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Introduction
The mitogen-activated protein kinase (MAPK) 
pathway is a major cell-mediated cascade that 
regulates processes such as cell growth, differen-
tiation, stress response, survival, and cell death in 
response to endogenous stimuli such as growth 
factors, hormones, cytokines, mitogens, and 
stress.1–3 So far, four kinds of MAPK signaling 
processes have been found: extracellular signal-
regulated kinase (ERK) 1/2, c-Jun N-terminal 
kinase (JNK), p38, and ERK5.4 These cascades 
constitute the ERK 1/2, JNK 1/2/3, p38 α/β/γ/δ, 
and ERK5 subfamilies of MAPK, respectively. 
These subfamilies respond to various extracellu-
lar stimuli, c-Fos, activating transcription fac-
tor-2, p53, ETS domain-containing protein-1, 
and c-Jun to regulate de novo gene expression and 
induction.5–8 Each subfamily generally comprises 
a signaling cascade consisting of MAPK kinase 
kinases (MAP3Ks), MAPK kinases (MAP2Ks), 
and MAPKs that are sequentially and selectively 

activated. So far, 20 MAP3Ks, 7 MAP2Ks, and 
11 MAPKs have been identified.9,10 Among the 
MAPKs, the JNK cascade can be induced by 
environmental stresses such as heat shock, growth 
factor, and ultraviolet (UV) light.11,12 It regulates 
intracellular physiological functions such as cell 
death, growth, and differentiation. This process 
relies on activation through the serial phospho-
rylation of MAP3Ks (mixed-lineage protein 
kinase: MLK, apoptosis signal-regulating kinase, 
and transforming growth factor beta-activated 
kinase 1: TAK1), MAP2Ks (mitogen-activated 
protein kinase kinase 4: MKK4, and mitogen-
activated protein kinase kinase 7: MKK7), and 
JNK (a MAPK).

Due to the importance of the JNK cascade to intra-
cellular bioactivity, many studies have been con-
ducted to elucidate its exact mechanisms.13–16 JNK 
activation relies on two upstream MAPKs with dis-
tinct JNK activation sites: tyrosine phosphorylation 
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by MKK4 and threonine phosphorylation by 
MKK7. For instance, using genetically disrupted 
mouse embryonic fibroblasts (MEFs), it was found 
that axin-mediated JNK activation depends mainly 
on MKK7, and dishevelled-induced JNK activa-
tion depends almost equally on MKK4 and MKK7, 
whereas virus latent membrane protein-1-mediated 
JNK activation depends primarily on MKK4.17 
JNK activity against stress responses such as UV 
irradiation, heat, and osmotic changes is signifi-
cantly inhibited in MKK4 and MKK7 gene- 
deficient embryonic stem cells and MEFs, which 
confirms that MKK4 and MKK7 contribute to 
JNK activation.18,19 In MKK7-deficient cells, the 
activation of JNK by inflammatory cytokines such 
as tumor necrosis factor (TNF)-α and interleukin 
(IL)-1 was almost entirely lost, but it decreased 
only 50% in MKK4-deficient cells.20 Therefore, 
MKK4 is required for optimal JNK activation, but 
MKK7 is essential for JNK activation by pro-
inflammatory cytokines. These findings underline 
that the different MKKs needed for JNK activation 
depend on many factors, such as the stimulus, dif-
ferent expression levels of MKK4 and MKK7, 
scaffolds, and other cell-type-specific regulators.21

Although various experiments using MKK4 and 
MKK7 deletions have been carried out to deter-
mine the activation and functional effects of JNK, 
further research is needed to fully elucidate how 

JNK regulates cell physiology. Herein, we review 
studies about the regulation of JNK signaling by 
MKK7, along with its relevance to cancer cell 
survival. We focus on MKK7 rather than MKK4 
because MKK4 can also stimulate p38 MAPK 
activity,22 which requires more exploration 
because of p38’s functional role in cell sur-
vival.23–26 We focus on MKK7, an essential JNK 
activator, as a way to understand the JNK cascade 
in more detail, which will be helpful to subse-
quent researchers of the JNK cascade.

