
ll
OPEN ACCESS
iScience

Article
Interleukin-22 Inhibits Respiratory Syncytial Virus
Production by Blocking Virus-Mediated Subversion
of Cellular Autophagy
Sudipta Das,

Claudette St.

Croix, Misty

Good, ..., Jay K.

Kolls, Anuradha

Ray, Prabir Ray

rayp@pitt.edu

HIGHLIGHTS
RSV infection of lung

epithelial cells subverts

the cellular autophagic

machinery

RSV infection inhibits

autophagic flux in infected

cells

IL-22 inhibits RSV

production from human

lung epithelial cells and in

neonatal mice

IL-22 blocks RSV-LC3B co-

localization and restores

cellular autophagic flux

Das et al., iScience 23, 101256
July 24, 2020 ª 2020 The
Authors.

https://doi.org/10.1016/

j.isci.2020.101256

mailto:rayp@pitt.edu
https://doi.org/10.1016/j.isci.2020.101256
https://doi.org/10.1016/j.isci.2020.101256
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101256&domain=pdf


ll
OPEN ACCESS
iScience
Article
Interleukin-22 Inhibits Respiratory Syncytial
Virus Production by Blocking Virus-Mediated
Subversion of Cellular Autophagy

Sudipta Das,1 Claudette St. Croix,2 Misty Good,3 Jie Chen,1 Jinming Zhao,4 Sanmei Hu,1 Mark Ross,2

Michael M. Myerburg,1 Joseph M. Pilewski,1 John Williams,5 Sally E. Wenzel,4 Jay K. Kolls,6 Anuradha Ray,1,7

and Prabir Ray1,7,8,*
1Division of Pulmonary,
Allergy, and Critical Care
Medicine, Department of
Medicine, University of
Pittsburgh School of
Medicine, 3459 Fifth Avenue,
MUH 628 NW, Pittsburgh, PA
15213, USA

2Department of Cell Biology,
University of Pittsburgh
School of Medicine,
SUMMARY

Respiratory syncytial virus (RSV) infection can cause severe bronchiolitis in infants
requiring hospitalization, whereas the elderly and immunocompromised are
prone to RSV-induced pneumonia. RSV primarily infects lung epithelial cells.
Given that no vaccine against RSV is currently available, we tested the ability
of the epithelial-barrier protective cytokine interleukin-22 (IL-22) to control
RSV production. When used in a therapeutic modality, IL-22 efficiently blunted
RSV production from infected human airway and alveolar epithelial cells and IL-
22 administration drastically reduced virus titer in the lungs of infected newborn
mice. RSV infection resulted in increased expression of LC3B, a key component of
the cellular autophagic machinery, and knockdown of LC3B ablated virus produc-
tion. RSV subverted LC3B with evidence of co-localization and caused a signifi-
cant reduction in autophagic flux, both reversed by IL-22 treatment. Our findings
inform a previously unrecognized anti-viral effect of IL-22 that can be harnessed
to prevent RSV-induced severe respiratory disease.
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INTRODUCTION

Respiratory syncytial virus (RSV) infection can cause severe bronchiolitis in infants, often requiring hospital-

ization. RSV infection is one of the major causes of morbidity and mortality in early life worldwide, and the

elderly and immunocompromised patients are at high risk for RSV-induced pneumonia (Collins and Gra-

ham, 2008; Falsey et al., 2005; Geoghegan et al., 2017; Johnson et al., 2007; Mazur et al., 2015; Meissner,

2016; Nair et al., 2010; Openshaw et al., 2017; PrabhuDas et al., 2011; Rezaee et al., 2017). RSV primarily

infects lung epithelial cells, which includes both proximal and distal airways as well as alveolar epithelial

cells (Bueno et al., 2011; Das et al., 2017; Fonceca et al., 2012; Holtzman et al., 2011; Johnson et al.,

2007; Liesman et al., 2014; Moore et al., 2008; Openshaw et al., 2017; Schwarze and Mackenzie, 2013).

The infection is often characterized by epithelial sloughing, thick mucus secretion, and neutrophil infiltra-

tion (Hall, 2001; Liesman et al., 2014; McNamara et al., 2004; Openshaw et al., 2017; Pickles and DeVin-

cenzo, 2015). Currently, no effective vaccine is available against RSV infection, and passive immunoprophy-

laxis using RSV-specific antibodies is expensive and only used in high-risk subjects (Abarca et al., 2009;

Rezaee et al., 2017; Smart et al., 2010). Therefore, alternative strategies are needed to defend against

this common pathogen.

Interleukin-22 (IL-22), a cytokine belonging to the IL-10 family, is produced by gd T cells, T helper (Th) 17

cells, NKT cells, and innate lymphoid cells (ILC2, ILC3) (Sonnenberg et al., 2011). IL-22 primarily acts on

non-hematopoietic epithelial and stromal cells and plays a critical role in protectingmucosal epithelial-bar-

rier functions and promoting tissue regeneration along with host defense against various pathogens (Aujla

et al., 2008; Brand et al., 2006; Dudakov et al., 2015; Pociask et al., 2013; Sugimoto et al., 2008; Xu et al.,

2019). Indeed, the protective role of IL-22 in bacterial and fungal infections is well documented (Aujla

et al., 2008; Sugimoto et al., 2008), although its function in the context of viral infections is not uniformly

beneficial.
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IL-22 has been shown to regulate rotavirus infection in synergy with IL-18 (Zhang et al., 2014) or interferon

(IFN)-l (Hernandez et al., 2015). IL-22 plays a protective role during murine cytomegalovirus infection by

coordinating anti-viral neutrophil infiltration into the infected tissue via induction of neutrophil-recruiting

CXCL1 (Stacey et al., 2014). Loss of IL-22-producing CD4+ T cells during chronic HIV infection has been

associated with increased damage to the gut epithelium associated with increased microbial translocation

(Kim et al., 2012). In addition to restricting viral replication, IL-22 has been reported to provide protection

against virus-induced pathology in reducing tissue damage and inflammation (Feng et al., 2012; Guabiraba

et al., 2013; Guo et al., 2014; Ivanov et al., 2013; Kumar et al., 2013; Pellegrini et al., 2011; Pociask et al.,

2013). However, in certain contexts, IL-22 has been shown to have detrimental effects during virus infection

leading to exacerbated pathology, enhanced inflammation, tissue damage, and mortality (Wang et al.,

2012; Zhang et al., 2011). Moreover, increased levels of IL-22 in serum samples indicate poor prognosis

for patients with HCV-associated hepatocellular carcinoma (Waidmann et al., 2014). Therefore the effect

of IL-22 on virus infection may depend on cellular and tissue contexts, as also the specific pathogen.

