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Abstract
Background: Gene expression measurements from breast cancer (BrCa) tumors are established clinical predictive
tools to identify tumor subtypes, identify patients showing poor/good prognosis, and identify patients likely to have
disease recurrence. However, diverse breast cancer datasets in conjunction with diagnostic clinical arrays show little
overlap in the sets of genes identified. One approach to identify a set of consistently dysregulated candidate genes in
these tumors is to employ meta-analysis of multiple independent microarray datasets. This allows one to compare
expression data from a diverse collection of breast tumor array datasets generated on either cDNA or oligonucleotide
arrays.

Results: We gathered expression data from 9 published microarray studies examining estrogen receptor positive (ER+)
and estrogen receptor negative (ER-) BrCa tumor cases from the Oncomine database. We performed a meta-analysis
and identified genes that were universally up or down regulated with respect to ER+ versus ER- tumor status. We
surveyed both the proximal promoter and 3' untranslated regions (3'UTR) of our top-ranking genes in each expression
group to test whether common sequence elements may contribute to the observed expression patterns. Utilizing a
combination of known transcription factor binding sites (TFBS), evolutionarily conserved mammalian promoter and
3'UTR motifs, and microRNA (miRNA) seed sequences, we identified numerous motifs that were disproportionately
represented between the two gene classes suggesting a common regulatory network for the observed gene expression
patterns.

Conclusion: Some of the genes we identified distinguish key transcripts previously seen in array studies, while others
are newly defined. Many of the genes identified as overexpressed in ER- tumors were previously identified as expression
markers for neoplastic transformation in multiple human cancers. Moreover, our motif analysis identified a collection of
specific cis-acting target sites which may collectively play a role in the differential gene expression patterns observed in
ER+ versus ER- breast cancer tumors. Importantly, the gene sets and associated DNA motifs provide a starting point
with which to explore the mechanistic basis for the observed expression patterns in breast tumors.
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Background
Variation in gene expression provides a quantifiable trait
that has been employed to classify breast tumors [1-3].
However it has long been known that the gene sets iden-
tified from independent laboratories fail to provide a uni-
fied set of genes thereby casting doubt on the biological
implications of these profiles [4]. Despite these differ-
ences, two prognostic tests have recently been approved in
the United States for clinical management of disease [5,6].
From a diagnostic perspective, developing a unified gene
profile that predicts both risk of recurrence and therapeu-
tic response in diverse disease subtypes would be clini-
cally useful. These gene sets could also provide an
understanding of the mechanistic basis of malignancy.

Meta-analysis has been used as a formal summarization
method in the clinical cancer literature for many years [7-
10]. Recently, some groups have applied meta-analysis to
gene expression microarrays [11-13]. Meta-analysis refers
to a broad class of models used for summarizing and syn-
thesizing studies to estimate their overall effect. Rhoades,
et al was among the first to demonstrate the usefulness of
meta-analytic procedures on microarray data in prostate
cancer [14]. Since then, there have been many contribu-
tions to the oncology literature by applying meta-analysis
to microarrays, including breast cancer [13,16,17].

One of the central goals in gene expression experiments is
to identify the common regulatory themes and cis-ele-
ments responsible for the observed patterns of gene
expression. This has been most successfully performed for
the yeast Saccharomyces cerevisiae where new regulatory
genes have been suggested [18]. However, metazoan
expression patterns tend to be more complicated. One
approach has been to combine expression data of orthol-
ogous genes from diverse organisms to build co-expres-
sion networks [19]. In Drosophilia gene networks have
been proposed based upon the co-localization of TFBS
with cis-regulatory modules (CRM) [20]. The availability
of both mammalian and lower metazoan complete

genome assemblies affords one the opportunity to iden-
tify phylogenetically conserved motifs in the array candi-
dates. In addition to known TFBS, these phylogenetic
motifs may identify important new cis-acting signals that
modulate transcription (promoters) or transcript stability
(3'UTRs) and may be key elements in the observed expres-
sion patterns. A systematic comparison of both known
and phylogenetic cis-elements between two sets of differ-
entially expressed genes can serve to implicate these ele-
ments as common modulators in the observed gene
expression patterns.

Our method incorporates a meta-analysis model to rank
genes into groups of over- and under-expressed gene sets,
based upon their relative importance between independ-
ent array studies. Our analyses of gene expression patterns
in ER+ and ER- breast tumors were performed across dif-
ferent array platforms on a diverse spectrum of patients.
The two sets of genes showing the most disparate expres-
sion patterns between ER+ and ER- tumors provided an
entry point with which to explore the possibility that spe-
cific sequence elements may be disproportionately repre-
sented in these two groups. We utilized known motifs in
conjunction with comparative genomic resources to
search for enriched DNA elements in both the proximal
promoter and 3'UTR regions of these genes. Our findings
suggest that the differential gene expression in ER+ vs. ER-
tumors may, in some cases, be mediated by specific
sequence elements in either the promoter or 3'UTR inter-
vals. The motif distribution profiles between our gene sets
identified both known and phylogenetically conserved
elements that may play a role in these genes' co-expres-
sion.

Results
Forty-six percent of unique probes among the studies
mapped many-to-one to unique UniGene IDs. The mean
and median numbers of probes per UniGene IDs were
12.7 and 1, respectively. When we merged the 9 studies in
Table 1 for the meta-analysis data set, we retained the

Table 1: Breast Cancer Gene Expression Datasets used in Meta-Analysis

Author Journal Array Type, N 
Probes

Sample N ER+ Sample N ER- Other Relevant Clinical Criteria

Wang, Y. et al. Lancet [73] Affy, 22283 209 77 DFS 5 Yr
Zhao, H. et al. Mol Biol Cell [80] cDNA, 27276 24 11 PR Status, Grade, HER2, LN Status
Sotiriou, C. et al. PNAS [81] cDNA, 7549 65 34 LN Status, Chemo/Radio/Horm Tx, 5 Yr OS
Ma, X. et al. PNAS [82] cDNA, 1940 18 5 PR, Grade, HER2, Grade, Histology
Van de Vijver, M. et al. NEJM [83] cDNA, 23130 226 69 DFS 5 Yr, LN Status, T/M Stage
Gruvberger, S. et al. Ca Res [84] cDNA, 3369 28 30
Sorlie, T. et al. PNAS [2] cDNA, 7937 56 18 DFS 5 Yr, LN Status, M Stage
West, M. et al. PNAS [85] Affy, 6718 25 24
Perou, C. et al. PNAS [1] cDNA, 8838 26 9 Before/After Chemo, Histology, Grade

DFS, Disease Free Survival; Pr, Progesterone status; LN, Lymph node status; OS, overall survival
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expression values for all probe combinations in all studies
and this resulted in a multiplicative set of records in the
database. Approximately 12% of the unique ESTs in the
Oncomine database (Oncomine DB) did not correspond
to a unique UniGene ID. These were dropped from the
analysis data sets.

