains tumor cells and immune cells, including lymphocytes,
macrophages and dendritic cells, providing a window into the local tumor
microenvironment. Recurrent MPE is common, and provides an opportunity for
longitudinal analysis of the tumor site in a clinical setting. Here, we review the
phenotype of MPE-derived T cells, comparing them to tumor and blood T cells. We
discuss the benefits and limitations of their use as potential dynamic biomarkers of
response to therapy.

Keywords: malignant pleural effusions (MPE), T cells, immune checkpoint therapy, checkpoint receptors,
memory T cells
MALIGNANT PLEURAL EFFUSION IS A COMPLICATION IN
THORACIC CANCERS

A malignant pleural effusion (MPE) is an abnormal accumulation of fluid in the pleural space
associated with advanced stage disease and poor clinical outcomes (1, 2). These effusions are present
at diagnosis in over 90% of patients with mesothelioma (3) and 40% of patients with advanced lung
cancer (1), and are a common feature of metastatic disease to the lung in patients with breast cancer,
lymphoma, ovarian and stomach cancers (2, 4). MPEs are an exudative fluid, resulting from
increased vascular permeability, inflammation and plasma leakage caused in part by tumor cells
blocking the outflow of fluid from the pleural space (5). This build up of fluid leads to symptoms of
various severity including breathlessness, chest pain and cough (5), with current therapy consisting
largely of palliative measures designed to drain or eliminate the pleural space to prevent
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accumulation of fluid (6–9). With the exception of pleurectomy,
recurrent MPE can occur throughout disease progression.

As MPE is adjacent to both primary and metastatic lung
tumor tissue, it is a unique peri-tumoral environment populated
with tumor cells, cytokines, growth factors, enzymes and
immune cells (10, 11). MPEs are routinely drained, providing
an attractive option to longitudinally study the tumor
microenvironment (TME) in thoracic cancers such as
mesothelioma, where a major hurdle is the inability to collect
serial tumor biopsies. Our review focuses on the adaptive
immune cells in MPEs, and how they could inform responses
to cancer immunotherapies.
THERE IS AN URGENT NEED TO
DEVELOP BIOMARKERS OF RESPONSE
TO IMMUNE CHECKPOINT BLOCKADE

Immune checkpoint blockade (ICB) targeting T cell inhibitory
receptors: cytotoxic T lymphocyte associated protein-4 (CTLA-
4) and programmed cell death protein-1/ligand-1 (PD-1/PD-L1)
have revolutionized cancer treatment. Single or dual agent ICB
provides an durable survival benefit in patients with
mesothelioma and non-small cell (NSCLC) lung cancer
patients (12–15). Four ICB therapies: pembrolizumab,
nivolumab, atezolizumab and durvulamab that target the PD-
1/PD-L1 pathway are approved first and second-line treatments
for patients with advanced NSCLC (16). Combination of
ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1)
provides a survival benefit over chemotherapy in malignant
pleural mesothelioma (14). Platinum-based chemotherapies
may synergize with ICB, with single arm studies showing that
combination chemo-immunotherapy reduces tumor burden and
shows promising progression-free and overall survival outcomes
for mesothelioma (17–19). In addition, complete tumor
regression has been observed in some NSCLC (20–22) and
SCLC (23–25) patients treated with chemo-immunotherapy.
Atezolizumab and durvalumab are also approved in
combination with platinum-based chemotherapy for advanced
SCLC patients (26). However, these best-case responses are only
observed in a minority of patients. ICB is also expensive and can
cause severe immune-related toxicities, highlighting the need to
develop biomarkers that can accurately predict patient outcomes
and inform clinical decisions (27). To date, several predictive
biomarkers have been associated with ICB outcomes in some
cancers, including intratumoral expression of the inhibitory
receptor PD-L1 (28), the tumor mutational landscape (29),
immune gene signatures within the TME (30, 31), and the
presence of tumor infiltrating lymphocytes (TILs) and their
expression of PD-1/PD-L1 (32–35). However, there is no
common biomarker that can accurately predict ICB outcomes
across different thoracic cancers, and there is a need to develop
more nuanced biomarkers of response.

