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Objective: The purpose of this study was to develop a deep learning-based system to
automatically predict epidermal growth factor receptor (EGFR) mutant lung
adenocarcinoma in 18F-fluorodeoxyglucose (FDG) positron emission tomography/
computed tomography (PET/CT).

Methods: Three hundred and one lung adenocarcinoma patients with EGFRmutation status
were enrolled in this study. Two deep learning models (SECT and SEPET) were developed with
Squeeze-and-Excitation Residual Network (SE-ResNet) module for the prediction of EGFR
mutation with CT and PET images, respectively. The deep learningmodels were trainedwith a
training data set of 198 patients and tested with a testing data set of 103 patients. Stacked
generalization was used to integrate the results of SECT and SEPET.

Results: The AUCs of the SECT and SEPET were 0.72 (95% CI, 0.62–0.80) and 0.74 (95%
CI, 0.65–0.82) in the testing data set, respectively. After integrating SECT and SEPET with
stacked generalization, the AUC was further improved to 0.84 (95% CI, 0.75–0.90),
significantly higher than SECT (p<0.05).

Conclusion: The stacking model based on 18F-FDG PET/CT images is capable to predict
EGFR mutation status of patients with lung adenocarcinoma automatically and non-
invasively. The proposed model in this study showed the potential to help clinicians identify
suitable advanced patients with lung adenocarcinoma for EGFR‐targeted therapy.

Keywords: adenocarcinoma of lung, fluorodeoxyglucose F18, positron emission tomography computed
tomography, deep learning, epidermal growth factor receptor
Abbreviations: SECT, Squeeze-and-Excitation Residual Network trained with CT images; SEPET, Squeeze-and-Excitation
Residual Network trained with PET images; StackPET-CT, the model integrating the results of Squeeze-and-Excitation Residual
Network trained with CT images and Squeeze-and-Excitation Residual Network trained with PET images in decision level;
StackPET-CT-Clinical, the model integrating the results of clinical model, Squeeze-and-Excitation Residual Network trained with
CT images and Squeeze-and-Excitation Residual Network trained with PET images in decision level.
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INTRODUCTION

Lung cancer is one of the leading causes of cancer-related death
around the world (1, 2). Non-small cell lung cancer (NSCLC)
account for more than 80% of the total number of lung cancer
cases, among which the adenocarcinoma is the most common
histological subtype (3). As the development of the molecular
biology, the discovery of epidermal growth factor receptor
(EGFR) and the emergence of small molecular tyrosine kinase
inhibitors (TKIs) targeting EGFR mutations, such as gefitinib
and erlotinib, have revolutionized the treatment of advanced
NSCLC (4). Compared with traditional chemotherapy, EGFR-
TKI has fewer side effects and has been proven to more
significantly improve the prognosis of NSCLC patients with
EGFR mutations (5). However, for the patients without EGFR
mutations, EGFR-TKI not only has no effect, but may cause
worse prognosis than platinum‐based chemotherapy (6),
suggesting the importance of EGFR mutation detection.

Mutation profiling of the biopsies from advanced patients or
surgically removed samples from early-stage patients have
become the golden standard of mutation detection. However,
difficulty of accessing sufficient tumor tissue samples and poor
DNA quality partly limit the application of mutation profiling
(7). Furthermore, because of the poor physical fitness, invasive
examinations, such as biopsy, were not suitable for advanced
patients with lung cancer. Therefore, there is an urgent need for a
non-invasive way to predict EGFR mutations.

18F-FDG PET/CT is a widely used imaging modality in
clinical practice and has been proven to play an important role
in the diagnosis, staging, and prognostic evaluation of lung
cancer (8–10). Recent researches have shown that EGFR
signaling regulates the glucose metabolic pathway, which could
be reflected by the uptake of 18F-FDG, indicating the potential of
predicting EGFR mutation status by 18F-FDG PET images (11,
12). Some researchers also found that the radiomic features of
PET images were associated to EGFR mutation (13). Besides,
previous study has also demonstrated that radiomic features
derived from CT images also showed predicting value to EGFR
mutation status (14). However, the extraction of radiomic
features required the precise delineation of the lesions, which is
time-consuming (15). Also, the radiomic features may be affected
by the imaging parameters and delineation accuracy, causing
poor repeatability of some of them (16).