Molecular characterization of MKK7
MKK7, also known as signal regulatory protein 
kinase 2 (SEK2) and c-Jun N-terminal kinase 
kinase 2 (JNKK2), was first cloned using murine 
mRNA by researchers at Massachusetts Medical 
School in 1997. Primers for MKK7 were designed 
based on the coding sequence of the Drosophila 
JNK activation factor hemipterous, which is 70% 
analogous in amino acid sequence to the MKK7 
Kinase domain.27,28 After the initial cloning of 
MKK7, this gene was identified on chromosomes 
of various species, such as humans, rats, zebrafish, 
horses, and chickens.29–32 Exons in the MKK7 
gene undergo alternative splicing at the RNA 
level to form MKK7 isoforms, which have modi-
fications in the N- and C-termini. The N-terminal-
modified isoforms are identified by the Greek 

Figure 1. Scheme for the MKK7-dependent JNK pathway. (A) Domain mapping of the MKK7 protein. (B) 
Schematic illustration of the MKK-dependent JNK pathway, which is activated by the phosphorylation of two 
residues in the kinase/catalytic domain (Ser and Thr for MKK7; Thr and Tyr for JNK).
CD, common docking domain; D, docking domain; DVD, domain of versatile docking; P, phosphorylation site.
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alphabet, and the C-terminal-modified isoforms 
are identified by numbers. To date, four variants 
in humans, six variants in mice, and two variants 
in rats have been found.29,32–34

MKK7 consists of three domains: the D (dock-
ing) domain, the Kinase domain, and the DVD 
(domain for versatile docking) domain. The D 
domain of MKK7, present at residues 22–81 and 
containing F-X or F-F-X2-ψ-X-ψ motifs (where 
F, X, and ψ stand for positively charged, interven-
ing, and hydrophobic residues, respectively), is an 
essential part of binding JNK (Figure 1A). The D 
domain is correlated with the binding affinity and 
activity of MKK7–JNK.35 The Kinase domain, 
located at residues 120–380, involves a Ser–Xaa–
Ala–Lys–Thr (S–X–A–K–T) kinase motif that is 
phosphorylated by upstream MKKKs.36 The 
DVD domain, located at residues 377–400, plays 
an important role in the docking of upstream 
MAP3Ks such as MLKs, ASKs, TAKs, and LZK 
(leucine zipper-bearing kinase).37–39

The activation process for MKK7
MKK7 activity can be increased by either MKK7-
autophosphorylation or phosphorylation of the 
Ser and Thr residues of the S-X-A-K-T motifs in 
the Kinase domain by upstream MAP3K1 (mito-
gen-activated protein kinase kinase kinase 1, 
MEKK1), MAP3K2 (MEKK2), or MAP3K11 
(MLK3).40–42 Autophosphorylation occurs differ-
ently depending on the MKK7 isotype. For 
example, N-terminal-modified MKK7γ1 is phos-
phorylated only by MEKK1 without autophos-
phorylation, as opposed to MKK7β.34 In addition 
to being specifically activated by upstream 
kinases, binding between the MKK7 D and DVD 
domains and a substrate can change the structure 
of MKK7 to phosphorylate the Ser and Thr resi-
dues of the Kinase domain motif. Those reactions 
lead to the sequential binding and dissociation of 
MAP3K/MKK7/JNK complexes, which thus 
affects the signal amplification of the JNK path-
way (Figure 1B).43,44

In addition to direct physical interaction with 
substrates, MKK7 activity is regulated by interac-
tion with scaffold proteins, which play an impor-
tant role in the assembly of MAP3K/MKK7/JNK 
complexes. Scaffold proteins do not have a direct 
catalytic function but play a crucial role in con-
trolling the binding duration and signal intensity 
of MAP3K/MAP2K/MAPK complexes in the 