We focused our subsequent analyses on a select set of
genes by taking medians across each UniGene ID's S/SD
statistics. A scatter plot of the S/N (x-axis) versus abs(S)/
SD statistics (y axis) appears in Figure 1. The distribution
of the S/N values was bell-shaped with heavy tails. Our
criteria for selecting genes were to take the most extreme
1% and 5% values in both tails. We found it instructive to
consider the ratio S/SD on the y-axis of Figure 1, where SD
is the standard deviation of the (Cj ln pj) addends of S.

Large values of this ratio indicate those genes with consist-
ently significant p-values across all of the studies that we
considered. The number of UniGene IDs with S/N scores
in the top 1% and 5% (S+ and S- combined) were 300 and
1804, respectively. The mean numbers of studies for genes
present in the top 1% and top 5% classes were 2.94 and
3.18 respectively. Our choice of reporting both top 1%
and the top 5% for further screening was for crude man-
agement of false positives from bias correlated with each
gene's relative ranking. Many of the genes present in our
top 1% upregulated list identified in our meta-analyses
have previously been identified as overexpressed in ER+
breast tumors, most notably the two transcription factors
ESR1 and GATA3. Our gene lists appear in Additional File
1.

Plot of S over N versus S over standard deviation for all genes across all studies in the meta-analysisFigure 1
Plot of S over N versus S over standard deviation for all genes across all studies in the meta-analysis. Some genes 
present in ER+ overexpressed tumors (ESR1 and GATA3) and ER- overexpressed tumors (LAD1 and NFIB) are indicated. The 
top 5% of genes also include the top 1% of genes.
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We next compared our top 1% and 5% upregulated gene
lists in ER+ and ER- tumors to those prognostic genes uti-
lized in the 70-gene signature associated with Mamm-
aprint® [21] along with the 16-gene signature with the RT-
PCR based OncoType Dx® [22] tests. Although the array
data defining the 70-gene profile was one of 9 input data-
sets for our meta-analysis and the 16-gene signature data-
sets utilized two expression datasets were also employed
for the analysis, we did not observe complete overlap in
the genes identified. For the 70-gene signature our top 1%
dataset identified an overlap of one and four genes respec-
tively that were upregulated in ER+ tumors versus ER-
tumors. Only 14 and 5 genes overlapped in the top 5%
dataset, respectively. Alternatively, for the 16-gene signa-
ture, one and two genes, respectfully, from the top 1%
gene sets were overexpressed in ER+ versus ER- tumors
from our meta-analysis, while 4 and 5 genes, respectfully,
overlapped in the top 5% list. Differences in probes,
arrays, and studies used in the meta-analyses may explain
some of the differences between our gene lists and the
gene lists from the two diagnostic tools. Additionally, we
compared our gene lists to a previously identified univer-
sal profile that uses 69 genes overexpressed in a diverse
spectrum undifferentiated cancers to predict neoplastic
transformation [23]. Strikingly we observed only genes
overexpressed from ER- tumors to overlap with this 69
gene signature. Four genes (CNAP1, CDC20, YBX1, and
CENPA) overlapped in our top 1% list while 23 genes
overlapped from our top 5% list. These findings are in
accord with the observation that ER- tumors are more
highly undifferentiated than ER+ tumors and demonstrate
more metastatic potential clinically [24,25]. Collectively
these 23 genes may identify a set of candidate genes pre-
dictive of metastatic potential in ER- breast tumors.

Ingenuity Pathway Analyses
We considered the relationship of our top 1% genes in the
ER+ and ER- groups using Ingenuity Pathway Analyses
[26]. Our objective in using Ingenuity was to characterize
the functional role of our selected genes. IPA isolated
genes for which it had documented associations, and cre-
ated a series of networks based on the published litera-
ture. We were able to map 290 of the 300 genes
comprising the sum of the 1% upregulated and 1% down-
regulated gene sets. From these networks, IPA queried its
database of biological functions and scored each gene
cluster with a p-value calculation. Table 2 shows the most
common functions found among our most differentially-
expressed genes. Notably our top 1% genes upregulated in
ER- tumors contained 26 genes showing association to
cancer whereas only 7 of the genes upregulated in ER+
tumors were cancer-associated.

Promoter Motif Comparisons in Dysregulated Genes
We tested the hypothesis that there was a significant dif-
ference in the occurrence of each motif between our two
classes of genes (ER+ overexpressed vs. ER- overexpressed)
using a Fisher's Exact test. We adjusted for multiple testing
by applying the Benjamini-Hochberg p-value correction
[27]. We counted the number of genes in each class which
were overexpressed in ER+ tumors and contained a copy
of each phylogenetic motif, and compared those to the
number of genes overexpressed in ER- tumors. For genes
harboring multiple copies of a motif we counted these ele-
ments as a single motif event. We independently per-
formed tests for both the top 1% and 5% of our genes.
Our initial query sets consisted of 123 condensed TRANS-
FAC motifs and a second analysis comprised 174 phyloge-
netically conserved mammalian promoter motifs as
previously defined [28]. Sixty-nine of the phylogenetic
motifs map to known TFBS defined in the TRANSFAC DB
v7.4 while 105 represented novel phylogenetically con-
served elements.

We first examined whether any of 123 known TFBS were
disproportionately represented in our ER+ and ER- gene
sets. Abbreviated results appear in Table 3. While numer-
ous motifs showed significance by Fisher's Exact testing (p
< 0.05) only 2 survived multiple testing correction. The
first motif KTWGTTT, a binding site for the SRY1 tran-
scription factor, was over-represented in the top 5% of
ER+ upregulated genes in the noncoding strand. For ER+
overexpressed genes 473 of 735 genes contained the site
while 423 of 766 ER- overexpressed genes contained the
site (Benjamini-Hochberg corrected p = 0.042). The sec-
ond site, ABWCAGGTRNR, a binding site for AREB6 (also
called Transcription Factor 8, TCF8, or ZEB1), was over-
represented in the top 1% of ER+ upregulated genes when
both coding and noncoding strands were surveyed
(adjusted p = 0.024) and contains an embedded E-box

Table 2: Ingenuity functional roles among the top 1% ER+ and 
ER- upregulated genes.