As the continuous development of computer technology, one
of the deep learning algorithms, convolutional neural networks
(CNNs), has shown a promising performance in lesion detection,
segmentation, and classification (17–19). Compared with the
feature engineering-based radiomic methods, CNNs do not
require the precise delineation of tumor (20). Moreover, CNNs
could automatically learn the features, which were more specific
to the clinical outcome (19). Nowadays, some researchers
focused on predicting EGFR mutation status with deep
learning models. Zhao et al. constructed a DenseNet on CT
images to predict EGFR mutation, and the AUC of the model
was 0.75 (21). Wang et al. further improved the predictive
performance by training models with contrast-enhanced CT
images (19). Mu et al. built a deep learning model to predict
Frontiers in Oncology | www.frontiersin.org 2
EGFR mutation by registering and fusing PET/CT images at the
image level, and the results showed that the AUC of model
trained with fused images has been significantly improved to 0.85
than trained with PET or CT image alone (22). These suggest
that integrating multiple information could improve the
prediction accuracy of the model to a certain extent. In the
clinical practice, the pulmonary function of patients with
advanced lung cancer was relatively poor, and the amplitude of
respiratory movement was larger than other early-stage patients.
It may be more challenging in registering PET and CT imaging
in this situation (23).

Considering the abovementioned situation, we develop a deep
learning-based model in 18F-FDG PET/CT images to predict the
EGFR mutant status in patients with pulmonary adenocarcinoma.
We first separately built and trained the deep learning models based
on CT and PET images, and then used another model to synthesize
the predictive results of the CT model and the PET model to give
the final prediction of EGFRmutation. The proposed deep learning-
based model could help clinicians identify suitable advanced
patients with lung adenocarcinoma for EGFR-targeted therapy,
facilitating implementation of precise medicine with an efficient
and convenient way.
MATERIALS AND METHODS

Creation of Data Set
This retrospective study used the local data collected in Tianjin
Medical University Cancer Hospital. Patients between June 2016
and July 2019 who meet the following inclusion criteria were
included in this study. 1) patients performed 18F-FDG PET/CT
imaging before surgery or aspiration biopsy and the image data
could be obtained; 2) the pathological reports of the specimens
confirmed primary pulmonary adenocarcinoma; 3) the
specimens obtained by surgical resection or aspiration biopsy
have been tested for EGFR mutation. Patients were excluded if 1)
neo-adjuvant chemotherapy/radiotherapy was received before
18F-FDG PET/CT imaging; 2) the duration between surgery/
biopsy and 18F-FDG PET/CT imaging exceed 2 weeks. Finally,
301 patients were included in this study, and patients were split
into training and testing data set. Figure 1 showed the process of
the creation of data set. All procedures in studies involving
human participants were conducted in accordance with the
1964 Helsinki declaration and its later amendments or
comparable ethical standards.

EGFR Mutation Profiling
EGFR mutations were identified on exons 18, 19, 20, and 21,
which were the main drug target-associated mutations. For the
surgical resected specimens, the EGFR mutations were examined
using quantitative real-time polymerase chain reaction. For the
aspiration biopsied specimens, the EGFR mutations were
examined by high-performance capillary electrophoresis. All
specimens were taken from the primary lung tumor masses. If
the mutation of any of the above exons were detected, the lesion
was defined as EGFR-mutant; otherwise, the lesion was defined
as EGFR-wild type.
July 2021 | Volume 11 | Article 709137
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18F-FDG PET/CT Procedure
Images were obtained using GE Discovery Elite PET/CT scanner
(GEMedical Systems). Patients fasted for approximately 6 h with
a serum glucose level <11.1mmol/L before PET/CT imaging.
Images were started to acquire 50 to 60 min after injection of 4.2
MBq/kg 18F-FDG. A spiral CT scan (80 mAs, 120 kVp, 5-mm
slice thickness) was first acquired for precise anatomical
localization and attenuation correction, and a PET emission
scan (3D mode) was subsequently followed from the distal
femur to the top of the skull. PET images were reconstructed
using iterative algorithms ordered-subset expectation
maximization (OSEM) to a final pixel size of 5.3 × 5.3 ×
2.5 mm. A 6-mm full-width at half maximum Gaussian filter
was applied after the reconstruction.