MAPK pathway.45,46 One hypothesis suggests 
that scaffold proteins are promoted so that lim-
ited MAPKs can balance their signaling relative 
to the number of MAP3Ks in mammalian cells.47 
Several JNK signaling-related scaffold proteins 
have been identified and lead to cell proliferation, 
differentiation, and apoptosis. Those found so far 
are JNK-interacting protein (JIP) 1, JIP2, JNK/
stress-activated protein kinase-associated protein 
1 (JSAP1)/JIP3, JNK-associated leucine zipper 
protein (JLP)/JIP4, and the Plenty of SH3 
(POSH) protein.48–50

JIP1 contains the JNK binding domain (JBD), 
SRC homology (SH3) domain, and the phospho-
tyrosine-binding (PTB) domain and affects JNK1 
and JNK2 activation.51 JIP1 generally interacts 
with MAP3Ks such as MEKK3, MLK, DLK 
(dual leucine zipper-retaining kinase), and histi-
dine protein kinase (HPK1), but MKK7 is the 
only MAP2K that interacts with JIP1. Therefore, 
simultaneous expression of JIP1, MLK, and 
MKK7 in the JNK signaling pathway enhances 
JNK activation.45,52 JIP2 contains the same 
domains (JBD, PTB, SH) as JIP1 and is found in 
several human tissues, including the brain, pros-
tate, ovary, and pancreas. It interacts with both 
p38 and JNK. Like JIP1, JIP2 and JIP3 also inter-
act with MKK7 and are involved in the formation 
of JNK signaling complexes.48,53,54 JIP3, identified 
through yeast hybrid screening as a binding part-
ner of JNK-1, contains a leucine zipper domain 
rather than the SH3 domain found in other JIPs. 
JIP3 interacts with various MAP3Ks, such as 
MEKK1, MLK3, and ASK1, and also with the 
MAP2Ks MKK4 and MKK7. Although JIP3 is 
known to be associated with JNK1, JNK2, and 
JNK3, it has the highest affinity for JNK3.48,49,55

The POSH protein has a specific Rac1 binding 
site that can bind to GTP-bound active Rac1.50 It 
is also involved in regulating JNK signaling com-
plexes of MAP3Ks/MAP2Ks/JNKs, similar to the 
JIPs.56 When the expression of POSH was inhib-
ited in PC12 cells, apoptosis was inhibited,57 
leading to the hypothesis that Rac1-mediated 
apoptosis occurs through an interaction with 
POSH.58 Recently, the possibility of synergy 
between POSH and the JIPs has been discovered, 
and that new aspect is being studied.59–61 It has 
also been shown that POSH plays a crucial role in 
neural development in the early embryonic stage 
and plays a role in immune response by regulating 
T cell function.62–65
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Arrestins have also been reported as scaffolds for 
MAPK activation, although the mechanism by 
which they assemble MAPKs into a signaling 
complex remains unexplored. It is known that all 
four vertebrate arrestins can interact with JNK3, 
MKK4, and ASK1, but only arrestin-3 can medi-
ate JNK3 activation.66 Initial studies demon-
strated that only MKK4, not MKK7, could bind 
to arrestin-3,67 but later studies indicated that 
arrestin-3 could also interact with MKK7 and 
promote JNK3α2 phosphorylation.21,68 Notably, 
arrestin-3 binds MKK7 with a lower affinity than 
it does MKK4.21 Interestingly, JNK3α2 could 
both enhance the association between arrestin-3 
and MKK4 and reduce arrestin-3 binding to 
MKK7.21 That finding also demonstrates how 
cooperative regulation of JNK3α2 by MKK4/
MKK7 could be determined by the concentration 
of arrestin-3 needed to induce JNK3α2 phospho-
rylation, emphasizing the concentration-depend-
ence of the scaffold effect.69 It is widely accepted 
that the formation of scaffold–kinase complexes 
contributes to the effective regulation of the spec-
ificity, efficiency, and amplitude of signal propa-
gation.70 One recent study used the metaphor of a 
conveyor belt mechanism for JNK3 activation by 
scaffold proteins. Thus, an active JNK3 molecule 
becomes an inactive JNK3 by helping to build an 
arrestin-3/MKK4/MKK7 complex that causes 
signal amplification.68

Physiological roles of MKK7
According to several recent studies, MKK7 is 
involved in various biological responses through 
both JNK-dependent pathways and JNK-
independent pathways. Here, we discuss the role 
of MKK7 in growth and development and the 
regulation of programmed cell death, paying par-
ticular attention to cancer cells.