In a previous study, IL-22-deficient mice were found to exhibit exacerbated lung injury with impaired lung

function compared with wild-type mice suggesting that IL-22 plays a protective role and promotes tissue

repair in response to influenza infection (Pociask et al., 2013). Taken together, although various studies

showed that IL-22 has epithelial-protective effects in mucosal tissue, given that there is limited information

about the effect of IL-22 on RSV production in lung epithelial cells or in the lung, we tested the possibility

that use of exogenous IL-22 as a treatment modality would limit RSV production, offering a novel approach

to restrict this virus for which no vaccine is currently available. Here we show the ability of IL-22 to suppress

RSV production in primary human airway epithelial cells (AECs) and in vivo in newborn mice. Our findings

establish a previously unrecognized anti-viral effect of IL-22 that restores cellular autophagy.
RESULTS

Interleukin-22 (IL-22) Inhibits RSV Production in Human Airway Epithelial Cells and Mouse

Lungs

To study the effect of IL-22 on virus production, primary human AECs established in air-liquid interface (ALI)

cultures were infected with RSV line 19 strain (denoted here as RSV) (Lukacs et al., 2006) and treated with or

without recombinant human IL-22 (rhIL-22; denoted here as IL-22). We observed a 50%–80% reduction in

viral plaque formation 48 h after IL-22-treatment of ALI cultures established from six independent subjects

(Figure 1A). We next asked whether IL-22 impacted the life cycle of the virus early after infection. As expres-

sion of the L-polymerase gene of RSV was similar in both the IL-22-treated and IL-22-untreated groups at 24

and 48 h after RSV infection (Figure 1B), IL-22 did not appear to inhibit the ability of RSV to initiate early

events required for its replication. IL-22 functions through a heterodimeric transmembrane receptor com-

plex, which includes IL-22RA1 and IL-10RB (Kotenko et al., 2001). The expression of the IL-22RA1 chain has

been associated with IL-22 activity on the target cell (Jones et al., 2008; Wolk et al., 2010). We observed that

steady-state mRNA levels of both IL22RA1 and IL10RB were similar across the different primary AECs and

remained unaltered after RSV infection or IL-22 treatment at different time points (Figure S1A) suggesting

that the expression of the receptor subunits was similar in the established AECs. Similar to investigations of

the effect of IL-22 on virus production in primary AECs, we also studied the effect of IL-22 on other RSV-in-

fected epithelial cell lines, including A549. In line with the data derived from primary AECs, RSV viral load

decreased after IL-22 treatment of A549 (Figure 1C) cells, with the cells showing unaltered RSV L-polymer-

ase mRNA expression (Figure 1D). At the same time, expression of the IL-22 receptor subunits did not

change after RSV infection or IL-22 treatment of A549 cells as observed in the case of primary AECs

(Figure S1B).

The cytokine IL-17A can regulate IL-22 function through common downstream pathways (Sonnenberg

et al., 2010). Therefore, we examined whether IL-17A rendered a similar anti-viral response against RSV

in A549 cells. Interestingly, unlike IL-22, IL-17A was unable to suppress virus production in A549 cells. How-

ever, IL-22 and IL-17A co-treatment suppressed viral production by approximately 60%, similar to IL-22

treatment alone (Figure S1C), showing that the anti-viral response by IL-22 against RSV is unaltered by,

and independent of, the IL-17A response. We also asked whether the effect of IL-22 in suppressing RSV

production was broadly applicable to various RSV strains. We thus examined the effect of IL-22 against

infection by RSV 2-20, a more virulent and pathogenic strain than RSV Line-19 (Stokes et al., 2013), and

found that IL-22 treatment also significantly suppressed RSV 2-20 virus production in both primary AECs
2 iScience 23, 101256, July 24, 2020



Figure 1. IL-22 Inhibits RSV Production in Human Airway Epithelial Cells and Mouse Lungs

(A) Representative viral plaques (left) generated from RSV-infected primary AECs from six independent subjects. At 2 h

after infection with RSV (MOI of 1), the cells were treated with rh IL-22 (50 ng/mL) or left untreated and virus was detected

by plaque assay using NY3.2 STAT1�/� fibroblast cells. Percent viral titer (right) shown for the six independent primary

AEC samples. The red line represents average viral titer in response to IL-22. Viral load with RSV alone considered as

100%. **p < 0.01.

(B) RSV-L polymerase expression in primary AECs of the human subjects measured by quantitative RT-PCR at 24 and 48 h

after RSV infection G IL-22 treatment. Data shown are mean G SEM of six independent subjects. ns, non-significant.

(C) Representative viral plaques (left) generated from A549 cells infected with RSVG IL-22 at 24 h p.i., detected by plaque

assay using NY3.2 STAT1�/� fibroblast cells. Infection and IL-22 treatment was as described for primary AECs.

Quantitation shown in percentages (right), where viral titer for RSV alone is considered as 100% for each individual

experiment at each time point. Data shown are mean G SEM of 3 independent experiments. ***p < 0.001.

(D) RSV-L polymerase expression in A549 cells measured by quantitative RT-PCR at 24 and 48 h after RSV infectionG IL-22

treatment. Data shown are mean G SEM of 3 independent experiments. ns, non-significant.

(E) RSV-L polymerase expression in total lungs of neonatal mice measured by quantitative RT-PCR on days 1, 4, and 8 after

RSV infection. Representative data shown are mean G SEM of 3 independent experiments, n = 3–4 mice per group per

experiment. *p < 0.05, **p < 0.01, ns, non-significant.

(F) Representative viral plaques (left) and quantitated viral load (right) in total lungs of 5-day-old neonatal mice. Infected

pups were treated i.p. with 5 mg IL-22Fc fusion protein on day 3 p.i. The lungs were harvested on days 6 and 8 p.i. to assay
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Figure 1. Continued

viral load by plaque assay using Vero cells. Representative data shown are mean G SEM of 3 independent

experiments, n = 4–5 mice per group per experiment. ****p < 0.0001, ns, non-significant.