As ICB primarily acts through T cells , in-depth
characterization of T cell subsets within the TME, and how
they correlate with ICB outcomes, has been extensively
Frontiers in Oncology | www.frontiersin.org 2
investigated. CD8+ T cell subsets characterized by expression
of activation/memory associated markers and their T cell
receptor (TCR) usage have been linked with outcome to ICB
(34, 36–39), highlighting the potential utility of T cell subsets to
inform ICB responses. As T cells are also enriched in MPEs, they
could offer insight into anti-tumor responses if they accurately
reflect TIL phenotype, frequency and function. Longitudinal
analysis of MPEs could reveal dynamic changes in the TME
without the need for serial biopsies, and aid development of a
biomarker of response.

Below, we review studies that have characterized matched
MPE, TME and peripheral blood derived T cells, focusing on
whether MPE T cells are similar in phenotype, function and
specificity to their tumor counterparts. We also review changes
in T cells derived from MPEs of patients undergoing ICB, and
whether these changes were associated with treatment outcomes.
Lastly, we discuss the unique opportunities and challenges a
longitudinal study of MPE T cells brings, in terms of improving
our understanding of therapeutic mechanisms, and developing a
biomarker of response to ICB.
CELLULAR CHARACTERISTICS OF
MALIGNANT PLEURAL EFFUSIONS
WITHOUT ICB

MPEs contain multiple cell types including tumor cells, pleural
mesothelial cells, and innate and adaptive immune cells (40).
Innate immune cells in the MPE include monocytes,
macrophages, neutrophils, mast cells, dendritic cells and
natural killer cells (41). These cells release cytokines, growth
factors and chemokines including monocyte chemotactic protein
(MCP-1), vascular endothelial growth factor (VEGF), IL-8, IL-6,
IL-1b, interferon gamma (IFN-g), tumor necrosis factor alpha
(TNFa), and transforming growth factor beta (TGFb) (40, 42–
48). These cytokines can be proinflammatory and in some cases
protumorigenic, promoting angiogenesis, vascular permeability
and protecting cancer cells from apoptosis. MPE have increased
lactate dehydrogenase, and a lower pH than non-malignant
pleural fluid, suggestive of an immunosuppressive environment
(11, 41, 49). The characterization of MPE proteins, cytokine
milieu, innate cells, tumor cells, and their relation to overall
survival have been extensively reviewed elsewhere (50–52), so
this review will focus on T cells.

MPE Are Enriched With T Cells
The proportion of total T cells in the MPE is greater than in
matched peripheral blood samples from both mesothelioma and
lung cancer patients (53, 54). CD4+ T cells are the predominant T
cell subset in MPE both prior to and after chemotherapy (41, 54–
57). Of these CD4+ T cells, an increased proportion of regulatory
T cells (CD4+CD25+) are recruited in MPEs by chemokines and
pro-inflammatory cytokines, compared to matched peripheral
blood (58–61). Despite this abundance of CD4+ T cells, several
studies have shown that the CD4+/CD8+ T cell ratio in MPEs is
similar to matched peripheral blood samples in patients with
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mesothelioma (54, 62). For lung cancer patients, CD8+ T cell
frequencies were greater in the peripheral blood compared to the
MPE for one study (53) but were similar between both
compartments in others (41, 63), suggesting CD8+ T cell
infiltration in the pleural space may be more cancer or
chemotherapy specific.

Several recent studies have examined the effect of
chemotherapy on the immune milieu of matched MPE and
tumor samples. At baseline, MPEs contain a lower frequency
of CD4+ and CD4+ regulatory (Foxp3+) T cells compared to
matched NSCLC tumor tissue, whereas CD8+ T cells were
increased in the MPE compared to tumor samples (63). After
chemotherapy, matched MPEs and tumor tissue from patients
with mesothelioma displayed similar proportions of CD3+ T
ce l l s , CD4+ he lper (CD25-) and CD4+ regula tory
(CD25+CD127lo) T cells post-chemotherapy (64), but similarly,
CD8+ T cells were greater in the MPE than matched tumor tissue
(10, 64). Increased pre- and post-chemotherapy frequencies of
CD4+ T cells in MPE and tumors were associated with complete
response and improved survival in chemotherapy treated
mesothelioma patients (56, 65, 66). Post-chemotherapy
regulatory T cell frequencies in tumors negatively associated
with survival, but this association was not observed in matched
MPE samples (64). Comparison of T cell proportions between
tumor and MPE in these studies are limited by small sample
sizes, and whether proportions of CD4+ and CD8+ T cells are
similar in matched tumor and MPE samples are unknown.