Function N Genes Ingenuity p-value

Top 1% ER+ Upregulated
Small Molecule Biochemistry 16 7.71E-07
Molecular Transport 10 2.03E-04
Nervous System Development and 
Function

10 5.89E-03

Lipid Metabolism 9 7.71E-07
Cancer 7 5.89E-03
Top 1% ER- Upregulated
Cancer 26 4.08E-04
Cellular Growth and Proliferation 23 3.34E-07
Cell Death 22 9.14E-08
Tissue Morphology 19 3.60E-05
Hematological System Development 
and Function

18 6.73E-06
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motif. Twenty-five genes bore TCF8 sites in either strand
amongst 138 ER+ upregulated genes while only 6 genes
contained the site amongst 147 ER- upregulated genes.
The presence of TCF8 sites in nearly four times as many
ER+ upregulated genes versus ER- upregulated genes may
be an indirect mechanism for gene activation in ER+
breast tumors. TCF8 has been shown to be induced by
estrogen which in turn activates a cascade of downstream
genes [29]. Additionally, the transcriptional repression of
e-cadherin by TCF8 has been shown to lead to loss of the
epithelial phenotype suggesting a role for this TF in late-
stage carcinogenesis [30]. We note that although e-cad-
herin was not identified in our meta-analysis, 2 related
genes, CDH3 and PCDH8, both of which lie in the top 5%
of ER- overexpressed genes, may be responsive to repres-

sion by TCF8. The over-representation of TCF8 binding
sites in both strands of our top 1% genes ER+ overex-
pressed tumors suggests that TCF8 may act as a transcrip-
tional activator for these genes yet act as a transcriptional
repressor in ER- overexpressed genes.

In addition to known sites, we sought to identify potential
new regulatory motifs by examining the coding and non-
coding strands with 174 previously identified phyloge-
netic motifs in the top 1% and 5% of our S+ vs. S- genes
[28]. Eleven of these motifs represented palindromic
sequences and were scanned in only the coding strand
when both strands were analyzed. Again, while numerous
motifs showed significance by Fisher's Exact testing (p <
0.05) only 1 survived multiple testing correction. Abbrevi-

Table 3: Top Scoring Promoter TFBS Motifs Identified in Coding and Non-coding Strands. Top 1% and 5% Gene Sets.

Rank Known Motif Factor Genes with 
Motif

Genes w/o 
Motif

Genes with 
Motif

Genes w/o 
Motif

Fisher Raw p-value Hochberg adj p-value

Genes Overexpressed in ER+ 
Tumors

Genes Overexpressed in ER- 
Tumors

Top 1% Known Motifs Coding Strand
1 CTTTGA LEF1 83 55 64 83 0.0063 0.7784
2 TATAAATW TBP 32 106 17 130 0.0117 1
3 MGGAWGT PEA3 72 66 55 92 0.0128 1
4 TnGCGTG AHR 39 99 23 124 0.0142 1
5 WADTAAWTA NKX6-2 53 85 36 111 0.0149 1

Top 1% Known Motifs Noncoding Strand
1 ABWCAGGTRnR AREB6 13 125 2 145 0.0026 0.3205
2 KTWGTTT SRY 91 47 71 76 0.0029 0.3487
3 ATTGTT SOX-5 77 61 56 91 0.0030 0.3683
4 GCGCSAAA E2F 0 138 8 139 0.0073 0.8725
5 RnCAGGTG MYOD 68 70 50 97 0.0114 1

Top 1% Known Motifs Coding & Noncoding Strand
1 ABWCAGGTRnR AREB6 25 113 6 141 0.0002 0.0240
2 CTTTGA LEF1 108 30 96 51 0.0180 1
3 KTWGTTT SRY 120 18 110 37 0.0107 1
4 ATTGTT SOX-5 100 38 93 54 0.1014 1
5 RWAAACAA FOXO1 96 42 83 64 0.0272 1

Top 5% Known Motifs Coding Strand
1 SCACGTG MYC 141 594 190 576 0.0089 1
2 GnCnGTT MYB 590 145 579 187 0.0296 1
3 RTGACTCAGCA NF-E2 0 735 6 760 0.0311 1
4 MGGAWGT PEA3 358 377 332 434 0.0384 1
5 KTWGTTT SRY 473 262 454 312 0.0437 1

Top 5% Known Motifs Noncoding Strand
1 KTWGTTT SRY 473 262 423 343 0.0003 0.0422
2 GCGCSAAA E2F 13 722 31 735 0.0092 1
3 CYAATTWT HOXA4 306 429 271 495 0.0146 1
4 TYAAGTG NKX2-5 276 459 242 524 0.0168 1
5 GCCATnTT YY1 168 567 137 629 0.0176 1

Top 5% Known Motifs Coding & Noncoding Strand
1 KTWGTTT SRY 613 122 606 160 0.0346 1
2 WGATAR GATA 691 44 698 68 0.0388 1
3 TYAAGTG NKX2-5 450 285 420 346 0.0139 1
4 CCGGAART ELK-1 97 638 69 697 0.0106 1
5 GTTRCYWnGYnA

C
RFX1 12 723 4 762 0.0441 1
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ated results appear in Table 4. A single motif (CAGNYG-
KNAAA) showed a significant difference between the ER+
upregulated genes versus the ER- upregulated genes when
the non-coding strand was examined in our top 1% gene
list. Nineteen of 138 ER+ overexpressed genes contained
at least 1 copy of the motif while only 3 of 147 genes con-
tained the motif in the ER- overexpressed genes (adjusted
p < 0.0373). This phylogenetic motif does not map to any
known TFBS and represents a new target for exploration.

Analysis of the 3'UTR
We next screened for regulatory elements in the 3'UTR of
our genes sets. Less is known about functional motifs in
3'UTRs than about functional motifs in promoter regions,
but evolutionary conserved motifs in 3'UTRs may, as in

promoter regions, indicate regulatory sites. We therefore
used a previously identified set of evolutionary conserved
3'UTR motifs [28]. Although the function of half of these
motifs is unknown, the remaining half has A/T rich ele-
ments believed to be involved in mRNA stability or repre-
sent likely microRNAs binding sites.