(G) Quantitative viral load in the lungs of 5-day-old neonatal mice (wild-type and IL-22�/�). Infected pups were treated i.p.

with 5 mg IL-22Fc fusion protein on day 3 p.i. The lungs were harvested on day 6 p.i. to assay viral load by plaque assay

using Vero cells. Data shown are mean G SEM pooled from 3 independent experiments, n = 3–5 mice per group per

experiment. ****p < 0.0001, ns, non-significant.

For statistical analysis, groups were compared using Mann-Whitney test (A) and one-way ANOVA with Tukey post-hoc

test (B–G). See Figures S1 and S2.
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and A549 cells (Figures S1D and S1E), providing further evidence to support that IL-22 inhibits RSV produc-

tion independent of viral strain and virulence.

Having found this effect of IL-22 on RSV infection of AECs occurs in in vitro settings, we next examined

whether IL-22 treatment could decrease RSV production in vivo by treating neonatal RSV-infected mice

intraperitoneally (i.p.) with human IL-22Fc fusion protein. The half-life of IL-22Fc in mice is about 107 h (Fig-

ure S2A). Also, as expected, whereas treatment with human IL-22Fc did not augment endogenous mouse

Il22 expression, it promoted expression of its target gene, Reg3g (Zheng et al., 2008), in the small intestine

of the mice demonstrating an expected functional outcome of IL-22Fc treatment (Figures S2B and S2C).

IgG used as a control did not induce this effect (Figure S2B). As shown in Figure 1E, the time course of

RSV L-polymerase gene expression in mouse lungs showed continued increase until day 4 post-infection

(p.i.) with decrease thereafter until day 8, most likely due to gradual viral clearance. Also, our immunostain-

ing data suggested that the peak of the viral titer is reached within 4–6 days after infection (not shown).

Taking these observations into consideration, i.p. IL-22Fc treatment was initiated on day 3 p.i. and the viral

load was assayed twice on days 6 and 8 after infection. As control IgG did not display effects similar to IL-22

(Figure S2B), we used PBS as a control in these experiments. As shown in Figure 1F, IL-22Fc treatment

significantly decreased RSV titer in the lungs of the newborn mice on day 6 p.i. and it also did not render

a delayed peak of viral load due to the treatment as suggested from the viral titer on day 8 p.i. We also

examined the impact of IL-22Fc on viral infection in the absence of endogenous IL-22 using IL-22�/�

mice. The results showed similar viral load in RSV-infected wild-type and IL-22�/� mice and also similar

response to IL-22Fc treatment in the two groups (Figure 1G). These data suggest that endogenous IL-22

does not play a role in limiting virus production but that IL-22 can be used as a treatmentmodality to reduce

viral load. Taken together, these findings strongly suggest a potential anti-viral role of IL-22 in the context

of RSV infection both in vitro and in vivo.
IL-22 Prevents RSV Production through STAT3 Activation

Downstream of IL-22 signaling, IL-22 primarily activates STAT3 (Baturcam et al., 2019; Edsbacker et al.,

2019; Gimeno Brias et al., 2016; Mahony et al., 2017; Wolk et al., 2010) with STAT1 involvement in certain

instances (Lejeune et al., 2002). To determine which of these pathways is involved in the inhibition of virus

production by IL-22, we examined STAT1 and STAT3 activation status in the IL-22-treated A549 cells and

observed that IL-22 triggered phosphorylation of both STAT1 and STAT3 to similar degrees (Figures 2A

and 2B). To next determine which STAT pathway was necessary for the inhibitory effect of IL-22 on RSV pro-

duction, we treated RSV-infected cells with the STAT1- and STAT3-specific inhibitors fludarabine and su-

nitinib, respectively (Figures 2C and 2D), in the presence or absence of IL-22. Blockade of STAT1 with flu-

darabine had no effect on the anti-viral effect of IL-22, whereas blocking STAT3 activation with sunitinib

reversed the inhibitory effects of IL-22 (Figure 2E). Also, both inhibitors were ineffective in the absence

of IL-22 (Figure 2E). These results collectively suggested that IL-22 suppresses RSV production through a

downstream mechanism mediated by STAT3 activation.
IL-22 Regulates RSV Productionwithout Altering Expression of Type I and Type III Interferons

Type I IFNs play a crucial role in host defense against viruses and upregulate several IFN-stimulated genes

(ISGs) that play important roles in eliminating the virus from infected cells (Baturcam et al., 2019; Edsbacker

et al., 2019; Mahony et al., 2017). In addition, type III IFNs (IFN-l) have been also implicated in anti-viral host

defense (Kotenko, 2011). Activation of both STAT1 and STAT3 has been demonstrated in target cells in

response to type I and III IFNs (Chung et al., 1997; Kotenko, 2011; van Boxel-Dezaire et al., 2006; Yang

et al., 1996). We, therefore, examined whether the anti-viral effects of IL-22 are mediated by increased

expression of ISGs in the AECs. Surprisingly, we observed that IL-22 did not alter the gene expression of
4 iScience 23, 101256, July 24, 2020



Figure 2. IL-22 Inhibits RSV Production through STAT3 Activation, Independent of Downstream Interferon

Signaling

(A and B) Representative immunoblot (left) and quantitation (right) of (A) phospho-STAT1 (pSTAT1) and total-STAT1

(tSTAT1) and (B) phospho-STAT3 (pSTAT3) and total-STAT3 (tSTAT3) in A549 cells after RSV infection and 15 min post IL-

22 treatment to detect STAT activation. Data shown are mean G SEM of 3 independent experiments. ***p < 0.001, ns,

non-significant.

(C and D) Representative immunoblot (left) and quantitation (right) of (C) pSTAT1 and tSTAT1 and (D) pSTAT3 and tSTAT3

in A549 cells infected with RSVG IL-22 and treated with or without fludarabine or sunitinib at 15 min post IL-22 treatment.

Data shown are mean G SEM of 3 independent experiments. ****p < 0.0001, ns, non-significant.

(E) Representative viral plaques (left) generated from A549 cells infected with RSVG IL-22 and treated with/without STAT

inhibitors, fludarabine, or sunitinib at 24 h p.i. As described in legend to Figure 1, IL-22 was added 2 h after infection of

cells. Quantitation shown in percentages (right), where viral titer for RSV alone considered as 100% for each individual

experiment. Data shown are mean G SEM of 3 independent experiments. *p < 0.05, ***p < 0.001, ns, non-significant.