MPEs are typically enriched with CD4+ T cells, particularly
regulatory CD4+ T cells. CD4+/CD8+ T cell ratios in MPEs vary
between patients, likely because of patient heterogeneity such as
prior treatment, disease stage and amount of fluid drained. The
surface phenotype, effector function, and differentiation status of
MPE T cells offers further insight into the immune status of
the MPE.

MPE-Derived T Cells Express Inhibitory
Checkpoint Receptors
T cells upregulate inhibitory checkpoint receptors in the
presence of chronic tumor antigen exposure. Checkpoint
r e cep to r s i gna l ing inh ib i t s T ce l l func t ion , and
immunosuppressive TMEs exploit these signaling pathways to
curtail an effective anti-tumor response. Although CTLA-4 and
PD-1 are the most common targets in ICB therapy, other
inhibitory checkpoint receptors are expressed on TILs
including TIM-3, LAG-3, TIGIT and PD-L1. Increased
frequencies of CD8+PD-1+ T cells in tumors post anti-PD-1
treatment have been associated with complete and partial
responses in NSCLC (34). Hence, the expression of checkpoint
receptors on MPE T cells is of great interest because these T cells
could be potential targets for ICB, and predictors of response.

The expression of inhibitory receptors on CD4+ and CD8+ T
cells in MPE have been reported in multiple studies for
mesothelioma and lung cancer. While this varies between
patients, ~30% of CD4+ and ~40% of CD8+ T cells express
PD-1 in the MPE (56, 62, 63) and these frequencies are greater
than in matched peripheral blood T cells (62, 63, 67–70).
Frontiers in Oncology | www.frontiersin.org 3
Inhibitory receptors TIM-3, LAG-3, CTLA-4 and PD-L1 are
also expressed on MPE CD4+ and CD8+ T cells at greater
proportions than matched peripheral blood samples in
mesothelioma and lung cancer patients (56, 62, 63, 67, 69). In
addition, regulatory T cells constitutively express the inhibitory
receptor TIGIT (71), and display increased expression of CTLA-
4 and PD-1 in the MPE compared to peripheral blood (58, 63).

In comparison to tumor tissue, the frequencies of CD8+ T
cells expressing PD-1 and TIM-3 are greater than the MPE prior
to treatment (63). However, they are similar in frequency
between the two compartments post-chemotherapy (64). For
CD4+ helper (Foxp3-) T cells and regulatory (Foxp3+) T cells, the
expression of PD-1 and TIM-3 are similar between matched
MPE and tumor tissue both pre- and post-chemotherapy (63,
64). In addition, the proportion of CD4+LAG-3+ and CD8+LAG-
3+ T cells in MPE after chemotherapy are similar to tumor tissue
in one study (64), but not another (56). Co-expression of
inhibitory receptors on T cells, in particular PD-1 and TIM-3,
indicates further T cell dysfunction which has been reported to
be unfavorable for ICB efficacy (37). To date, there is only one
report of co-expression of these receptors, which found that the
majority of CD4+PD-1+ and CD8+PD-1+ MPE T cells prior to
treatment did not co-express LAG-3 or TIM-3. Less than 2% of
CD8+ T cells were PD-1+TIM-3+ and less than 6% of CD4+ T
cells were PD-1+LAG-3+ (68), suggesting that most of the CD8+

T cells in the MPE could be amenable to anti-PD-1 therapy.
MPE T cells are similar to TILs in that they both express

increased inhibitory checkpoint receptors compared to blood T
cells. Although the expression of inhibitory receptors TIM-3,
PD-1 or LAG-3 on MPE T cells did not associate with improved
survival post chemotherapy (64), inhibitory receptor co-
expression on MPE T cells, and their correlation to ICB
therapy outcomes are still of interest.