Data Preprocessing
The spacing of 18F-FDG PET and CT images were first
resampled to 1×1×1 mm3 by third-order spline interpolation
to avoid the image distortion. Then, the regions of interest
(ROIs) with size of 64 mm × 64 mm, which centered on
primary lung tumor were manually selected for PET and CT
images by two radiologists with 3- and 4-year experience in
18F-FDG PET/CT diagnosis using medical image processing
software 3D Slicer (version 4.10.2), and subsequently
Frontiers in Oncology | www.frontiersin.org 3
confirmed by a 10-year experienced nuclear medicine
physician. To reduce the influence of the difference between
the middle level slices and the peripheral level slices on the
performance of models, only 80% of all tumor slices centered on
the largest slice were selected as ROIs. After the segmentation,
the ROIs were exported as NII format for further analysis. Before
feed into the models, the ROIs were normalized according to the
following methods: the CT ROIs were converted into Hounsfield
units with the range of −1,000 to 200, and the values were
transformed to [−1, 1); the PET ROIs were converted into
standard uptake values with the range of 0 to 40 and
transformed to [−1, 1). The ROIs were labeled as EGFR
mutant (Mut) or wild type (WT) according to the
corresponding EGFR mutation testing report. No image
augmentation was used in this study.

Model Architecture
To use the information in the limited data more effectively, we
adopted the powerful deep convolutional neural network
structure SE-ResNet module (24), which integrates residual
learning for feature reuse and squeeze-and-excitation
operations for adaptive feature recalibration, for PET and CT
images, respectively (25). SE-ResNets have achieved great success
in natural images recognition tasks. In the SE-ResNet module,
FIGURE 1 | The process of the data set establishment. Long interval: exceeding 2 weeks. Corrupted image data: the CT or PET data that cannot open.
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the shortcut connection could enhance information flow over
feature propagation and mitigate the phenomenon of vanishing/
exploding gradients and network degradation in deeper
networks (25). Also, the SE block could selectively emphasize
informative channel features and suppress less useful ones by
feature recalibration process. The SE-residual module can be
formulated as below [The following formula and explanation
refer to (24–27)]:

Xres = Fres(X)

Here X represents the input feature. Fres consisted of three
consecutive convolution-batch normalization-leaky ReLU layers.
Xres is the residual feature which is calculated from X by Fres In
the first squeezing step, the channel-wised parameter
s = [s1, s2, … , sc] ∈ RC is generated by squeezing Xres =
½xres1 , xres2 ,…, xresc �∈RH�W through plane dimensions H×W,
where

sc =
1

H �Wo
H

i=1
o
W

j=1
xresc (i, j)
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C represented the number of channels of the residual feature.
To make use of the information aggregated in the squeeze

operation, the second step, which aims to fully capture channel-
wise dependencies, is adopted. Two fully connected layers were
used to automatically identify the importance of different
channels. The output of these fully connected layers can be
defined as

~S = s (W2d (W1s))

Here d is the Leaky ReLU function with negative slope = 0.5,
s is the Sigmoid function, W1 ∈ RC

r�C , and W2 ∈ RC
r�C is the

weights of two fully connected layers. The reduction ratio r is set
to 8 to reduce the costs of computation.

The output of the last convolution layer in SE-Residual
module is defined as eXres = ½eXres

1 , eXres
2 ,…, eXres

3 �, where

eXres
c = esc · eX

res
c

Here esc ∈ eS and eXres
c refers to channel-wise multiplication

between the feature map Xres
c and the learned scale value esc. The

scale value esc represents the importance degree of cth channel.
A B

FIGURE 2 | The architecture of the SE-ResNet. (A) The structure of the SE-Residual module. The structure in the blue dashed line is Fres, the structure in the
orange dashed line is the squeezing step, the structure in the green dashed line is the excitation step. (B) The composition of the SE-ResNet. The SE-ResNet
consists of 4 basic modules. Each basic module is composed of 3 SE-Residual modules. A fully connected layer was attached to the end of the model.
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Considering the shortcut connection which could propagate
gradients further by skipping one or more layers in deep nets,
the final output of SE-Residual module is defined as

O = d(eXres + X)

where d refers to the Leaky ReLU function with negative
slope = 0.5. The basic SE-Residual module and the structure of
SEPET and SECT are illustrated in Figure 2.