For statistical analysis, groups were compared using one-way ANOVA with Tukey post-hoc test (A–E).
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Figure 3. IL-22 Treatment Does Not Alter Expression of Type I and Type III Interferons in RSV-Infected Epithelial

Cells

(A) mRNA expression of IFNa2 (left) and IFNb1 (right) in primary AECs of the human subjects measured by quantitative RT-

PCR at 24 h after RSV infection G IL-22 treatment. Data shown are mean G SEM of 6 independent subjects. ns, non-

significant.

(B) Protein expression corresponding to IFN-b (left) and IFN-l (right) in A549 cells infected with RSV G IL-22, detected by

ELISA at 24 h p.i. Data shown are mean G SEM from 2 independent experiments. ns, non-significant.

(C and D) mRNA expressions of ISGs (IFIT1, ISG15, and OASL) in (C) primary AECs and (D) A549 cells measured by

quantitative RT-PCR at the given time points p.i. Data shown are mean G SEM of (C) 4 independent subjects and (D) 3

independent experiments. ns, non-significant.

For statistical analysis, groups were compared using one-way ANOVA with Tukey post-hoc test (A–D). See Figure S3.
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type I IFNs (IFN-a2 and IFN-b1) in six different primary AECs after 24 h of RSV infection (Figure 3A). We also

observed that the release of both IFN-b and IFN-l from RSV-infected A549 cells remained unaltered after

IL-22 treatment (Figure 3B). We did not detect any IFNs in the culture medium collected from the basolat-

eral surface of primary AECs. In addition, IL-22 did not cause any change in the expression of different ISGs

(IFIT1, ISG15, and OASL) in the RSV-infected primary AECs as well as in A549 cells at 24 h after infection

(Figures 3C and 3D). Taken together, these data showed that IL-22 inhibits RSV production in epithelial cells

that is dependent on STAT3 activation, but it does not result in increased type I or type III IFN production.

RSV Infection Upregulates LC3B Expression and Then Hijacks the Autophagic Machinery by

Co-localizing with LC3B Facilitating Virus Production

We next considered an alternate STAT3-mediated pathway downstream of IL-22 that could play a role in

suppressing viral infection, which was cellular autophagy, a strategy that cells use in times of stress to

recycle otherwise unusable cellular parts and that has been also shown to promote antiviral immunity.

Indeed, viruses are known to subvert or hijack components of the autophagic machinery for their own sur-

vival benefit (Beale et al., 2014; Corona et al., 2018; Jackson, 2015; Munz, 2014; Robinson et al., 2018). To

determine whether RSV infection could impact cellular autophagy, we studied the expression of a key pro-

tein associated with the autophagic machinery in RSV-infected cells. During autophagy, a cytosolic form of

the microtubule-associated protein 1A/1B-light chain 3B (LC3B-I) is conjugated to phosphatidylethanol-

amine to form a lipidated LC3-phosphatidylethanolamine conjugate (LC3B-II), which then associates
6 iScience 23, 101256, July 24, 2020



Figure 4. IL-22 Blocks Co-localization of RSV and LC3B

(A and B) Representative immunoblot (left) and quantitation (right) for LC3B expression in dsiLC3B-transfected (A) primary

AECs and (B) A549 cells after RSV infection. Data shown are mean G SEM of 2 independent experiments.

(C and D) Representative viral plaques (left) and quantitated viral titer (right) in dsiLC3B-transfected (C) primary AECs and

(D) A549 cells after RSV infection and treated with/without IL-22. Percent viral titer for RSV-infected dsiNC1 control

considered as 100% for each individual experiment. Data shown are mean G SEM of 2 independent experiments.

(E and F) Representative immunoblot (left) and quantitation (right) for LC3B expression in (E) primary AECs and (F) A549

cells after RSV G IL-22 treatment. Data shown are mean G SEM of 3 independent experiments. ns, non-significant.

(G) Representative images of immunofluorescence staining of RSV (red), LC3B (green), and nuclei (blue) in A549 cells after

RSV G IL-22 treatment along with uninfected cells. The yellow spots (rightmost panel) show the LC3B puncta that are co-

positive for RSV. Images were taken at 603 magnification, 1.4 numerical aperture. Scale bar, 10 mm.

(H) Co-localization was assessed by determining the degree of overlap on a per pixel basis. RSV and LC3 emissions were

first segmented based on intensity to generate a binary mask. Co-localization was determined using a binary ‘‘having’’
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Figure 4. Continued

statement to identify LC3-positive puncta containing RSV. It was found that 72.1% of the total LC3 area was co-

localized with RSV in the RSV-infected cells, whereas only 10.2% was co-localized with RSV in the RSV + IL-22-treated

group.

(I) Number of LC3B puncta normalized to the cell count in RSV and RSV G IL-22-treated groups.

Representative data shown are mean G SEM of 3 independent experiments. *p < 0.05, ns, non-significant.

For statistical analysis, groups were compared using one-way ANOVA with Tukey post-hoc test (A–F) and Mann-Whitney

test (G–I).
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with autophagosomal membranes and is considered a universal marker for the onset of autophagy (Mizush-

ima et al., 2010). Upon RSV infection of both primary AECs and A549 cells, we observed a significant in-

crease in LC3B-II expression (Figures S3A and S3B) showing that RSV infection could indeed have an effect

on the cellular autophagic machinery.

To determine whether and how LC3B expression might be functionally influencing RSV infection of the

epithelial cells, we knocked down LC3B expression by transfecting both primary AECs and A549 cells

with dicer-substrate short interfering RNA (dsiRNA) against LC3B (dsiLC3B) or with a non-target negative

control (NC) small interfering RNA (dsiNC1) (see Transparent Methods). We effectively knocked down

LC3B, as we observed an impressive increase in cellular LC3B-II levels at 48 h after RSV infection in control

dsiNC1-transfected primary AECs or A549 cells, but not in cells transfected with dsiLC3B (Figures 4A and

4B). Importantly, this loss of LC3B also severely hampered RSV production (Figures 4C and 4D), suggesting

that RSV requires the autophagic machinery for productive infection. This decreased viral load from the

LC3B knocked down cells was also similar to IL-22-treated cells at 48 h after infection (Figures 4C and

4D), further correlating suppression of RSV infection by IL-22 with the autophagic pathway.