MPE-Derived CD8+ T Cells Exhibit a
Memory Phenotype
A hallmark of antigen-specific T cell responses is their ability to
differentiate into memory T cells after activation, and mount a
rapid response upon re-exposure to their cognate antigen.
Memory CD8+ T cells are loosely classified into effector memory
(TEM: CD45RO

+/CD62L-, CD45RA-CCR7-), central memory
(TCM: CD45RO+CD62L+, CD45RA-CCR7+) and resident
memory (TRM: CD45RO

+CD103+) subsets based on surface
expression of differentiation markers and tissue localization. TEM

and TCMs are generally found circulating in the peripheral blood
and lymphatics, whilst TRMs are non-circulatory and tissue tropic.
Understanding CD8+ memory T cell differentiation status is
crucial because inhibitory checkpoint receptors are highly
expressed on memory CD8+ T cells in tumors (72–74) and are
potential cellular targets of ICB. ICB also drives changes in CD8+

memory T cell differentiation (75). Importantly, tumor infiltration
of memory T cell subsets and their gene signatures correlated with
ICB response and overall survival in melanoma and lung cancer
patients (36, 73). MPE-derived CD4+ and CD8+ T cells in
mesothelioma and lung cancer exhibit a memory phenotype
prior to treatment. MPEs have increased frequencies of TCM and
April 2021 | Volume 11 | Article 672747
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TEM cells for both cancer types compared to peripheral blood (53,
57). MPEs also have greater frequencies of TCM but reduced TEM

compared to non-malignant pleural fluid (54).
Memory T cell subsets found in MPE are phenotypically

similar to subsets found in mesothelioma tumors but there are
limited studies on matched samples. Both MPE and tumors have
a greater frequency of TEM cells than the circulation (76),
suggesting that the proportion of TEM cells in the MPE may
reflect the TME. Recent studies have also shone a spotlight on the
role of TRMs in tumor immunosurveillance. Increased pre-
treatment frequencies of TRMs in tumors associate with
improved survival (72, 74), and increase pre- or post-treatment
frequencies associate with response to anti-PD-1 therapy in lung
cancer patients (73). CD8+ TRMs prior to chemotherapy have
been reported in MPE of lung cancer patients, but in lesser
proportions compared to matched tumor samples (77). Similar
to their tumor counterparts, memory T cell subsets in the MPE
could offer a predictor of therapeutic response.

MPE-Derived CD8+ T Cells Have Impaired
Effector Function
CD8+ T cells proliferate and produce effector molecules such as
cytotoxic granules (granzyme B, perforin) and proinflammatory
cytokines (IFNg) to mediate tumor cell killing. The ability of T
cells to produce effector molecules ex vivo is a measure of T cell
effector function. Understanding the effector status of T cells is
important as ICB induces activation and proliferation of
circulating and intratumoral T cells which correlates with
response (78, 79). While MPE CD8+ T cells can produce IFNg,
granzyme B and perforin ex vivo, the frequency of MPE T cells
that secrete these molecules is reduced compared to T cells from
matched peripheral blood samples (67, 70). Specifically, blood
derived effector (CD45RA+CD27-) T cells have increased
perforin secretion than these T cell subsets from the MPE (53).
However, these reports have used non-specific stimuli ex vivo to
measure effector molecule production from MPE and peripheral
blood T cells. Antigen-specific assays are required to understand
if impairment is restricted to tumor antigen-specific T cells only.

There are limited comparisons of matched MPE-derived T cell
and TIL effector function. TILs and matched MPE T cells from
advanced NSCLC patients were hypofunctional, with decreased
frequency of CD8+IFNg+ T cells than tumors from patients with
early stage NSCLC (80). Impaired effector function of MPE T cells
could be due to an immunosuppressive environment
characterized by high levels of TGFb, tumor associated
macrophages andmyeloid derived suppressor cells (42, 55, 64, 67).

Different CD4+ T Helper Cell Subsets Are
Found in the MPE
Effector CD4+ T cells can differentiate into helper T cell (Th)
subtypes which have been identified in MPE from people with
lung cancer and mesothelioma. The CD4+ helper T cell subtypes
include Th1, Th2, Th17, Th9 and Th22 which are each identified
by unique transcriptional signatures, and production of different
cytokines (81, 82). ICB induces expansion of effector Th1 and
Th17 cells in the TME, therefore it is important to determine if
Frontiers in Oncology | www.frontiersin.org 4
Th subtypes in the MPE is associated with ICB outcomes
(83–85).