We used the same RefSeq ID's to harvest the annotated
3'UTRs of our gene sets as described in the Methods. Sur-
prisingly, we observed a significant difference in the
median 3'UTR lengths between our gene sets (Figure 2).
The top 1% genes overexpressed in ER+ tumors contained
a median 3'UTR length of 0.9 kb, while genes overex-
pressed in ER- tumors contained a median 3'UTR length
of 0.61 kb. A similar trend was observed when we exam-

Table 4: Top Scoring Promoter Phylogenetic Motifs identified in Coding and Non-coding Strands. Top 1% and 5% Gene Sets.

Rank Phylogenetic Motif Known 
Factor

Position 
Bias*

Genes with 
Motif

Genes w/o 
Motif

Genes with 
Motif

Genes w/o 
Motif

Fisher Raw 
p-value

Hochberg adj 
p-value

Genes Overexpressed in 
ER+ Tumors

Genes Overexpressed in 
ER- Tumors

Top 1% Known Motifs Coding Strand
1 TCAnnTGAY SREBP-1 -64 68 70 44 103 0.0010 0.1794
2 TAATTA CHX10 - 70 68 46 101 0.0011 0.1895
3 RnTCAnnRnnYnATTW - - 15 123 3 144 0.0027 0.4563
4 CATTGTYY SOX-9 - 30 108 13 134 0.0027 0.4690
5 CTTTGA LEF1 - 83 55 64 83 0.0063 1

Top 1% Known Morifs Noncoding Strand
1 CAGnYGKnAAA - - 19 119 3 144 0.0002 0.0373
2 TAATTA CHX10 - 70 68 46 101 0.0011 0.1895
3 TTAnWnAnTGGM - - 14 124 2 145 0.0014 0.2349
4 TTGTTT FOXO4 - 98 40 79 68 0.0033 0.5672
5 YYCATTCAWW POU1F1(*) - 21 117 7 140 0.0046 0.7760

Top 1% Known Morifs Coding & Noncoding Strand
1 TAATTA CHX10 - 70 68 46 101 0.0011 0.1906
2 CAGnYGKnAAA - - 26 112 9 138 0.0011 0.1918
3 TAAWWATAG RSRFC4 - 31 107 14 133 0.0033 0.5631
4 TTGTTT FOXO4 - 121 17 116 31 0.0574 1
5 CATTGTYY SOX-9 - 45 93 27 120 0.0064 1

Top 5% Known Motifs Coding Strand
1 CTTTAAR - - 329 406 282 484 0.0019 0.3351
2 YKACATTT - - 174 561 133 633 0.0026 0.4526
3 TAATTA CHX10 - 341 394 301 465 0.0057 0.9801
4 YATTnATC CDP(*) - 183 552 147 619 0.0088 1
5 TTGCWCAAY C/EBPBETA - 15 720 34 732 0.0090 1

Top 5% Known Morifs Noncoding Strand
1 WTGAAAT - - 307 428 263 503 0.0034 0.5955
2 TTGTTT FOXO4 - 491 244 456 310 0.0039 0.6670
3 TAATTA CHX10 - 341 394 301 465 0.0057 0.9801
4 YCATTAA IPF1(*) - 204 531 166 600 0.0070 1
5 TTAYRTAA E4BP4 - 129 606 97 669 0.0093 1

Top 5% Known Morifs Coding & Noncoding Strand
1 TGCCAAR NF-1 - 442 293 394 372 0.0007 0.1271
2 YCATTAA IPF1(*) - 326 409 282 484 0.0032 0.5575
3 YATGnWAAT OCT-X - 250 485 209 557 0.0051 0.8729
4 TAATTA CHX10 - 341 394 301 465 0.0057 0.9744
5 AACYnnnnTTCCS - -53 76 659 49 717 0.0066 1

*Center of motif relative to transcriptional start site
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ined the top 5% of genes sets. In this set, ER+ upregulated
genes had a median UTR length of 0.87 kb while the ER-
genes had a length of 0.63 kb. MicroRNA target genes have
longer 3'UTRs, whereas anti-targets have shorter 3'UTRs

[31]. Thus, the difference in 3'UTR length suggests a differ-
ence in miRNA targeting prevalence between the ER+ and
ER- genes.

The most significant evolutionary conserved motif in the
top 1% and top 5% genes (Table 5) correspond to a
potential miRNA target site; YACTGCCR and WGCCTTA
have seed complementarity to miR-34/miR-449 and miR-
124. The miRNA seed region – nucleotides 2–8 from the
5' end – is the most important factor for miRNA target site
recognition [32-34]. Fisher's Exact tests on the miRNA
seed site occurrence counts, corrected for multiple testing,
seemingly confirm that the ER+ genes are preferentially
regulated by miRNAs, as all the significant seeds are over-
represented in the ER+ upregulated genes (Table 6). There
is, however, a potential problem with using the Fisher's
Exact test for the 3'UTR sets. If motif occurrences were ran-
dom, we would expect the ER+ genes to have more motif
occurrences than the ER- genes have, as the ER+ genes
have longer 3'UTRs. Thus, to determine whether there is a
significant difference in miRNA regulation between the
ER+ and ER- genes, we had to address whether the occur-
rences of miRNA seed sites in the two sets were signifi-
cantly different from what we would expect by chance. We
therefore ran a set of randomization experiments where
we compared the observed number of seed site occur-
rences in the ER+ and ER- genes' 3'UTRs with those in ran-
dom gene sets that had 3'UTR lengths similar to the ER+
and ER- 3'UTRs (Table 6). We found that all of the seeds

Table 5: Top Scoring Phylogenetic 3'UTR Motifs Identified in 3'UTRs. Top 1% and 5% Gene Sets.

Rank Motif Genes with Motif Genes w/o Motif Genes with Motif Genes w/o Motif Fisher's exact p-
value

Hochberg adj p-
value

Top 1% Phylo Motifs Genes Overexpressed in ER+ Tumors Genes Overexpressed in ER- Tumors

1 YACTGCCR 17 113 2 143 0.0002 0.0423
2 YYGCATGT 10 120 1 144 0.0037 1.0000
3 TGTANANAGA 12 118 3 142 0.0142 1.0000
4 TGCMNTAA 26 104 14 131 0.0168 1.0000
5 TGTGAA 51 79 37 108 0.0196 1.0000
6 TGTANNNTAG 13 117 4 141 0.0214 1.0000
7 TTTCTRNNAAA 2 128 11 134 0.0219 1.0000
8 AAGCACA 19 111 9 136 0.0273 1.0000
9 CTAKWTTT 23 107 12 133 0.0286 1.0000
10 TTTCTA 52 78 41 104 0.0423 1.0000