Then we used stacked generalization (StackPET-CT) to
integrate SECT and SEPET to further improve the accuracy of
prediction. Stacked generalization or stacking is a model fusion
method of using a high-level model to combine lower-level
models to achieve greater predictive accuracy (28). The higher-
level model, called “meta-classifier,” could discover the best way
of how to combine the outputs of the base classifiers (29). In this
study, SECT and SEPET served as base classifiers. And the support
vector machine (SVM) with radius-basis kernel served as the
meta-classifier. We implemented the neural networks and SVM
with Pytorch 1.6.0 and scikit-learn 0.23.2 based on Python 3.7.6
(30, 31).

Model Training
For the deep learning models, the training data set was used to fit
and tune models via fivefold cross-validation, and the testing
data set was used to evaluate the predictive and generalization
ability of the models. The SECT and SEPET were initialized by
MRSA method (32). During training, the study sampled the
training data with a ratio of 1: 1 for the Mut andWT with a batch
size of 128. Adam optimizer was used to update the deep learning
models parameters (33). The initial learning rate was set to 5 ×
10−6 and decayed by a factor of 1/10 at the end of epoch = 40.
Frontiers in Oncology | www.frontiersin.org 5
Weight decay of 10−4 was also used in the optimizer of SECT to
avoid overfitting. We early stop the training after 80 epochs. The
training of deep learning models was performed with an Nvidia
RTX 2060 graphics processing unit (GPU).

For the StackPET-CT, the meta-classifier, SVM, was trained as
follows: suppose the training data set as Dprimary = f(xCTn , xPETn ,
yn), n = 1,…,Ng, where xCTn  and xPETn are tensors representing
the attribute values of the CT and PET images, and yn is the class
value. Then, Dprimary was randomly partitioned into five almost
equal size parts D1,… , D5, and define D–i = Dprimary – Di, where
i=1,…,5. Di and D–i are used as validation set and training set for
the ith fold of the 5-fold cross-validation, respectively. The SECT
and SEPET are trained using instances of the training set D–i to
output the hypothesis H(−i,CT)

primary  and H
(−i,PET)
primary . For each pairs of

instances xCTn  and xPETn in Di, the validation set of the ith cross-
validation fold, let pCTn  and pPETn denote the Mut probabilities of
t h e h y p o t h e s i s H(−i,CT)

primary  and H
(−i,PET)
primary o n xCTn  and xPETn ,

respectively. By processing the whole 5-fold cross-validation,
the secondary training set Dsec ondary = f(pCTn , pPETn ), n = 1,…,Ng
is assembled from the outputs of the two hypotheses. Then, the
SVM that we call the meta-classifier is used to derive a hypothesis
Hsecondary from the secondary training set Dsecondary. The
development of StackPET-CT was shown in Figure 3. The
probability of EGFR mutation at the patient level was
calculated as averaging the EGFR mutation probabilities of
slices that included tumor mass.

The Interpretability of Deep Learning
Models
The visualization method named Grad-CAM was used to explain
the predictive process of SECT and SEPET (34). The Grad-CAM
FIGURE 3 | The pipeline of this study. The CT and PET images were first resampled, and the ROIs centered the primary lung tumor were manually selected and
normalized. Then SECT and SEPET served as base classifiers and were trained on training data set through fivefold cross-validation to get the EGFR mutation
probabilities of training data set. Simultaneously, these models were tested on testing data set for five times. The predictive probabilities of SECT and SEPET for
training data set were combined and used for the training of SVM, which served as meta-classifier. And the five times predictive probabilities of SECT and SEPET for
testing data set was averaged respectively and combined for the testing of SVM. Finally, the performance of multi-modal stacking model and single-modal deep
learning models was compared through ROC curve analysis.
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algorithm could generate the attention map on the input image.
The attention map can reflect the discriminative area that the deep
learning models mainly focuses on in the classifying process.

Statistical Analysis
Statistical analysis was performed using Medcalc 19.0.4 and the
machine learning module scikit-learn 0.23.2 basing on Python3.7.6.
The Mann-Whitney U test was used to assess the significance of the
ages between Mut and WT groups. The independent-samples t-test
was used to assess the significance of the mean value on tumor size
between Mut and WT groups. The Chi-squared test was used to
evaluate the difference of sex, tumor location, smoking history, and
stage in all the patients. DeLong test was used to evaluate the
difference of the receiver operating characteristic (ROC) curves
between various models. A p-value <0.05 was treated as significant.
RESULTS

Clinical Characteristic of Patients
The clinical characteristics of patients enrolled in this study were
present in Table 1. In the training data set, 1.01% (2/198) patients
had exon 18 mutation, 17.17% (34/198) patients had exon 19
mutation, 3.03% (6/198) patients had exon 20 mutation, and
30.30% (60/198) patients had exon 21 mutation. In the testing
data set, 0.97% (1/103) patients had exon 18 mutation, 19.42% (20/
103) patients had exon 19 mutation, 2.91% (3/103) patients had
Frontiers in Oncology | www.frontiersin.org 6
exon 20 mutation, 26.21% (27/103) had exon 21 mutations. The
differences of sex and smoking history between Mut and WT were
significant in both training and testing data set.