Role of MKK7 in growth and development
MKK7 is reportedly essential for hepatocyte for-
mation in embryonic development. The embryos 
of MKK7 knockout mice died between E11.5 
and E13.5 due to immature hepatocyte forma-
tion.71 Similarly, primary MKK7–/– hepatoblasts 
showed defective cell proliferation, and the 
expression of the cyclin-dependent kinase 2 
kinase associated with the G2/M phase cell cycle 
was inhibited.72 In addition, MKK7 has been 
shown to play an important role in molecular 
signaling for retinal development and retinal 
axonal damage. When retinal axonal damage 

occurred in MKK7-deficient mice, it caused optic 
nerve formation failure, irregular retinal axon tra-
jectory, retinal thinning, retinal ganglion cell 
aggregation, and dendritic formation of dopamin-
ergic amacrine cells.73

Role of MKK7 in programmed cell death and 
tumorigenesis response
Programmed cell death, defined as apoptosis, 
autophagy, and programmed necrosis, plays an 
important role in the development and mainte-
nance of tissue homeostasis by balancing normal 
cell survival and death.74 JNK signaling pathways 
are associated with pro-apoptotic and anti- 
apoptotic processes in different cell types.75,76 
Similarly, an MKK7-deficient model was used to 
show that MKK7 mediates apoptotic responses 
to a variety of stresses. For example, apoptosis 
was induced by stimulating mitochondrial antivi-
ral signaling proteins (MAVS) in MKK7–/– MEF 
cells. Interestingly, the apoptosis induced by 
MAVS in MKK7–/– MEF cells was JNK2-
dependent, not JNK1-dependent.77

Tumorigenesis is defined as a complex and 
dynamic process of initiation, progression, and 
metastasis.78 The JNK kinase signaling pathways 
have also been implicated in tumorigenesis79 
through their regulation of cell survival, prolifera-
tion, differentiation, and metastasis in cancer 
cells. Although the exact mechanisms by which 
the MKK7-JNK signaling axis regulates tumori-
genesis remain to be elucidated, many studies 
have been conducted to clarify the relationship 
between MKK7 and diverse cancer cells.

In one recent study, five rare polymorphisms of 
MKK7 (p.Glu116Lys, p.Asn118Ser, p.Arg138Cys, 
p.Ala195Thr, and p.Leu259Phe) were analyzed in 
lung cancer patients. Among them, patients with 
the MKK7 p.Glu116Lys polymorphism had a sig-
nificantly higher rate of lung cancer metastasis than 
the others. The p.Glu116Lys mutation affects the 
proliferation and metastasis of lung cancer cells by 
regulating a series of cancer-associated genes 
(upregulated: STC2, SLC1A3, MSMO1, BCL10, 
and HMGCR; downregulated: SAA1, SBK2, 
CDH5, COL4A2, and BCL9L).80

Because the liver is larger than other organs and 
has an abundant blood supply, cancer cells often 
induce metastasis to the liver through blood. 
Thus, the prognosis of patients with advanced 
colorectal cancer varies greatly depending on the 
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presence or absence of liver metastasis. In colo-
rectal cancer patients, a potent inhibitor of hepatic 
metastasis was found, miR-493. The amount of 
miR-493 expressed and the incidence of meta-
static cancer are closely related. In colorectal can-
cer patients, miR-493 inhibited the expression of 
MKK7 by targeting its 3’- untranslated region. 
Inhibiting MKK7 expression with miR-493 sig-
nificantly reduced the liver metastases of colon 
cancer cells. In other words, the occurrence of 
liver metastases from primary colorectal tumors is 
associated with elevated MKK7 levels.81