We next explored how RSV regulated the autophagic process through LC3B, and whether IL-22 might in-

fluence this process. We did not observe a significant difference in LC3B-II expression after IL-22 treatment

in infected primary AECs and A549 cells (Figures 4E and 4F). Given that viruses have been shown to subvert

LC3B for their propagation in infected cells (Corona et al., 2018; Jackson, 2015; Munz, 2014; Robinson et al.,

2018), we next explored the possibility that RSV might associate with LC3B, which was compromised by IL-

22. Confocal microscopy revealed that RSV particles indeed co-localized with LC3B in infected A549 cells

and IL-22 treatment interfered with this process (Figure 4G); IL-22 was found to reduce RSV-LC3B co-local-

ization by almost 7-fold (Figures 4G and 4H). It was found that 72.1% of the total LC3 area was co-localized

with RSV in the RSV-infected cells, whereas only 10.2% was co-localized with RSV in the RSV + IL22-treated

group (Figure 4H). Moreover, this imaging approach also showed a marked reduction in RSV signal in the

presence of IL-22 in the infected cells, whereas the LC3B signal was largely maintained (Figure 4I), as also

observed by immunoblotting (Figures 4E and 4F). Taken together, the data showed that IL-22 treatment

does not suppress RSV-mediated increase in LC3B expression. Rather, IL-22 has the ability to disrupt

LC3B-virus association.

RSV Inhibits Autophagy by Blocking Autophagosome-Lysosome Fusion, whereas IL-22

Promotes Cellular Autophagy in a STAT3-Dependent Manner

To determine whether active autophagy was required for productive infection, we pre-treated A549 cells

with an autophagic inhibitor, chloroquine (CQ), which raises lysosomal pH and inhibits autophagosome-

lysosome fusion (Mauthe et al., 2018), and then infected the cells with RSV. Comparing RSV-infected cells

with RSV + CQ cells, we observed that blocking the process of autophagy with CQ did not impair viral pro-

duction in any way (Figure 5A), suggesting that LC3B-II rather than the process of autophagy was important

for virus production. We did, however, observe that CQ ablated IL-22-mediated suppression of RSV pro-

duction (Figure 5A), showing that the ability of IL-22 to inhibit RSV production relies on maintenance of

active cellular autophagy.

We further studied the impact of RSV on cellular autophagy and the effect of IL-22 on this process by moni-

toring the intracellular residence of LC3B. At the early stages of cellular autophagy, LC3B-II is recruited to

autophagosomal membranes, triggering the onset of autophagy. Later, LC3B-II resides in autolysosomes

formed by the fusion of autophagosomes and lysosomes, causing degradation of intra-autophagosomal

components (Mizushima et al., 2010). To determine whether RSV inhibited this process, we transduced

A549 cells with a pH-sensitive tandem RFP-GFP-LC3B plasmid vector that monitors the formation of auto-

lysosomes from autophagosomes. The acidic pH of autolysosomes causes selective degradation of the
8 iScience 23, 101256, July 24, 2020



Figure 5. IL-22 Promotes Cellular Autophagy in a STAT3-Dependent Manner

(A) Representative viral plaques (left) and quantitated percent viral titer (right) in RSV-infected A549 cells with/without IL-

22 and/or chloroquine treatment. Percent viral titer for RSV alone considered as 100% for each individual experiment.

Data shown are mean G SEM of 3 independent experiments. ****p < 0.0001, ns, non-significant.

(B) Representative images (left) of A549 cells transduced with tandem sensor RFP-GFP-LC3B baculoviral particles showing

immunofluorescent autophagosomes (yellow puncta) and autolysosomes (red puncta) in the indicated treatment groups.

Images taken at 603 magnification. Scale bar, 10 mm. Quantitation (right) performed using spot detection to identify

puncta. Data shown are mean G SEM of 2 independent experiments. *p < 0.05, ns, non-significant.

(C) Representative immunoblot (left) and quantitation (right) of p62 expression in A549 cells after RSV G IL-22 treatment.

Data shown are mean G SEM of 3 independent experiments. *p < 0.05, ***p < 0.001, ns, non-significant.

(D) Representative immunoblot (top) and quantitation (bottom) of p62 expression in A549 cells infected with RSV G IL-22

and treated with or without fludarabine or sunitinib. Data shown are mean G SEM of 3 independent experiments. *p <

0.05, **p < 0.01, ****p < 0.0001, ns, non-significant.

For statistical analysis, groups were compared using one-way ANOVA with Tukey post-hoc test (A–D).
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acid-sensitive GFP, but not RFP, and thus autophagosomes can be identified by yellow puncta (combined

GFP + RFP signal), whereas autolysosomes can be identified by red puncta (RFP signal only). We trans-

duced A549 cells with RFP-GFP-LC3B for 24 h, infected them with RSV, and followed with IL-22 treatment.

To monitor baseline autophagic activity, a fraction of the transduced cells was not exposed to either RSV or

IL-22. Compared with the uninfected condition, we observed that both RSV- and RSV + IL-22-treated cells

had increased syncytia (multinucleated cells), a signature morphology for RSV infection, as visualized by

nuclear staining (Figure 5B). Quantitation based on spot identification of yellow and red puncta revealed

a significant decrease in autolysosome formation in RSV-infected cells compared with that in uninfected

cells. Importantly, IL-22 treatment after RSV infection restored the basal level of autolysosomes and hence

cellular autophagy in the infected cells (Figure 5B), showing that IL-22 can prevent RSV-mediated block in

the formation of autolysosomes, which is essential to maintain cellular autophagy.