Th1 cells are pro-inflammatory, secreting IFNg to stimulate
effector CD8+ T cell differentiation. Approximately 45% of CD4+

MPET cells produce IFNg indicating a predominant Th1 phenotype
in the MPE which is greater in frequency than matched peripheral
blood samples (53). In comparison to Th1, Th2 promotes humoral
immunity by producing cytokines IL-4, IL-5 and IL-10. The balance
of these two subsets in theMPE remains controversial. Some reports
suggest the MPE favors the Th2 over the Th1 pathway in
comparison to pleural fluid from tuberculosis patients (86, 87).
However, IL-4 was detected in the MPE in some studies (86–88) but
was below 1% or undetected in others (53, 55, 89). In addition, IL-4
was detected at low levels and IFNg was undetected in both paired
MPE and mesothelioma tumor supernatant in another study (55).

The role of Th17 cells in the TME also remains controversial.
The production of IL-17 has been reported to stimulate
recruitment of dendritic cells, NK cells and CD8+ T cells into
the TME (90), but also can promote tumor growth through IL-
17R signaling (91, 92). Frequencies of Th17 cells are greater in
the MPE than peripheral blood and exhibit an TEM phenotype
(CD45RO+CD45RA) (93). The proportion of Th17 cells
negatively correlated with regulatory T cells in the MPE,
suggesting that regulatory T cells inhibited generation and
differentiation of Th17 cells in the pleural space (61). For
tumor tissue, one study found IL-17 in mesothelioma tumor
supernatant but not in matched MPE (55).

In comparison, Th9 and Th22 cells suppress anti-tumor
immunity. Both Th9 and Th22 cell proportions in the MPE
are greater than the peripheral blood and also express an TEM

phenotype (CD45RO+CD45RA) in both compartments (94, 95).
Th9 cells produce IL-9 which has been identified to promote
tumor angiogenesis (96). Th9 cell frequencies correlate to
regulatory T cell frequencies in the MPE, and higher Th9 cells
in MPEs associated with poor survival in lung cancer patients
(95). There are no reports of Th9 cells in matched MPE and
TME. One study suggests that Th9 cells may infiltrate into the
MPE from the circulation as CCR7 expression was decreased on
Th9 cells in the MPE compared to matched blood (97). Th22
cells produce IL-22 which has been identified to promote
migration and proliferation of cancer cells and resist apoptosis
and chemotherapy (98). In NSCLC patients, IL-22 was greater in
matched tumor tissue than MPE (99), and IL-22 expression in
MPE promoted cancer cell migration (94), and protected cancer
cells from apoptosis by chemotherapies (99).

Taken together, it is evident that multiple CD4+ T helper
subtypes are present in the MPE, but varying frequencies of
different subtypes have been reported. Further analysis is
required to understand if any of these cell types in the MPE
associate with ICB efficacy.

MPE-Derived CD8+ T Cells Are Clonally
Expanded, and Some Are Specific for
Tumor Antigens
Importantly, tumor antigen-specific T cells can be found in the
MPE. Co-culture of MPE-derived lymphocytes with tumor cells
April 2021 | Volume 11 | Article 672747
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or known tumor antigens from lung cancer patients resulted in
IFNg production (41, 69) and CD137 expression (68), suggesting
tumor reactivity (100). In addition, tumor reactive MPE-derived
CD8+ T cells displayed a memory phenotype with checkpoint
expression (PD-1+TIM-3-) (68). However, most studies have
included a T cell expansion step prior to assessing tumor
reactivity, so the actual proportion of MPE T cells specific for
tumor-antigens is unclear.

In addition to screening for reactivity, T cell receptor (TCR)
analyses are used to study antigen-specific T cell responses.
Individual TCRa/b chains are highly variable across
complementarity determining regions (CDR), the regions
crucial for antigen-specificity. Antigen-specific clonal expansion
can be estimated by quantifying the distribution of TCR variable
genes, or CDR sequences. ICB induces a peripheral expansion of
TCR clonotypes which correlates to clinical benefit in lung cancer
(101, 102). In lung tumors, the TCR repertoire clonality and the
number of expanded TCR clones was greater in ICB responders
compared to non-responders post-treatment (38).