T-cell acute lymphoblastic leukemia (T-ALL) is a 
type of aggressive acute leukemia with a high 
recurrence rate. The incidence of T-ALL is about 
15% of pediatric cases and 25% of adult cases.82 
Although the incidence of pediatric T-ALL is 
lower than in adults, the recurrence rate of pedi-
atric T-ALL is higher than that of adult T-ALL. 
In pediatric lymphoblastic leukemia, the gene for 
Kruppel-like factor 4 (KLF4), referred to as a 
zinc-finger transcription factor, is inhibited by 
DNA methylation.83 The loss of KLF4 in leuke-
mic cells accelerated the development of T-ALL 
by enhancing the G1 to S phase transition. It is 
generally known that KLF4 regulates the JNK 
pathway by inhibiting the coding gene for MKK7. 
The absence of KLF4 in leukemic cells induces 
excessive MKK7 expression, which increases the 
proliferation of leukemic cells and eventually 
leads to T-ALL.84

Thus, MKK7 expression induces the differentia-
tion and metastasis of cancer cells, thereby pro-
moting tumor progression. However, it also plays 
a role in reducing the proliferation of cancer cells 
through functions such as apoptosis. For exam-
ple, in hepatocellular carcinoma (HCC), the level 
of TIP41-like protein (TIPRL) correlates directly 
with the level of apoptosis, so high levels of 
TIPRL inhibit the expansion of cancer growth.85,86 
TIPRL is a negative regulator of protein phos-
phatase 2A (PP2A), a serine/threonine phos-
phatase targeting the Raf, MEK, and protein 
kinase B signaling systems.87–90 In HCC, TIPRL 
and MKK7 competitively bind to PP2A to regu-
late cell apoptosis.86 In other words, PP2A binds 
to MKK7 to suppress MKK7 activity due to 
phosphorylation, thereby inhibiting the apoptosis 
reaction and promoting the proliferation of HCC. 
In another case, inactivation of MKK7 in 
KRasG12D-driven lung cancer increased tumori-
genesis and reduced overall survival.79 That 
response was due to the abnormal role of p53, 

which is essential for tumor development and cell 
cycle arrest.91,92 Because the stability of p53 is 
obtained through the MKK7-mediated JNK 
pathway, the loss of MKK7 activity disrupts the 
stability of p53, so MKK7 is not acting directly as 
a cancer suppressant.79

Likewise, the ubiquitination-like post-transla-
tional neddylation of MKK7 in breast cancer 
cells inhibited its activity and positively affected 
cell proliferation.93 A direct association between 
MKK7 and a fragment of RAN-binding protein 
2 (RanBP2), recognized as SUMO E3 ligase, 
was confirmed.93–95 RanBP2 knockdown inhibi-
tion of MKK7 neddylation in breast cancer cells 
maintained MKK7 activity, which reduced the 
proliferation of human breast cancer cells and 
impaired the epithelial–mesenchymal transition. 
Furthermore, the phenomena associated with 
RanBP2 knockdown were reduced by concomi-
tant MKK7 knockdown.93

Regulatory functions of MKK7 in noncancerous 
cells have also been reported. Studies of primary 
MKK7–/– hepatoblasts, which have defective cell 
proliferation, suggest that the MKK7 signaling 
pathway is involved in cell proliferation through 
the regulation of Cdc2 expression.72 In contrast, 
MKK7–/– mast cells showed hyperproliferation of 
IL-3 and stem cell factor through the upregula-
tion of cyclin D1 caused by decreased expression 
of JunB and the cell cycle inhibitor p16INK4a.30

MKK7 as a therapeutic target
In this section, we discuss several drug candidates 
that target MKK7, their modes of action, and 
their physiological relevance. The two main ways 
to selectively target MKK7 are developing a selec-
tive covalent inhibitor of MKK7 and targeting a 
specific protein–protein interaction of MKK7.