Top 5% Phylo Motifs

1 WGCCTTA 134 562 80 652 < 0.0001 0.0031
2 CTAKWTTT 149 547 93 639 < 0.0001 0.0032
3 TGTGAA 305 391 238 494 < 0.0001 0.0034
4 TATATTT 210 486 149 583 < 0.0001 0.0066
5 TGTANNNTAG 73 623 36 696 0.0001 0.0235
6 TGTRNNNWATT 148 548 101 631 0.0002 0.0571
7 WRCCAAAA 113 583 71 661 0.0003 0.0706
8 TGTATANW 218 478 168 564 0.0004 0.1144
9 CTGTATWW 134 562 91 641 0.0005 0.1248
10 TGTRNTTT 310 386 261 471 0.0007 0.1747

Box plot of 3'UTR length differencesFigure 2
Box plot of 3'UTR length differences. Summary of ER+ 
upregulated genes ("Top1 u" and "Top5 u") and ER- upregu-
lated genes ("Top1 d" and "Top5 d"). 3'UTR lengths were 
derived from RefSeq gene conversion as shown in Table 7.
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identified by significant Fisher's Exact tests do occur sig-
nificantly more frequently in the ER+ 3'UTRs than in
3'UTRs from random gene sets. Moreover, these seeds also
occur significantly less frequently in the ER- 3'UTRs than
in random gene sets. Thus, it seems that whereas several
miRNAs may coordinately regulate some of the ER+
genes, some of the ER- genes may collectively avoid being
regulated by the same miRNAs.

Previous studies have identified several miRNAs that are
aberrantly expressed in breast cancers [35,36]. Together
the aberrantly expressed miRNAs in these studies mapped
to 35 unique 6 mer seed sequences of which three were
among our ten most significant 6 mer motifs. The three
corresponding miRNAs (miR-205, miR-21, and miR-203)
are all overexpressed in breast cancers. None of the ten
most significant 6 mer motifs are from miRNAs reported
to be differentially expressed in ER+ and ER- tumors [35];
the most significant 6 mer is ranked 25th (Hochberg-
adjusted Fisher's Exact p-value of 0.17), is significantly
more abundant in ER+ genes than expected by random,
and is from miR-206, which is downregulated in ER+
tumors.

Discussion
MicroRNAs are small (21–23 nucleotides) noncoding
RNAs that recognize complementary target sequences in
mRNAs and prompt either translational repression or

RNA degradation. MicroRNAs play important roles in
cancer. Iorio et al., for example, recently revealed that
deregulation of multiple miRNAs can be correlated to
pathogenic features such as estrogen or progesterone
receptor status and tumor stage for breast cancers [35]. In
addition, shorter postoperative survival times for patients
with lung tumors can be predicted by measuring miRNA
let-7 [37]. Thus miRNAs can be used both as classifiers of
breast tumor type and as predictors of survival of lung
cancer patients. MicroRNAs preferentially target 3'UTRs
that have short sequences with perfect complementarity
to nucleotides 2–7 (6 mer) or 2–8 (7 mer) in the miRNA's
5' region – the seed region [32-34]. As miRNA regulation
may explain gene co-expression, we therefore included
the 6 mer and 7 mer seed sequences for all human miRNA
sequences known at the time of the study. We note that
not all known human miRNAs are highly evolutionary
conserved and these seed sequences therefore supplement
the miRNA-related evolutionary conserved motifs.

Since we identified sets of genes that demonstrated differ-
ential expression between ER+ and ER- tumors, we rea-
soned that some of these genes may contain common cis-
regulatory motifs contributing to their co-regulation. We
would predict that these sites may, in some cases, be dis-
proportionately represented between genes upregulated
in ER+ tumors versus genes upregulated in ER- tumors
perhaps allowing one to identify genes sharing common

Table 6: Top Scoring 6-mer and 7-mer miRNA seeds identified in normalized 3'UTRs. Top 1% and 5% Gene Sets.

Rank Seed Fisher's
exact p-value

Hochberg
adj p-value

ER+
Randomiz.

test p-val

ER-
Randomiz.

test p-val

Seed Fisher's
exact p-value

Hochberg
adj p-value

ER+ Randomiz.
test p-val

ER- Randomiz.
test p-val

Top 1% 6-mer Top 1% 7-mer

1 ATCTGG 0.0002 0.0547 0.000 0.018 CACTGCC 0.0011 0.4099 0.008 0.003
2 GGTACT 0.0005 0.1811 0.018 0.001 ACTATTA 0.0012 0.4328 0.000 0.019
3 AGCACA 0.0015 0.5048 0.005 0.004 TCTAGAG 0.0079 1.0000 0.021 0.006
4 CACTTT 0.0017 0.5921 0.001 0.029 ATTACAT 0.0113 1.0000 0.012 0.042
5 ACTGCC 0.0019 0.6339 0.004 0.028 GTCAACC 0.0146 1.0000 0.028 0.007
6 CTATTA 0.0025 0.8495 0.007 0.025 TGTATTA 0.0175 1.0000 0.052 0.022
7 AGTTTT 0.0035 1.0000 0.086 0.006 TGGTACT 0.0214 1.0000 0.007 0.117
8 GACACA 0.0059 1.0000 0.076 0.006 AAAGGGA 0.0228 1.0000 0.294 0.000
9 AGTCCA 0.0070 1.0000 0.027 0.006 AAGCACA 0.0273 1.0000 0.012 0.049
10 AGAGTT 0.0076 1.0000 0.218 0.001 GTGTTGA 0.0279 1.0000 0.462 0.000

Top 5% 6-mer Top 5% 7-mer

1 ATTATA 0.0000 0.0004 0.000 0.004 TGCCTTA 0.0000 0.0056 0.000 0.000
2 GCCTTA 0.0000 0.0031 0.000 0.002 ATATGCA 0.0000 0.0126 0.000 0.001
3 TGTTAA 0.0000 0.0038 0.000 0.000 TAATAAT 0.0003 0.1053 0.002 0.000
4 TTATAT 0.0000 0.0040 0.000 0.039 GATTTTT 0.0004 0.1569 0.000 0.008
5 TGAAGG 0.0000 0.0052 0.000 0.021 GTTATAT 0.0006 0.2226 0.000 0.004
6 TAAGCT 0.0000 0.0064 0.000 0.000 CCAACTC 0.0010 0.3524 0.015 0.000
7 ACTTCA 0.0000 0.0095 0.000 0.000 AATGCAT 0.0013 0.4888 0.000 0.008
8 ATTTCA 0.0000 0.0141 0.000 0.008 TCTGATA 0.0014 0.5104 0.140 0.000
9 CATTTG 0.0000 0.0150 0.000 0.014 ATTACAT 0.0014 0.5142 0.001 0.002
10 AGTATT 0.0001 0.0197 0.000 0.062 TCTGATC 0.0014 0.5186 0.000 0.107
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regulatory pathway. Computational tools exist to identify
TFBS based upon over-representation of conserved motifs
in datasets [38]. Other approaches aim to identify tran-
scription factors (TF) which bind to TFBS based on the
relatedness of expression profiles between the TF and the
target genes they are postulated to regulate [39]. A com-
bined approach utilizing expression measurements of tis-
sue-specific gene sets in conjunction with orthologous TFs
from humans and mouse provides for enhanced accuracy
in predicting bone fide cis-regulatory elements [40]. For the
most part these searches are guided by biologically con-
firmed TFBS interactions identified in the TRANSFAC
database [41]; however, this approach may fail to identify
motifs that may be evolutionarily conserved amongst
mammals.