The Performance of Deep Learning
Models
The predictive performance of deep learning models was
evaluated through the area under ROC curve (AUC),
sensitivity, specificity, and accuracy. The AUC ranges from 0.5
to 1.0. The performance of model is improving as the AUC
increases. Sensitivity is the numerical ratio of true EGFR mutant
ones to the predicted EGFR mutant ones according to the model.
It reflects the ability of find EGFR mutation. Specificity is the
numerical ratio of true wild type ones to the predicted wild type
ones by the model. It reflects the ability of model to identify non-
EGFR mutation. Accuracy was used to evaluate the correct
proportion of the model on all samples. The StackPET-CT had
the highest AUC and significantly outperformed SECT and SEPET
in the training data set (StackPET-CT vs. SECT: p<0.0001; StackPET-
CT vs. SEPET: p<0.0001) (Table 2). There was the same trend in
the testing data set, but the differences between StackPET-CT and
SEPET were not significant (StackPET-CT vs. SECT: p=0.0056<0.05;
StackPET-CT vs. SEPET: p=0.061) (Table 3). The StackPET-CT also
had the highest specificity, accuracy, and a relatively high and
stable sensitivity in both training and testing data set. There was
no difference between the predictive performance of SECT and
SEPET in training data set (p=0.70) and testing data set (p=0.74).
TABLE 1 | Clinical characteristics of patients.

Training data set p-value Testing data set p-value

Mut (n=102) WT (n=96) Mut (n=51) WT (n=52)

Sex 0.0091 0.0045
Male 47 (46.08) 62 (64.58) 19 (37.25) 34 (65.38)
Female 55 (53.92) 34 (35.42) 32 (62.75) 18 (34.62)

Age (median (range)) 63 (37-75) 63.5 (28-74) 0.30 60 (43-86) 60 (47-77) 0.89
Tumor Location 0.23 0.62
Left lobes 71 (69.61) 59 (61.46) 21 (41.18) 24 (46.15)
Right lobes 31 (30.39) 37 (38.54) 30 (58.82) 28 (53.85)

Smoking History 0.0049 0.044
Yes 30 (29.41) 47 (48.96) 12 (23.53) 22 (42.31)
No 72 (70.59) 49 (51.04) 39 (76.47) 30 (57.69)

Tumor size 2.76 ± 1.00 2.97 ± 1.30 0.21 2.59 ± 0.63 2.88 ± 1.05 0.10
Stage 0.47 0.48
I 58 (56.86) 45 (46.88) 33 (64.70) 27 (51.93)
II 11 (10.78) 14 (14.58) 7 (13.73) 8 (15.38)
III 9 (8.82) 13 (13.54) 4 (7.84) 4 (7.69)
IV 24 (23.54) 24 (25.00) 7 (13.73) 13 (25.00)
July 2021 | Volume 11 | Article
Categorical variables are presented as n (%).
TABLE 2 | Predictive performance of different models in the training data set.

AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%)

StackPET-CT 0.86 (0.80-0.91) 71.75 84.38 75.25
SECT 0.74 (0.67-0.80) 82.35 53.12 67.17
SEPET 0.75 (0.69-0.81) 86.25 56.25 72.22