Covalent inhibition of MKK7
To date, selective and potent inhibitors of MKK7 
have been poorly studied. Adequate selectivity is 
difficult to achieve because of the high structural 
homology among the MAP2Ks, particularly at 
the adenosine triphosphate (ATP) binding site, 
which is a common target binding region for 
kinase inhibitors.96 Thus, designing and optimiz-
ing an inhibitor of a single kinase at allosteric sites 
is challenging, although several strategies are 
available to enhance selectivity across the kinome, 
such as targeting poorly conserved residues. 
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Research efforts to identify selective MKK7 
inhibitors began when it was found that 5Z4Z-7-
oxozeaenol (5Z7O), an irreversible inhibitor that 
covalently links to the cysteine residue at the gate-
keeper-2 position (a residue adjacent to the DFG-
motif in ERK, TAK1, and MAP2K1), could bind 
to the ATP sites of MKK7 in a mode that differs 
from the binding mode of ERK, TAK1, and 
MAP2K1.97 The unprecedented binding was 
possible because 5Z7O can covalently bind the 
Cys218 of MKK7, a residue that is not present in 
other MAP2Ks at a similar position,97 making it a 
distinct and advantageous point for developing 
selectivity across the kinome. More recently, it 
was discovered that the unprecedented binding to 
Cys218 is crucial for the auto-inhibition form of 
MKK7.96

Shraga et  al.98 systematically identified covalent 
inhibitors of MKK7 by covalently targeting this 
non-conserved cysteine using covalent docking, 
followed by hit optimization and multiple valida-
tions, such as genetic validation of on-target 
activity, assessment of its selectivity across the 
kinome and proteome, analysis of metabolic 

stability and, finally, trial on primary mouse B 
cells. The three best candidate inhibitors of 
MKK7 were (as indicated in the original manu-
script) MKK7-COV-7, MKK7-COV-9, and 
MKK7-COV-12 (Figure 2).98 These three candi-
dates inhibited around 90% of the response of 
primary B cells to lipopolysaccharide, which is a 
level similar to that of JNK-IN-8, a potent and 
specific JNK inhibitor.98 Although this interesting 
research has produced potential candidates for 
selective MKK7 inhibition and provided a start-
ing point for further development, further valida-
tion and studies on in vivo systems are needed 
before any of the candidates can be used 
therapeutically.

Targeting an MKK7 binding partner 
(protein–protein interactions)
Targeting a specific protein–protein interaction of 
MKK7 might resolve the risk of non-selective 
inhibition or the toxicity common to ATP ana-
logue inhibitors, and compounds targeting the 
protein–protein interactions of MKK7 have 
indeed been reported. Growth arrest and DNA 

Figure 2. Putative scheme for the MKK7/JNK signaling pathway. The MKK7/JNK signaling axis can be 
triggered by cytokines, stress stimuli, growth factors, and hormones/neurotransmitters. This stimulation 
promotes the incorporation of an MKK7/JNK scaffold that mediates the phosphorylation of MAP3Ks (such 
as MEKK3, MLK2, MLK3, DLK, and ASK1), phosphorylates MKK7, and then phosphorylates the JNK kinases. 
These signaling cascades have been implicated in regulating various physiological functions, including 
programmed cell death, inflammation, cell differentiation, and growth/cell cycle arrest.
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damage-inducible beta (GADD45β), a small 
acidic protein whose expression denotes aggres-
sive disease in multiple myeloma (MM),99 has 
been reported to physically interact with 
MKK7.100 Enzymatic inhibition of MKK7 hap-
pens when GADD45β is able to interfere with the 
access of ATP to the catalytic pocket of MKK7. 
Tornatore et al.99 have identified a peptide-based 
structure, D-tripeptide (DTP3) (Figure 3), that 
can specifically target the GADD45β–MKK7 
interaction. DTP3 works by binding to MKK7 
with a high affinity, producing a conformational 
change that facilitates the displacement of 
GADD45β.99,100 The interface models between 
the GADD45β–MKK7 and MKK7–DTP3 com-
plexes demonstrate that the interactions of 
GADD45β and DTP3 with MKK7 are mutually 
exclusive. As reported by Rega et  al.100 ‘DTP3 
interacts with two spatially adjacent outer MKK7 
region that form a shallow pocket located proxi-
mally to the ATP pocket; while in the presence of 
GADD45β, the DTP3-binding region is partly 
occupied by loop 2 of the GADD45β.’