In addition to known sites that remained significant after
multiple testing correction, many additional sites, and
their associated transcription factors, warrant comment. A
second important TFBS, CTTTGA, the binding site for lym-
phoid enhancer-binding factor 1 (LEF1), in the Top 1%
Coding Strand ER+ overexpressed genes, failed rigorous
multiple testing where 83 of 138 genes contained ≥ 1 site
versus 64 of 147 genes in ER- gene set in Table 3. None-
theless there is strong biological evidence supporting the
role of LEF1 in tumorogenesis. The LEF1 binding site
CTTTGA is one of the primary binding sites in the Wnt sig-
naling pathway which regulates cell-cell adhesion and
many morphogenetic events during mammary develop-
ment and possibly cancer [42,43] Binding of Wnt proteins
with frizzled protein prevents degradation of β-catenin,
which subsequently translocates to the nucleus and binds
transcription factors of the TCF/LEF family (this includes
TCF8 discussed above and LEF1). Several tumors are
known to have an altered β-catenin signaling pathway
including colorectal and lymphoblastic tumors [44].
Mutations in the Wnt pathway genes can result in β-cat-
enin stabilization and activation of LEF/TCF-induced
transcription. Recent studies have demonstrated seba-
ceous tumors harboring LEF1 mutations interfere with β-
catenin-binding domain of LEF1 and transcriptional acti-
vation [45]. Common human carcinomas also carry
mutations in the β-catenin-binding domain of LEF [46].
Our data suggest that mutations (somatic or germline) in
LEF1 or TCF8 binding sites in genes that inactivate Wnt
signaling could contribute to breast tumorogenesis.

We did not find the estrogen receptor binding site (TGAC-
CTTG) over-enriched in any our analyses. This is not sur-
prising as our survey was confined to the immediate 2 kb
promoter region. We point out that estrogen may be play-
ing an indirect role on genes in ER+ overexpressing
tumors via the activation of TF such as TCF8 which in turn
activate downstream targets. Additionally, it is possible
that differences in ER binding sites do exist between our

gene sets but these sites may reside at distances much fur-
ther upstream. Recent reports indicate that only two-
thirds of ER TFBS can be localized to the proximal pro-
moter region of RNA polymerase II genes [47]. We also
note that the E2F binding site (GCGCSAAA) consistently
ranked amongst the top 5 motifs (Table 3, 4th highest scor-
ing motif for top 1% and 2nd highest scoring for top 5%)
identified when screening the non-coding strand. In the
non-coding strand of the top 1% gene sets, more E2F sites
were observed in genes overexpressed in ER- tumors (8 of
147) versus 0 of 138 in genes overexpressed in ER+
tumors. Though the E2F site did not pass our multiple
comparisons correction, published data support a role for
these E2F sites in carcinogenesis. Prior efforts to identify a
conditional regulatory program responsible for the coor-
dinate regulation of sets of genes in multiple cancer types
identified E2F as the lone TF universally overexpressed in
multiple tumor types [48]. The presence of E2F sites exclu-
sively in genes overexpressed in ER- BrCa tumors suggests
that E2F plays a major role in this tumor type and may
activate some target genes involved in cell cycle control
[49].

A caveat to our analyses is the realization that in some
cases the motif count alone may not be considered to be
a good predictor due to positional bias of a given motif
relative to the transcriptional start site (TSS). For some
TFs, positional bias is likely to play a role in function. For
example, the motif TATAAATW (TATA binding protein
recognition sequence), well known for interactions with
the basal transcription apparatus, shows a strong bias 23
bp upstream of the TSS. This spatial restriction is likely
due to necessary interactions with the basal transcrip-
tional apparatus (RNA Polymerase 2) [50]. Thus, motif
copies present around -23 are likely to be functional while
motifs distributed at other positions throughout the 2 kb
upstream region would be predicted to be non-functional.
Of our 174 phylogenetic motifs, only 32% (56 of 174)
show positional bias, the majority of which are located
within 100 bp of the TSS. The absence of any position bias
for the vast majority of motifs in genes demonstrating dis-
parate motif frequencies suggests a possible position-
independent role in contributing to the observed expres-
sion patterns. The lone phylogenetic motif showing sig-
nificance, CAGNYGKNAAA does not demonstrate
positional bias.

A difficulty with any meta-analysis is that of study hetero-
geneity when one combines studies [51-53]. Meta-analy-
ses on gene expression data are not immune from this
criticism. There are many factors that influence a designa-
tion of ER+ and ER- status in breast tumors, including
assay sensitivity and the scoring system used. The specific
methods and assays for determining ER+ and ER- status
are not available from Oncomine and we were unable to
Page 9 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:63 http://www.biomedcentral.com/1471-2105/9/63
account for this factor in our results. Many have proposed
statistical methods for quantifying the heterogeneity in a
meta-analysis data set [54-56]. Since heterogeneity mani-
fests in an inflation of inter-study variance, a meta-analy-
sis with any degree of heterogeneity tends to bias the effect
size toward the null hypothesis [57] and hence be con-
servative.