Taken together, the data showed that RSV infection initially triggers autophagosome formation but then

subsequently blocks autophagosome fusion with lysosomes to prevent the formation of autolysosomes,

which can be detrimental for viral survival. IL-22 can release viral control of autophagosomes and restore

cellular autophagy. Although the imaging studies showed an increase in autolysosome formation in the

presence of IL-22 in RSV-infected cells, it did not prove restoration of functional autophagy. We, therefore,

assessed autophagic flux, which is a better index of autophagic activity (Klionsky et al., 2016). The expres-

sion level of p62 (also called sequestosome 1 [SQSTM1]), a substrate degraded during active autophagy, is

an accepted measure of autophagic flux in a cell (Bjorkoy et al., 2009). p62 levels were examined by immu-

noblotting in the context of RSV infection in the presence or absence of IL-22. We observed that the level of

p62 was significantly lower in RSV-infected A549 cells treated with IL-22 when compared with that in in-

fected cells that were left untreated (Figure 5C). Thus, IL-22 did indeed restore autophagic flux in RSV-in-

fected cells with concomitant reduction in RSV production, as shown in Figures 1A and 1C. Moreover, this

IL-22-mediated promotion of autophagic flux (reduction in p62 levels) was blocked by sunitinib treatment

(Figure 5D), which was consistent with the requirement for STAT3 activation in inhibition of RSV production,

as depicted in Figure 2E.
DISCUSSION

The protective role of IL-22 in maintaining epithelial barrier integrity in the lung and the gut and in the in-

duction of epithelial innate immunity in response to different pathogens is well established (Aujla et al.,

2008; Aujla and Kolls, 2009; Sonnenberg et al., 2011). By demonstrating the ability of IL-22 to support

cellular autophagy, our study provides a new insight into host defense functions of IL-22. We offer the

following working model (Figure 6): RSV infection of lung epithelial cells first initiates the formation of au-

tophagosomes in the epithelial cells but then blocks continuation/completion of the autophagic pathway

by inhibiting autophagosome fusion with lysosomes through association with LC3B-II thereby preventing

the formation of autolysosomes. This block at the autophagosome stage presumably provides a ‘‘safe

space’’ in which to allow the virus to replicate and prevents the viral destruction that would normally occur

in the acidic environment of the autolysosomes. IL-22 treatment, however, can prevent this blockade with

restoration of autophagic flux, the net result being lower virus production.

Autophagy is important in multiple biological processes and plays a central role in cell survival during

nutrient deprivation and infections (Boya et al., 2013; Deretic and Levine, 2009; Moreau et al., 2010). The

process of autophagy involves sequestration of cytosolic cargo, including damaged organelles, in auto-

phagosomes that fuse with lysosomes to form autolysosomes in which the engulfed constituents undergo

degradation and are released back for reuse by the cell. Recent studies show that this process provides

antiviral immunity by causing degradation of viral proteins in infected cells (Jackson, 2015; Lennemann

and Coyne, 2015). Antiviral effects of IL-22 have been previously appreciated, whereas the ability of IL-

22 to reduce virus production from infected cells by promoting cellular autophagy has not been described

heretofore. IL-22 was recently shown to be well tolerated in a Phase I clinical trial positioning the agent well

for further trials to test efficacy in the control of inflammatory diseases (Tang et al., 2019). Our findings sug-

gest IL-22 as a therapeutic option in limiting RSV-induced illness in vulnerable populations because no

effective vaccine against RSV is currently available.

Viruses are known to utilize autophagosomes as a replication niche (Jackson, 2015). Several viruses,

especially picornaviruses, have been shown to hijack the cellular autophagic machinery for stabilization

of its proteins and/or for viral replication (Beale et al., 2014; Corona et al., 2018; Jackson, 2015; Munz,
10 iScience 23, 101256, July 24, 2020



Figure 6. Schematic of Working Model
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2014; Robinson et al., 2018). Recently, another report associated RSV with autophagy in HEp-2 epithelial

cells in which RSV replication was promoted by autophagy-mediated inhibition of apoptosis through an

ROS-AMPK signaling axis (Li et al., 2018). We speculate that RSV inhibits macroautophagy rather than mi-

croautophagy or chaperone-mediated autophagy pathway (Parzych and Klionsky, 2014). One question that

remains to be answered in further studies is precisely how RSV subverts LC3B to block autophagosome-

lysosome fusion.

Our data suggest that the LC3B protein is co-opted for virus production, and during this process cellular

autophagy is reduced in the infected cells as evident from increased levels of p62 in the cells. Also, blocking

autophagy by CQ did not affect virus production showing that the process of autophagy per se is not

required for virus production. Rather, promotion of autophagy by IL-22 is actually detrimental for virus pro-

duction. However, it is important to note that we did not find any evidence of increased type I IFN or type III

IFN production or increase in expression of ISGs in the infected cells in the presence of IL-22. In RSV-in-

fected macrophages, autophagy-mediated increase in transforming growth factor-b production was

shown to promote type I IFN production to limit virus production (Pokharel et al., 2016). In a different study,

infection of LC3b–/– mice by RSV caused worse pathology and increased viral transcripts in the lungs (Reed

et al., 2015). As the viral titer in the lungs was not reported, it is unknown whether the increased inflamma-

tion and pathology were due to increased viral load, as suggested by our study. It is also possible that lack

of LC3B did not cause productive infection but that accumulation of viral proteins in the absence of auto-

phagy induced a pro-inflammatory response in the infected lungs. Taken in aggregate, functional auto-

phagy supported by IL-22 confers host-protection.

Our observations bring to the fore another beneficial effect of IL-22 on host cells in addition to mainte-

nance of barrier function and induction of defensins (Aujla et al., 2008; Aujla and Kolls, 2009; Sonnenberg

et al., 2011). It is interesting that promotion of autophagy was dependent on STAT3, although IL-22 treat-

ment activated both STAT1 and STAT3 in the AECs. This differs from the anti-viral role of IL-22 against

rotavirus infection in the gut that is dependent on STAT1 activation and IFN-l, a Type III IFN (Hernandez

et al., 2015). The mechanism by which IL-22-activated STAT3 promotes autophagy, whether involving nu-

clear or mitochondrial functions, remains to be determined in future studies. Taken together, these find-

ings emphasize that the mechanisms underlying the protective effects of IL-22 are context and pathogen

specific. As published by us previously, RSV infection in early life causes dysfunction of regulatory T cells

and increases the risk for asthma in later life (Krishnamoorthy et al., 2012). Limiting virus load with IL-22

may achieve the dual benefit of both stemming severity of illness in early life and reducing the risk for

asthma in later life.
iScience 23, 101256, July 24, 2020 11
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Limitations of the Study

Our study demonstrates an anti-viral role of IL-22 that limits viral yield from infected airway and alveolar

epithelial cells in culture and also in the lungs of newborn mice. Although we show that the anti-viral effect

of IL-22 involves blockade of hijacking of the cellular autophagic machinery by RSV, the underlying mech-

anism remains to be elucidated. Also, the precise role of STAT3 in mediating the anti-viral effect of IL-22

needs further study.
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SUPPLEMENTAL DATA ITEMS 

 

 

Figure S1. Similar levels of expression of IL-22 receptor subunits in AECs, inability of IL-17 to 
block RSV production, and IL-22-mediated inhibition of production of RSV strain 2-20. Related to 
Figure 1. 