Regarding its therapeutic relevance, constitutive 
NF-κB signaling promotes survival in cancers, 
including MM.99 Therefore, a therapeutic strat-
egy that can selectively target NF-κB is highly 
desired. One way to achieve such specificity is by 
targeting NF-κB target genes that contribute to 
the anti-apoptotic mechanism of cancer cells. 
GADD45β, a transcriptional target of NF-κB, 
also mediates MKK7/JNK signaling inhibition, 
which contributes to survival in MM conditions.99 
MKK7 is an upstream activator of pro-apoptotic 
JNK kinases, so inhibition of this signaling axis 
with a GADD45β interaction can also inhibit 
apoptosis.99,101,102 DTP3 has a high therapeutic 
index in vitro and displays potent activity against 
MM in vivo by selectively inhibiting the NF-κB 
survival pathway for MM.99 The current under-
standing of DTP3 as a selective anticancer agent 
is limited to MM; therefore, further research 
should be conducted in other types of cancer or 
other pathological conditions associated with 
aberrant expression of GADD45β, such as several 
types of lymphoma, HCC,103 pituitary gonado-
trope tumors,104 and colorectal cancer.105,106

Using a similar mechanism, cellular caspase 8 
(FLICE)-like inhibitory protein (c-FLIPL) can 
also interact directly with MKK7, disrupting the 
interactions between MKK7 and MAP3Ks and 
inhibiting prolonged activation of the MKK7-
JNK pathway.107 Despite reports that some 

chemical agents can alter c-FLIP expression in 
ways relevant to cancer therapy,108 selective and 
potent agents that specifically target the cFLIPL–
MKK7 interaction remain to be elucidated. 
Moreover, the correlation and coordination of 
cFLIPL and GADD45β in controlling MKK7 
remain largely unknown. Cordycepin has been 
showed to inhibit TNF-α-mediated NF-κB/
GADD45 signaling by upregulating MKK7-
JNK signaling activation through the inhibition 
of c-FLIPL expression,109 although the target 
specificity still needs to be validated.

The TOR signaling pathway regulator-like pro-
tein contributes to TNF-related apoptosis-induc-
ing ligand (TRAIL) resistance by forming an 
MKK7-PP2Ac-TIPRL complex.110,111 Binding of 
TIPRL to MKK7 and PP2Ac restricts the pro-
longed activation of MKK7 by tethering the 
PP2Ac phosphatase, which in turn facilitates 
MKK7 dephosphorylation, suppressing the JNK/
caspase axis and inhibiting TRAIL-induced cell 
death in TRAIL-resistant cancer.111 Yoon et al.110 
elucidated MKK7-TIPRL interaction inhibitors 
using high-throughput enzyme-linked immuno-
sorbent assay screening followed by hit-to-lead 
optimization, and they reported two promising 
compounds, TRT-0029 and TRT-0173 (as des-
ignated in the original manuscript) (Figure 3). 
These indazole-based compounds act as TRAIL 
sensitizers. In a combination treatment with 
TRAIL, these compounds enhanced TRAIL-
induced apoptosis in in vitro systems of Huh7 
cells and suppressed tumor growth in vivo in a 
mouse xenograft model.110