Conclusion
Our meta-analysis was designed to identify genes showing
consistent differences in gene expression patterns between
ER+ versus ER- breast tumors. The target genes identified
provide a unified set of genes obtained across multiple
analyses and their expression patterns may reflect the true
biological complexity of breast tumors. A small 10-gene
meta-analysis signature to predict ER status has recently
been described [13]. Three genes identified in their study
(ESR1, GATA3, and SLC39A6) overlap with our top 1%
ER+ upregulated genes. From our results, a more highly
refined set of gene targets can potentially be explored that
would prove useful in the development of an improved
biomarker assays for determining not only ER status but
also prognosis. Importantly, the overlap of 23 genes from
our top 5% ER- upregulated tumors with a set of 69 genes
demonstrating overexpression in more than 12 types of
undifferentiated cancers via meta-profiling identifies
genes universally activated in cancer. This list includes
genes shown to be involved in the undifferentiated phe-
notype. They include the MELK kinase involved in mam-
malian embryogenesis, the apoptosis inhibitor BIRC5,
and multiple genes implicated in cell cycle control
(CCNA2, MCM6 and FOXM1).

By screening the proximal promoter and 3'UTR domains
of our gene sets we wanted to identify both known TFBS,
phylogenetically conserved motifs, and miRNA seed
sequences that differ in prevalence between ER+ upregu-
lated versus ER- upregulated genes. For any given site the
disproportionate distribution between these gene sets
may identify elements responsible for the co-regulation of
groups of genes, and our analyses identified several signif-
icant elements in both the promoter and 3'UTR regions.
Moreover, ER- genes had significantly shorter 3'UTRs than
ER+ genes. Short 3'UTRs are common for miRNA anti-tar-
gets, which suggest that different mechanisms regulate
groups of ER+ and ER- genes; that is, ER+ genes may be
miRNA targets whereas ER- genes may be anti-targets.
Consistent with this hypothesis, ER+ genes have signifi-
cantly more putative miRNA target sites in common than
expected by 3'UTR length alone, whereas ER- genes have
significantly less putative miRNA target sites in common
than expected by 3'UTR length alone. Anti-target genes are
commonly involved in basic cellular processes [58] and in
agreement with this, genes involved in the cell-cycle are

significantly overrepresented in the ER- genes (data not
shown).

Clearly, our analysis is a starting point. An examination of
larger sequence domains upstream or these target genes
may suggest additional elements showing differences in
target abundance between these gene sets. While our phy-
logenetic motifs were for the most part small (<20 nucle-
otides), larger sequence elements such as enhancers that
function at extended distances from these genes are likely
to also play a role in the observed expression patterns. The
potential importance of promoter motifs in gene expres-
sion and of common polymorphisms that reside within
these sites was highlighted by a recent survey of the pro-
moter regions of nearly 200 genes in which 75% of the
SNPs identified modify (either by gain or loss) putative
TFBS [59]. A survey of known polymorphisms (SNPs)
from existing databases (dbSNP or HapMap) that reside
within these motifs would also suggest the importance of
these elements. It would be of keen interest to explore if
regulatory modules exist within these gene sets consisting
of combinations of both known and phylogenetically
conserved motifs. Approaches such as this have been
described computationally for yeast, fly, mouse and
humans [60]. The recent use of comparative genomics
tools from mammalian as well as evolutionarily distant
species such as pufferfish (Tetraodon sp.) to identify phyl-
ogenetically conserved enhancers may also enable the
identification of additional sequence elements responsi-
ble for the coordinate expression patterns seen for some of
our genes [61]. Efforts such as these in conjunction with
genomewide chromatin immunoprecipitation (ChIP)
studies of promoter regions will provide a more compre-
hensive view of the key elements modulating the observed
gene expression patterns.

Likewise, in the 3'UTR, genomewide efforts to map SNPs
to miRNA target sites have revealed that many polymor-
phisms can either create new miRNA target sites or can
lead to their loss [62]. Genome-wide searches in humans
have identified cis polymorphisms in putative miRNA tar-
get sites that are likely contributors to phenotypic varia-
tion in humans and may to play a role in disease
pathogenesis [63]. Future analyses will reveal whether
SNPs in phylogenetically conserved promoter and 3'UTR
elements can influence breast cancer risk at the level of
RNA transcription or stability.

Methods
Meta-Analysis
We queried the Oncomine database [64] for gene expres-
sion studies in breast cancer as of September 2005. Within
Oncomine, a dataset is considered to be "Analyzed" when
the data from the original study is digitized and normal-
ized into Oncomine's data mining system. At that time,
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there were 14 "Analyzed" studies with complete expres-
sion data in breast cancer. These "Analyzed" studies pro-
vided by Oncomine included normalized expression data
per probe. Each probe's record included the probe's iden-
tification number (dependent on the array platform), the
number of subjects, the mean expression values, and the
p-value and q-value [65]. Although each study measured
a variety of clinical aspects of patients with disease (e.g.,
progesterone receptor status, distant lymph node metas-
tases, disease-free survival, etc.) 9 studies considered
expression patterns between ER+ and ER- tumors. As
estrogen receptor status is a key factor in treatment deci-
sion-making, we elected to compare the expression of
genes overexpressed in ER+ tumors with those of ER-
tumors. These 9 studies are listed in Table 1 and represent
954 independent cases of breast cancer.

For our meta-analysis we collected all of the expression
data and imported all data sets into JMP tables for merg-
ing [66]. We considered Fisher's method for combining p-
values as the basis of our meta-analysis statistic [67].
Rhodes et al [11] also considered this approach in their
meta-analysis of gene expression in prostate cancer. Equa-
tion 1 shows our modification to the Fisher's statistic for
our meta-analysis. Since we were not interested in the dis-
tributional properties of the Fisher's statistic, we modified
the statistic by incorporating the signum of the direction
of the differential gene expression. We mapped probe
identifiers to unique UniGene IDs and these were the
addends for S in Equation 1. However, if a study did not
have a probe corresponding to a given UniGene ID, that
study did not contribute to the meta-analysis statistic.
Given that m studies have expression p-values for a given
UniGene ID p1,..., pm, the meta-analysis statistic S is
defined as

where Cj = +1 if a given genes expression is higher in estro-
gen receptor negative (ER-) versus estrogen receptor posi-
tive (ER+) tumors while Cj = -1 if a given gene's expression
is higher in ER+ versus ER- tumors in any given study j.

Our convention for expression resulted in large negative
values of S implying overexpression of genes associated
with ER+ breast cancers while conversely large positive
values of S indicated genes overexpressed in ER- breast
tumors. Values of S close to zero imply neither over- nor
underexpression of the gene. Herein, we will refer to
"upregulated" and "downregulated" genes as those genes
overexpressed in ER+ tumors, versus genes overexpressed
in ER- tumors, respectively.