(A-B) mRNA expression of IL-22 receptors IL22RA1 and IL10RB in (A) primary AECs (24 and 48 hours 
p.i.) and (B) A549 cells (24 hours p.i.) measured by quantitative RT-PCR after RSV infection ± IL-22 
treatment. Data shown are mean ± SEM of 4 independent subjects (for primary AECs) and 3 independent 
experiments (for A549 cells). ns - non-significant. 
(C) Representative viral plaques (left) and quantitated percent viral titer (right) in RSV-infected A549 cells 
with/without IL-22 and/or IL-17 treatment. Data shown are mean ± SEM of 3 independent experiments. 
**P < 0.01, ***P < 0.001, ****P < 0.0001. 
(D-E) Representative viral plaques (left) and quantitated viral titer (right) in RSV 2-20–infected (D) primary 
AECs and (E) A549 cells with/without IL-22 treatment. Percent viral titer for RSV 2-20 alone considered 
as 100% for each individual experiment. Data shown are mean ± SEM of 2 independent experiments. 
***P < 0.001, ****P < 0.0001, ns - non-significant. 
For statistical analysis, groups were compared using one-way ANOVA with Tukey post hoc test (A-E). 



 
 
 

Figure S2. Properties and effects of human IL-22Fc in mice. Related to Figure 1. 

(A) Half-life of human IL-22Fc was calculated to be approximately 107 hours. Data shown are mean ± 
SEM of 2 independent experiments. 
(B-C) C57BL/6 (Jax) neonatal animals were injected with an equivalent amount of human IgG or IL-22Fc 
(1g/gram body weight, Generon) intraperitoneally twice weekly from postnatal day 10-28. Small intestine 
mRNA for (B) Il22 and (C) Reg3g was evaluated relative to the housekeeping gene Rplo. Representative 
data shown are mean ± SEM of 2 independent experiments and each mouse represents an individual 
symbol on the graph. 
For statistical analysis, groups were compared using Mann Whitney test (A-B). 
 
 
 
 
 
 



 
 
 

Figure S3. RSV-induced increase in LC3B expression in infected epithelial cells. Related to Figure 
4. 

(A-B) Representative immunoblot (left) and quantitation (right) of LC3B expression in (A) primary AECs 
and (B) A549 cells after RSV infection. Data shown are mean ± SEM of 3 independent experiments. *P < 
0.05, **P < 0.01, ns - non-significant.  
For statistical analysis, groups were compared using one-way ANOVA with Tukey post hoc test (A-B). 

 

  



TRANSPARENT METHODS 

EXPERIMENTAL MODEL AND RESEARCH DETAILS 

Mice 

C57BL/6J mice (Cat# 000664) were purchased from The Jackson Laboratory. IL-22-/- mice on C57BL/6 
background (Zheng et al., 2007) were available from MMRRC. Mice were housed and bred under 
pathogen-free conditions in the Department of Laboratory Animal Resources at the University of 
Pittsburgh to generate neonatal mice. 5 day old neonatal mice were used for experiments irrespective of 
their gender. No gender bias in immune response was observed in our experiments. All protocols 
involving animal experiments were approved by the Institutional Animal Care and Use Committee 
(IACUC) at the University of Pittsburgh. 

Virus 

Two different strains of virus, RSV Line 19 and RSV 2-20 were used for experiments. The viruses were 
kind gifts of Drs. Stokes Peebles and Martin L. Moore respectively. HEp-2 cells were used to amplify the 
viruses, as described previously (Moore et al., 2007). Virus titration after amplification was done by 
plaque assay using NY3.2 STAT1-/- fibroblast cells in 24-well tissue culture plates precoated with poly-L-
lysine (Cat# P4707, Millipore Sigma). 

Cell culture 

Primary human airway epithelial cells (AEC) were harvested from lung airways of donor human subjects. 
Cells were then cultured and maintained in collagen (Cat# C7521, Millipore Sigma) coated flasks with 
Bronchialife basal medium containing supplements (1 µM epinephrine, 5 µg/mL transferrin, 10 nM T3, 0.1 
μg/mL hydrocortisone, 5 ng/mL rh EGF, 5 μg/mL rh insulin) (Cat# LL-0023, Lifeline Cell Technology) and 
5 µM ROCK inhibitor (Cat# ALX-270-333, Enzo Life Sciences) at 37°C and 5% CO2. After attaining 80% 
confluency, cells were passaged, plated on collagen coated transwells and differentiated in air-liquid 
interface (ALI) using HBTEC ALI differentiation medium (Cat# LM-0050, Lifeline Cell Technology). A549 
cells (ATCC CCL-185) were cultured and maintained in DMEM/F-12 medium (Cat# 10565-018, Gibco) 
containing 10% FBS (Cat# 100-106, Gemini Bio-Products) and 100 U penicillin with 100 μg/ml 
streptomycin (Cat# 15140-122, Gibco) at 37°C and 5% CO2. HEp-2 (ATCC CCL-23) and Vero (ATCC 
CCL-81) cells were cultured and maintained in EMEM medium (Cat# ATCC 30-2003) containing 10% 
FBS and 100 U penicillin with 100 μg/ml streptomycin at 37°C and 5% CO2. NY3.2 STAT1-/-fibroblast 
cells (a kind gift of Dr. J.E. Durbin) were cultured and maintained in DMEM medium (Cat# ATCC 30-2002) 
containing 5% FBS and 100 U penicillin with 100 μg/ml streptomycin at 37°C and 5% CO2. 