TCR analyses of matched MPE and blood from lung cancer
patients revealed over expression of particular TCRb variable
genes in the MPE compared to matched blood samples (103),
suggesting that MPE T cells had undergone clonal expansion. The
presence of shared, highly expanded TCR clonotypes in MPE and
tumors would greatly support the notion that T cells in both
compartments are similar. High throughput TCR sequencing is
Frontiers in Oncology | www.frontiersin.org 5
used in this area, as shared TCRbs have been found in ascites and
tumors in other studies (104). We previously reported that
CD4+PD-1+ MPE T cells consist of distinct, clonally expanded
TCRbs from CD4+PD-1+ T cells in matched peripheral blood
(62). TCR analyses of matched TILs and MPE T cells in thoracic
cancers are currently limited, and would greatly inform the
similarities in antigen-specificity between the compartments.

MPE T Cells and TILs Exhibit Phenotypic
Similarities, but the Extent of Similarity
Is Unclear
The expression of inhibitory checkpoint receptors, enrichment of
CD4+ regulatory T cells, presence of CD8+ memory T cells and
impaired cytotoxic, effector T cell function in MPEs suggest that
they exist in an immunosuppressed environment. They are more
similar to TILs than peripheral blood T cells (Figure 1).
However, there are reported differences in the CD4+/CD8+

ratios, co-expression patterns of checkpoint receptors, and
CD4+ Th subtypes between TILs and MPE T cells. The
similarities in antigen-specificity, or TCR usage of T cells
between the two compartments are also unknown.
Characterizing the phenotypes of T cell clones at both sites
would help researchers understand how the MPE or TME shapes
the development of these cells. Next, we review how therapies
could shape the phenotype of MPE T cells, because such changes
could inform biomarker development.
FIGURE 1 | Schematic diagram summarizing characteristics of MPE-derived T cells in comparison to tumor and peripheral blood in mesothelioma and lung cancer.
(A) Frequencies of CD8+, CD4+ and CD4+ regulatory (Treg) T cells expressing inhibitory receptors in the MPE are similar to tumor infiltrating T cells, however co-
expression of inhibitory receptors on T cells is greater in tumors than MPE. (B) MPE and tumor contain greater proportions of effector memory (TEM) and central
memory (TCM) T cells than the circulation with tissue resident memory T cell (TRM) frequencies the greatest at the tumor site. (C) Production of T cell effector
cytokines (IFNg, granzyme B; GrB, perforin) are similar between the MPE and tumor infiltrating T cells but lower than those in peripheral blood. (D) MPE are likely
enriched with a Th2 phenotype along with a greater proportion of Th1, Th2, Th17, Th9, Th22 than circulating T cells, while tumors display a greater frequency of
Th17 and Th22 than MPE. Th9 between tumor and MPE is undefined. (E) MPE contains tumor reactive T cells, implying a more clonal T cell receptor (TCR)
repertoire than the peripheral blood. Figure created with BioRender.com.
April 2021 | Volume 11 | Article 672747
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CHANGES IN MPE-DERIVED T CELLS
FOLLOWING ICB THERAPY

Serial analyses of MPE-derived T cells in patients undergoing
ICB are rare, but a study of MPE that developed after ICB has
been reported. Ikematsu and colleagues characterized T cells in
MPE samples drained from lung cancer patients after ICB. There
were greater frequencies of CD4+TIM-3+, CD4+TIGIT+ and
CD8+PD-L1+ MPE T cells from ICB treated patients compared
to MPEs from chemotherapy treated patients (105). However,
there were no differences in frequencies of CD8+ and CD4+ MPE
T cells expressing PD-1, TIM-3, TIGIT, PD-L1 or IFNg between
responders and non-responders to anti-PD-1 therapy (105, 106).
Interestingly, post treatment frequencies of Th17 (CD4+IL-17+)
and CD4+LAG-3+ T cells in the MPE negatively associated with
clinical outcome to anti-PD-1 ICB (105). Two NSCLC patients
who became resistant to anti-PD-L1 therapy and developed
recurrent MPE had increased frequencies of effector memory
(CCR7-CD45RA-) CD8+ T cells and TIM-3 or CTLA-4
expressing CD8+ and CD4+ T cells cells in the MPE post-
treatment, but this was compared to untreated rather than
responding patients (107). Together this suggests inhibitory
receptor expression increases on MPE T cells in anti-PD-1 and
anti-PD-L1 treated patients. There are no studies which have
analyzed serial samples of MPE in ICB treated patients.