To compensate for the possibility that high values of S
(either + or -) may be due to the contribution of high p-
values from just a few studies rather than high p-values
from multiple consistently significant studies, we normal-
ized the S statistic by N, the number of studies in which a
UniGene ID was present. The additional descriptive statis-
tics that we considered for our meta-analysis included the
number of studies that contained a probe for each Uni-
Gene ID, and the standard deviation (SD) of the (Cj ln pj)
addends of S. These statistics were used for summariza-
tion and discovery and not for consideration of any infer-
ential or asymptotic statistical properties of S. We focused
our subsequent analyses on a select set of genes by taking
medians across each UniGene ID's S/N statistics. We
selected sets of ER+ and ER- genes for further study by
arbitrarily defining cutoffs at the upper 1% and 5% tails of
the S/N distributions and including all genes with those S/
N values or greater. We will refer to these as the "top 1%
gene lists" and "top 5% gene lists" below. The complete
list of Top 1% and 5% gene sets are in Additional File 1.

Informatics
The difficulty of different gene annotation and naming
conventions is well-known [68-71] and mandated that we
select a common gene identifier. Since probes were
dependent on both the array platform in the original stud-
ies, it was necessary to collapse the probes into one com-
mon identifier prior to our meta-analyses. We chose the
UniGene nomenclature as a common identifier across all
microarray probe sets. UniGene identifiers were chosen
because each UniGene ID may capture multiple expressed
sequence tags (ESTs) [72] on any given array. The lack of
common probes or genes often occurs in array studies and
is one possible explanation for the disparate gene sets
identified between array studies [73]

We used the GEPAS' ID Converter batch formatting at the
Bioinformatics Department at CIPF [74,75]. Owing to the
diversity of probe nomenclature present on these arrays,
our imported IDs included GenBank Accession numbers,
clone IDs/IMAGE tags, and Affymetrix IDs. If a study's
probe ID did not map to a UniGene ID, no information
was contributed to the meta-analyzed expression value. In
studies containing multiple probes for a given UniGene
ID, each expression value was retained; we did not col-
lapse nor statistically summarize expression values when
multiple probes measured the same UniGene ID.

Motif Screening
To screen for known motifs in the promoters of our ER+
and ER- gene classes we used a previously defined col-
lapsed set of motifs from the TRANSFAC database v7.4
whereby highly redundant motifs were eliminated using
weight matrix similarity as described in Xie et al. [28]. Xie
et al. also identified conserved mammalian phylogenetic

S C pj j
j

m
= −

=∑2
1

ln , (1)
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motifs in the promoter and 3'UTR domains [28]; these
served as our reference motifs. MicroRNA 6-mer and 7-
mer seed sequences corresponding to nucleotides 2–7 and
2–8 from the miRNA 5' end [34] were from miRBase
release 9.1 [76]. We obtained RefSeq accession numbers
mapping to each UniGene ID cluster by passing UniGene
IDs from the top 1% and 5% gene lists through the con-
version tool D.A.V.I.D [77]. RefSeq transcripts that were
redundant as either duplicates or subsequences of other
entries were removed. This removed redundancies that
may unduly bias our motif comparisons, yet retained the
sequences of as many transcripts as possible. RefSeq
genomic intervals containing promoters and 3'UTRs were
harvested from genomic resources (UCSC Genome
Browser, NCBI Build 36.1). For each sequence list and
each motif, a custom Python script counted the number of
sequences with one or more motif occurrences within the
set, and a Fisher exact test evaluated the significance of
over or under representation in the ER+ versus the ER-
sets.

For our promoter intervals some phylogenetic motifs rep-
resented sequences or subsequences of known TFBS while
others were novel motifs having no known binding fac-
tors. For example, the phylogenetically conserved mam-
malian motif CAGGTG is a core subsequence for the E-
box motif of helix-loop-helix TFs as well as the known
binding site for the transcription factor MYC (SCACGTG).
Alternatively, the phylogenetically conserved motif
AGCYRWTTC does not represent any known TFBS. We
limited our search to the proximal promoter space rang-
ing from 2 kb 5' of the transcription start site (TSS) to 2 kb
3' downstream. If the translation start site was within 2 kb
of the TSS site the shorter region was chosen so as to not
overlap with the first coding exon. Collectively these pro-
moter motifs ranged in length from 6–17 nucleotides. We
separately screened the top one and five percent categories
overexpressed in ER+ tumors (S-) and compared this to
the same motif in genes overexpressed in the top one and
five percent of ER- tumors (S+) respectively.

Table 7 shows the results for our UniGene ID conversion,
number of RefSeq mRNAs identified, and the final
number of RefSeq mRNAs after subsequence filtering.
Though our initial analysis returned more RefSeq mRNAs
than input UniGene IDs, after subsequence filtering the
yield of RefSeq mRNAs ranged from 77–98%. Collec-
tively, we feel it represents a balanced collection of unique
RefSeq IDs minimizing transcript redundancy yet faith-
fully representing the transcript diversity observed in our
meta-analysis. For promoter analyses we surveyed both
coding and non-coding strands as this provided a compre-
hensive survey of the motif distribution since earlier work
suggests functional TFBS may be independent of strand
orientation [78]. Additionally, we elected to survey the

entirety of the sequence space without filtering repeat ele-
ments as previous studies demonstrate that TFBS sites may
reside in these elements [79]. For palindromic motifs we
only screened the coding strand in our promoter survey.

Abbreviations
BrCa: breast cancer; ER+ and ER-: estrogen receptor posi-
tive and negative breast cancer, respectively; 3'UTR: 3'
untranslated region; TF: transcription factor; TFBS: tran-
scription factor binding site; miRNA: microRNA; CRM:
cis-regulatory modules; ESTs: expressed sequence tags;
TSS: transcription start site; Oncomine DB: Oncomine
database; ChIP: chromatin immunoprecipitation; SD:
standard deviation; S+ and S-: list of genes overexpressed
in ER- tumors and ER+ tumors.
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Table 7: Conversion of UniGene IDs to RefSeq mRNAs utilizing 
D.A.V.I.D.

The number of promoter sequences analyzed

Step Top 1% S- Top 1% S+ Top 5% S- Top 5% S+
UniGene 150 150 902 902
RefSeq mapped 168 192 1072 1116
RefSeq 
downloaded

167 167 850 888

RefSeq unique 138 147 735 766

The number of 3'UTR sequences analyzed

Step Top 1% S- Top 1% S+ Top 5% S- Top 5% S+
UniGene 150 150 902 902
RefSeq mapped 168 192 1072 1116
RefSeq 
downloaded

165 166 844 887

RefSeq unique 130 145 696 732

S-, genes overexpressed in ER+ tumors; S+, genes overexpressed in 
ER- tumors
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