Clinical model 0.63 (0.55-0.69) 50.98 71.88 60.10
The bold values represented the highest one of the evaluation indices.
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Comparison Between the Deep Learning
Models and Clinical Model
An SVM model with linear kernel was used to build the clinical
model. The clinical model included sex and smoking history,
which were significantly different between Mut andWT group in
training and testing data set. The StackPET-CT outperformed
clinical model in both training and testing data set (Train:
StackPET-CT vs. clinical model: p<0.0001; Test: StackPET-CT vs.
clinical model: p=0.0022<0.05). The performance of SECT and
SEPET was higher than the clinical model in both training and
testing data set. However, only the differences between SECT
and clinical model, SEPET and clinical model in training data set
were significant (Train: SECT vs. clinical model: p=0.019<0.05;
SEPET vs. clinical model: p=0.0044<0.05; Test: SECT vs. clinical
model: p=0.32; SEPET vs. clinical model: p=0.13). We also build a
stacking model (StackPET-CT-Clinical) that combines the SECT,
SEPET, and clinical model with SVM. However, the
performance of this model was not significantly improved
compared with the StackPET-CT (Training AUC: 0.85, 95% CI
0.79-0.90; Testing AUC: 0.83, 95% CI 0.75-0.90). Figure 4 shows
the ROC curve of StackPET-CT, SECT, SEPET, and clinical model in
the training and testing data set.

Suspicious Area Discovered by Deep
Learning Models
Figure 5 showed the predictive process of SECT and SEPET. Red
area is the suspicious areas that deep learning models mainly
Frontiers in Oncology | www.frontiersin.org 7
focused on in the process of predicting EGFR mutation status.
The suspicious areas were various among different tumors. In
Figure 5A, SECT considered these tumors as EGFR mutant ones
by the patterns of areas near the edge of the tumor and the
ground-glass area. While in Figure 5B, SECT explains these
tumors as wild-type ones based on the pattern of central areas.
Similarly, SEPET could determine whether the tumor was EGFR
mutant or wild-type based on the pattern of suspicious area with
high or low FDG uptake. In addition, some lung tissues in CT
images also attracted the attention of SECT, but the main focus
was still on the tumor area.
DISCUSSION

For the patients with advanced pulmonary adenocarcinoma,
platinum-based chemotherapy supplemented with local
radiotherapy remains the major treatment. Compared with
traditional treatment, molecule-targeted drugs represented by
EGFR-TKI have significantly improved the prognosis of patients
with advanced lung cancer. EGFR mutation status is critical to
the efficacy of EGFR-TKI. In this study, we developed a stacking
model based on SE-ResNet using non-invasive 18F-FDG PET/CT
images to predict EGFR mutation status for patients with lung
adenocarcinoma. After the integration of PET and CT image
information with stacked generalization, the performance has
been obviously improved than single modality model.
TABLE 3 | Predictive performance of different models in the testing data set.

AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%)

StackPET-CT 0.84 (0.75-0.90) 80.39 80.77 73.79
SECT 0.72 (0.62-0.80) 68.63 69.23 68.93
SEPET 0.74 (0.65-0.82) 76.47 69.23 67.96

Clinical model 0.64 (0.54-0.73) 86.27 40.38 59.22
July 2021 | Volume 11 |
The bold values represented the highest one of the evaluation indices.
A B

FIGURE 4 | Predictive performance of SECT, SEPET, StackPET-CT, and clinical model. (A) The performance of different models in the training data set. (B) The
performance of the models in the testing data set. StackPET-CT had the highest AUC in the training and testing data set.
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Previous studies mainly used the clinical characteristics,
conventional metabolic parameters, and radiomics features of
18F-FDG PET/CT to predict EGFR mutation status in patients
with lung cancer, such as tumor margin, CEA level, smoking
history, and SUVmax (35). However, the clinical features and
metabolic parameters could only reflect few information of the
tumors. And the differences of conventional metabolic
parameters between EGFR mutation and wild-types were
controversial, leading to the unsatisfactory predictive
performance (35–37). With the advent of radiomic method,
the utilization of information in images has been significantly
improved. Radiomic method could obtain more and quantified
information of tumors by extracting features from the images.
Zhang et al. combined the clinical and radiomic features with
machine learning algorithms to predict EGFR mutation status,
and AUC reached 0.827 (38). They also found that the radiomic
features of EGFR mutation representing tumor heterogeneity
were higher than wild-types, similar to the result of Zhang et al.
(39). Although radiomic method has significantly improved the
predictive performance, precise manual delineation of tumor
required rich clinic experience, and a lot of time, which increase
the pressure of radiologists.