MPE T cells have been studied in serial samples from patients
treated with chemotherapy. Longitudinal analysis of MPE in a
mesothelioma patient identified that the percentage of CD3+ T
cells decreased in the MPE following 4 cycles of cisplatin-
pemetrexed based chemotherapy, producing a partial response
(10). When on-treatment changes were examined, the first dose
of methotrexate chemotherapy reduced total CD3+ T cells in the
MPE but these frequencies returned back to baseline levels after
the second dose of methotrexate in NSCLC patients (108).
Frequencies of MPE CD4+ T cells increased, regulatory T cells
decreased and CD8+ T cells were unchanged following
methotrexate. In terms of T cell function, it increased
frequencies of MPE-derived IFNg+ and IL-2+ T cells (108).
This suggests that the MPE environment is dynamic, and
Frontiers in Oncology | www.frontiersin.org 6
changes in MPE T cells can be shaped by therapies, similar to
T cells in other compartments (65, 66, 109–111).

There are very few studies of serial analyses of MPE-derived T
cell phenotype, function and antigen-specificity, and how they
associate with ICB outcomes. However, those studies inform us
of potential T cell phenotypes from TILs and MPEs that are of
interest because they could associate with ICB responses (Table 1).
Serial analysis of MPE T cells in patients undergoing ICB therapies
would be greatly informative.
BENEFITS, OPPORTUNITIES AND
CHALLENGES FOR DEVELOPING MPE-
DERIVED T CELL BIOMARKERS

The potential of MPE-derived T cells as a biomarker for therapy
responses is attractive for several reasons (Table 2). Firstly,
MPE-derived T cells may be more closely related to TILs than
circulating T cells. The presence of memory CD8+ T cells that
express inhibitory receptors and CD4+ regulatory T cells in
MPEs suggest that T cell responses are suppressed, similar to
the TME. Furthermore, the MPE environment also consists of
tumor cells, MDSCs and immunosuppressive cytokines that may
shape T cell phenotype in a similar manner to the TME.
Secondly, because pleural fluid is often serially drained, a
dynamic biomarker could be developed. We previously argued
that not all determinants of ICB response can be found prior to
treatment, and changes in TME or blood that occur early on
treatment could offer a more accurate, dynamic biomarker of
response. Indeed, changes in T cell repertoire phenotype,
diversity, and immune gene signatures early during ICB
treatment correlate with ICB responses in murine and clinical
studies (36, 75, 116–119). While most studies of tumor and blood
suggest that changes in CD8+ T cells correlate with ICB
outcomes, other T cell populations in the MPE, such as CD4+

helper T cells, could also be predictive of ICB outcomes. Regular
drainage of MPEs provides a unique opportunity to study these
dynamic changes. Although this review focuses only on T cells,
how MPE-derived T cell frequencies and phenotypes change in
TABLE 1 | Intratumoral T cell characteristics that associate with clinical benefit to ICB in lung cancer patients.

T cell characteristic Cancer Pre- or post-treatment ICB Ref. Also found in MPE?

>1% CD8+PD-1hi T cells NSCLC pre Nivolumab (34) Undefined
Low-PD-1-to-CD8 ratio NSCLC pre and post Nivolumab (112, 113) Post-treatment: not reported (105)
High PD-1 transcripts NSCLC pre Nivolumab (114) Undefined
CD8+PD-1hi,

CD4+Foxp3+PD-L1hi
NSCLC post Nivolumab (115) Undefined

High PD-L1 transcripts NSCLC pre Nivolumab (114) Undefined
High CD8:CD3 ratio NSCLC pre and post Nivolumab (112, 113) Undefined
>70% TIM-3+IL-7R- of CD8+CD103+ TRM Lung Cancer pre and post Nivolumab (73) Undefined
High IFNg mRNA NSCLC post Nivolumab (79) Undefined
High activated CD4 T cell signatures with
IFN, Th2, IL-17A, IL-26 related genes

NSCLC pre Nivolumab (114) Post-treatment CD4+IL-17+ T cells associated
with no benefit to ICB (105)

Increased TCR clonality with expanded
TCR clones

NSCLC post Nivolumab (38) Undefined
NSCLC, non-small cell lung cancer.
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relation to other components in the fluid, such as tumor cell,
MDSC numbers, and suppressive cytokine levels is informative
for biomarker development.