Other protein binding partners worth mentioning 
are the receptor for activated C kinase 1 (RACK1), 
the small-GTPase Rac1, and Ras-association 
domain family 7 (RASSF7). RACK1 has been 
implicated in regulating the activity of the JNK 
pathway. Although the molecular mechanism by 
which RACK1 regulates the JNK pathway could 
be cell context-dependent, it has been reported 
that RACK1 can interact directly with MKK7 in 
in vitro and in vivo systems, aiding the binding of 
MKK7 to MAP3Ks, which in turn enhances 
MKK7/JNK activity in HCC.112 Rac1 is involved 
in the activation of the MKK7-JNK signaling 
pathway, which induces Atg5 expression and 
consequently autophagic cell death in response 
to oncogenic H-ras.113 Meanwhile, RASSF7 
associates specifically with the phosphorylated 
form of MKK7, maintaining MKK7’s phos-
phorylated state even in the absence of stress 
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stimuli (independent of MAP3Ks activation).114 
Takahashi et al. 114 proposed that RASSF7 could 
impose a rigid interaction with phosphorylated 
MKK7 that would likely cause a decrease in phos-
pho-MKK7’s ability to contact subsequent sub-
strates, such as JNK or a phosphatase. As a result, 
the RASSF7–MKK7 interaction contributes to 
anti-apoptotic regulation by inhibiting JNK phos-
phorylation.114 As RASSF7 and phospho-MKK7 
accumulate (which can also be accelerated by 
stress stimuli), RASSF7 tends to degrade, and 

subsequent JNK-mediated apoptosis can pro-
ceed.114 Growing evidence demonstrates the 
important role of this protein in both tumorigene-
sis and cell death responses. Chemical agents that 
regulate Rac1 with respect to cancer angiogenesis 
and metastasis have been reported elsewhere,115 
but a chemical agent with a selective mechanism 
targeting Rac1/MKK7/JNK has not been found. 
Furthermore, no studies have reported chemical 
compounds that regulate the interaction between 
RACK1 or RASSF7 and MKK7.

Figure 4. Mode of action of selective chemical agents targeting MKK7. (*) need to be further validated for 
selectivity.

Figure 3. Chemical structure of compounds targeting MKK7/JNK-signaling.
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Compelling evidence suggests that this signaling 
axis is crucial to tumorigenesis. MKK7/JNK axis 
signaling has been intriguingly implicated in both 
positively and negatively regulating apoptosis and 
other types of cell death, independent of the cel-
lular context. Therefore, a better understanding 
of cellular-context specificity and subsequent reg-
ulatory mechanisms is still needed, along with a 
consideration of the intricate interactions between 
MKK7 and various cascade components. Some 
selective inhibitors of this signaling axis have been 
elucidated, along with their modes of action 
(Figure 4); nevertheless, chemical agents target-
ing MKK7-binding partner proteins could be an 
option for providing specificity and delineating 
context-dependent regulation of JNK signaling. 
Because JNK signaling is not limited to regulating 
apoptosis/tumorigenesis, confirmatory studies of 
these candidate inhibitors in multiple pathologi-
cal conditions must be included in future studies. 
Based on our observations here, several potential 
targets for MKK7/JNK signaling have not been 
adequately studied. Therefore, many paths are 
open for future studies.

Conclusion
The JNK cascade is a major MAPK signaling 
response to many extracellular stimuli. JNK 
cascades can be activated transiently or contin-
uously by various kinases, scaffolding proteins, 
and phosphatases. Of the kinases, MKK7 is the 
MAP2K most essential to regulating the activity 
of the JNK cascade. Many in vitro and in vivo 
studies have reported the importance of MKK7 
to diverse intracellular functions, such as cell 
growth, proliferation, senescence, differentia-
tion, transformation, cell cycle regulation, and 
tumor metabolism. The loss of MKK7 function 
in cells and mice disrupts many key processes 
needed to maintain organic homeostasis, such 
as apoptosis, cell formation and development, 
and tumorigenesis. However, it is difficult to 
judge the exact role of MKK7 because its physi-
ological and pathological functions are highly 
contradictory.

Therefore, further studies are needed to elucidate 
the detailed molecular mechanisms of various 
scaffold proteins that interact with MKK7 to reg-
ulate cell survival and proliferation. Defining the 
role of MKK7 in tumorigenesis will have a pro-
found effect on future cancer prevention and 
treatment strategies.
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