With the emergency of deep learning algorithm, this problem
has been solved to a large extent. Deep learning algorithm could
predict EGFR mutations by automatically extracting and
integrating features, which only requires the users to define an
approximate location of tumors. It could provide more
Frontiers in Oncology | www.frontiersin.org 8
information, which was highly related to EGFR mutation than
radiomic method and clinical features with an end-to-end
training process (19, 21). In this study, the prediction of EGFR
mutation status was mainly based on the tumor area, similar to
the result of previous studies (19, 22). For CT images, because of
the similar density of some tumor tissue and the lung structure,
such as pulmonary blood vessels, the lung tissue surrounding the
tumor also attracted the attention of the SECT to a certain extent.
It may be the reason that the performance of SECT was inferior to
Wang et al. model, which was trained with contrast-enhanced
CT images. Nevertheless, SECT could still mainly focus on the
tumor. This phenomenon was relative rare in PET images
because of the obvious difference between the FDG uptake of
tumor lesion and surrounding lung tissue. This may also be the
reason that the performance of SEPET was better than SECT.

Previous studies have shown that integrating multi-modal
information could significantly improve predictive performance
(22, 40). Considering that the registration of PET and CT images
has certain difficulties in advanced lung cancer patients with
poor lung function, we performed stacked generalization to
integrate the information in PET and CT images. Stacked
generalization can be viewed as a means of collectively using
several classifiers to estimate their own generalizing biases, and
then filter out those biases (28). Traditional stacking is a model
with hierarchical structures that is generally built for a same data
set. Previous studies have proven that the stacking model could
perform at least as well as the best based classifier included in the
A

B

C

D

FIGURE 5 | Suspicious areas generated by SECT and SEPET. The first column is the original PET or CT image; the second column is the attention map for classifying EGFR
mutation status; the third column is the image fusing original image and the attention map. (A) CT images predicted as EGFR mutation by the SECT. (B) CT images predicted
as wild-type EGFR by the SECT. (C) PET images predicted as EGFR mutation by the SEPET. (D) PET images predicted as wild-type EGFR by the SEPET.
July 2021 | Volume 11 | Article 709137

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yin et al. EGFR Mutation Prediction With PET/CT
ensemble (41, 42). And the performance of stacking model will
be gradually improved at the increase of the diversity of the based
classifiers. In this study, we focused on another form to
implement stacked generalization that integrate two base
models trained with different data sets, which were different
aspects of the same object. After integrating the information of
PET and CT images in this method, the AUC was improved from
0.72 and 0.74 to 0.84, similar to the results of Mu et al, further
proving that multi-modal fusion could further improve the
predicting performance. This result also indicated that stacking
strategy is also suitable for the combination of models built with
different aspects of the same object.

There was still some limitation in our study. First, because of the
random sampling error, the lesions in the training data set are
mainly located in left lobes, and most of the lesions in the test data
set are located in the right lobe. Nevertheless, the error will not
significantly impact the performance of the deep learning
models, because the deep learning model uses the local primary
lung tumor images as the data, which does not contain the
location information of lesions. Second, the performance of
StackPET-CT-Clinical has not been further improved compared to
StackPET-CT. The reason is that in this strategy, a significant
improvement of the meta-classifier performance requires the
relatively good and consistent performance of the base models,
whereas the clinical model was not as good as SECT and SEPET,
resulting in no further improvement in the performance of
StackPET-CT-Clinical. Building clinical models with more and
effective clinical features may solve this problem. Third, the deep
learning models were trained with 2D axial images. Training the
model with 3D imaging data through multi-view may further
improve the predicting performance. Besides, the CT and PET
images used in this study are thick-slice, and the blood supply of
the tumor is not considered. Further study with thin-slice enhanced
CT may further improve the performance of deep learning models.
Lastly, it was a single-center study with a small sample size, which
only included Asian population with a relatively high percentage of
EGFR mutation. The limited sample size may be the reason of
insignificant difference between the performance of clinical model
and SECT, SEPET in testing data set. The deep learning models
require larger and more diverse data set to be fine-tuned and needs
to be further tested in larger cohorts. A further multi-center study
with a large sample size and multiple races may improve the
generalization of the model to a certain extent.

In conclusion, we developed a deep learning-based model
using 18F-FDG PET/CT images to predict the EGFR mutation
status in patients with lung adenocarcinoma. The stacking
strategy could effectively integrate the information which was
extracted from CT and PET images by the SE-ResNet.
Frontiers in Oncology | www.frontiersin.org 9
The stacking model showed the potential to help clinicians
making decision automatically and non-invasively by
ident i f y ing su i tab l e advanced pat i en t s wi th lung
adenocarcinoma for EGFR‐TKI therapy.
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