MPE-derived T cells exhibit memory phenotypes indicative of
chronic antigen-specific activation. The antigen-specificity of
MPE TEM and TRM cells, and how they change with therapy
Frontiers in Oncology | www.frontiersin.org 7
are of great interest. It is promising that tumor-reactive T cells
can be expanded from the MPE, but the overlap in antigen-
specificities between TILs and MPE T cells, if any, are unknown.
TCR sequencing offers a complementary method to study the
extent of clonal overlap between TILs, blood and MPE-derived
T cell populations, and to track the changes in antigen-specific
FIGURE 2 | Illustration of the proposed origin and development of MPE T cells. The impact of the MPE environment on T cell differentiation is unclear. We
hypothesize that 1) MPE acts as a sink, containing a mix of T cells originally from the blood and the tumor site. 2) MPE environment including cytokines and other
cells (e.g. tumor cells, dendritic cells; DC) drive changes in phenotype of MPE T cells. MPE T cells differentiate into effector subtypes, producing immunostimulatory
(IFNg, perforin, granzyme B; GrB, IL-4) or immunosuppressive (TGF-b, IL-10) cytokines; exhausted T cells expressing inhibitory receptors; and differentiate into
memory T cells (i.e. effector (TEM), central (TCM) and tissue resident (TRM) memory T cells). Figure created with BioRender.com.
TABLE 2 | Benefits and limitations for using the MPE to develop T cell biomarkers for ICB therapy response.

Benefits Limitations

• MPE-derived T cells are similar in phenotype to tumor infiltrating lymphocytes
(TILs)

• Ability to develop a dynamic biomarker as multiple fluid drainage due to MPE
recurrence is common for thoracic cancer patients

• Opportunity to perform high-throughput sequencing technologies i.e. RNAseq
and TCRseq on the anti-tumor immune response where tumor biopsies are
limited, particularly in malignant mesothelioma

• Fluid volume, cellularity, number and timing of drainage events varies between
patients

• External factors such as lung diseases, inflammation and infection could alter
MPE-derived T cells

• Improved MPE treatment regimens that cause pleural space destruction to
prevent fluid recurrence.
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T cells without prior knowledge of any tumor antigens. The
extent in which the MPE environment drives T cell
differentiation is unclear. We speculate that MPE consist of T
cells that have migrated from the local tumor and blood.
However, to what extent the MPE environment changes T cell
phenotype is unclear. It is possible that further activation and
differentiation of T cells in the MPE drives the distinct
phenotypes of MPE-derived T cells (Figure 2). Single cell
technology is a powerful tool to comprehensively study the
interactions of different cells in the MPE, and will greatly help
our understanding in this area. The transcriptome and TCRab
usage of individual T cells can be determined, allowing
researchers to match phenotypes to individual T cell clones.
These TCRs of interest can be subsequently screened for tumor
reactivity. Single cell technology is now used in numerous studies
of TMEs, and can be applied to MPE samples.

However, there are some limitations with studying MPEs
(Table 2). The volume of fluid drained, and cellularity of MPE
samples varies between patients (62, 120, 121). In some instances,
MPE cell numbers are too few for meaningful downstream
analysis, especially for rare T cell subsets. Even though
longitudinal analysis can be performed with MPE samples, the
number of drainage events vary between patients and the timing
of them cannot be predicted. Furthermore, differences in MPE
immunophenotype measured over time are not always attributed
to tumor or treatment. External factors such as infections and
lung inflammation could alter the T cell phenotype and are
confounding factors that have to be accounted for (122–124).
Lastly, management regimens to treat MPEs including talc
pleurodesis and VATS pleurodesis and pleurectomy, which is a
palliative therapeutic option for malignant pleural mesothelioma
patients, aim to obliterate the pleural space and prevent MPE
recurrence. This then eliminates the opportunity to serially
sample the MPE for biomarkers of response to therapy.
Frontiers in Oncology | www.frontiersin.org 8
CONCLUSIONS AND FUTURE
DIRECTIONS

Although the cellular components of MPE have been studied
extensively, recent developments in cancer immunotherapy and
the need for biomarkers of response have led researchers to focus
on MPE T cells. These cells share phenotypic features with TILs,
but further study is required to elucidate if MPE T cells are truly
reflective of their tumor counterparts. We think that dynamic
analyses of MPE T cells in relation to ICB outcomes will lead to a
robust and clinically useful ICB response biomarker.
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