Reagents 

Recombinant human Interleukin-22 (rh IL-22) (Cat# 8931), Interleukin-17A (rh IL-17A) (Cat# 8928) and 
cell lysis buffer (Cat# 9803) were purchased from Cell Signaling Technology. Chloroquine (Cat# H0915), 
fludarabine (Cat# F9813), sunitinib (Cat# PZ0012), poly-L-lysine (Cat#P4707), methylcellulose (Cat# 
56340), and sodium orthovanadate (Cat# 6508) were obtained from Sigma. Halt protease inhibitors (Cat# 
87785) were purchased from Thermo Scientific. Lipofectamine 2000 transfection reagent (Cat# 
11668019) was ordered from Invitrogen. For plaque assay and Immunofluorescent staining, primary 
antibodies against RSV were purchased from EMD Millipore (Cat# AB112) and Meridian Life Science 
(Cat# B65860G), respectively. For western blotting, primary antibodies against LC3B (Cat# 2775), p62 
(Cat# 39749), phospho-STAT1 (Y701) (Cat# 9167), total STAT1 (Cat# 14994), phospho-STAT3 (Y705) 
(Cat# 9131), total STAT3 (Cat# 4904),and GAPDH (Cat# 5174) were purchased from Cell Signaling. For 
immunofluorescent staining, primary antibody against LC3B (Cat# NB100-2220) was obtained from 
Novus Biologicals. Donkey serum (Cat# 017-000-121), HRP-conjugated donkey anti-goat IgG (Cat# 705-
035-147), HRP-conjugated donkey anti-rabbit IgG (Cat# 711-035-152), HRP-conjugated goat anti-rabbit 
IgG (Cat# 111-035-144), Cy3-conjugated donkey anti-goat IgG (Cat#705-166-147), Cy5-conjugated 
donkey anti-rabbit IgG (Cat# 711-605-152) secondary antibodies for plaque assay, western blotting, and 
immunofluorescent staining were all purchased from Jackson Immunoresearch, while donkey anti-goat 
IgG AP secondary antibody (Cat# AP180A) and Hoechst (Cat# B2883) for nuclear staining were from 



Millipore Sigma. F-actin counterstains Alexa Fluor 488 Phalloidin (Cat# 424201) and Alexa Fluor 647 
Phalloidin (Cat# A22287) were from Biolegend. 

METHOD DETAILS 

RSV infection and treatment of mice 

Neonatal mice (5 day old) were infected with 1 × 106 plaque-forming units (pfu) of RSV line 19 in 10 µl 
complete medium by the intranasal (i.n.) route. The infected pups were treated with 5 µg of human IL-
22Fc fusion protein in 50 µl of saline by the intraperitoneal (i.p.) route on day 3 post infection (p.i). The 
lungs were harvested on days 1, 4, 6 and/or 8 p.i. to assay viral load or mRNA analysis depending on the 
experimental end point. Small intestines were harvested after IL-22Fc or hIgG (1µg/gram body weight) 
twice weekly treatment i.p. from postnatal day 10-28 to assay gene expression by RT-qPCR. The half-life 
of human IL-22Fc was examined in blood samples of mice following standard protocol (http://www-
users.med.cornell.edu/~spon/picu/calc/halfcalc.htm). Using 1 hour level as peak and the measured level 
at 48 hours, the half-life estimate is approximately 107 hours. 
 
RSV infection and treatment of epithelial cells 

Differentiated AECs on transwell plates were infected with RSV line 19 (MOI-2) or RSV 2-20 (MOI-1) as 
indicated on the apical surface and allowed to adsorb for 2 hours at 37°C and 5% CO2. After adsorption, 
unbound RSV was washed from the apical surface, and the cells were treated with rh IL-22 (50 ng/ml) on 
the basolateral surface. AECs were cultured in ALI condition for 24 hours to 48 hours p.i., and then 
samples were harvested to detect viral load, mRNA expression, and cytokines in culture media. A549 
cells were infected with RSV line 19 (MOI-0.5) or RSV 2-20 (MOI-0.05) as indicated. At 2 hours after 
infection, the cells were treated with rh IL-22. At 24 hours and 48 hours after treatment, viral load, mRNA, 
and protein expression were assayed. For specific experiments, A549 cells were treated with rh IL-17A 
(50 ng/ml), chloroquine (40 µM), fludarabine (25 µM), or sunitinib (10 µM) for 24 hours and 48 hours. 

Viral load detection in lungs and in vitro culture media 

Viral load in lungs was detected by plaque assay on Vero cells as previously described (Schickli et al., 
2015). Briefly, lung supernatant was collected after centrifugation of the lung homogenate and 
immediately processed for plaque assay. Two- and ten-fold dilutions of lung supernatants were made in 
Opti-MEM reduced serum medium (Cat# 31-985-070, Gibco) and applied to monolayers of Vero cells in 
24-well tissue culture plates. After 1 hour of incubation at room temperature with constant shaking, the 
inoculum was replaced with methylcellulose-supplemented L-15 medium (2% methylcellulose mixed 1:1 
with 2× L-15 [Cat# 12-669E, Lonza] supplemented with 2% FBS, 4 mM L-glutamine [Cat# 25030-081, 
Gibco], and 200 U penicillin with 200 μg/ml streptomycin) and incubated at 35°C and 5% CO2 for 7 days. 
Overlay media was then aspirated, and cells were immune-stained with goat anti-RSV Abs (EMD 
Millipore) followed by HRP-conjugated donkey anti-goat IgG. Red-colored plaques were developed with 
3-amino-9-ethylcarbazole (AEC) solution (Cat# K3464, Dako). Viral titer was recorded as PFU/g of lung 
tissue.  

RSV line 19 was cultured and amplified in HEp-2 cells, as described previously (Moore et al., 2007). 
Briefly, HEp-2 cells were infected with the virus and then maintained in culture for 3 days. Cells were 
lysed by sonication, and the cell supernatant containing virus was collected to titrate viral load. RSV-
infected hAEC and A549 cells were lysed by three freeze-thaw cycles, and cell supernatant containing 
virus was used to determine viral load. Viral titration was then performed by plaque assay using NY3.2 
STAT1–/– fibroblast cells in 24-well tissue culture plates pre-coated with poly-L-lysine. Culture medium 
containing virus stock was serially diluted in serum-free medium and was allowed to adsorb to the cell 
monolayer for 2 hours with constant shaking at 37°C. Adsorption of virus was stopped by adding 1% 
methylcellulose overlay medium and then incubated at 37°C and 5% CO2 for 3 days. Viral plaques were 
then developed using goat anti-RSV all antigens primary antibody (Cat# B65860G, Meridian Life 
Science), donkey anti-goat IgG AP secondary antibody, and BCIP/NBT alkaline phosphatase substrate 
(Cat# B5655, Millipore Sigma). 

 



RNA isolation and quantitative real-time PCR 

Cell lysates were prepared in RLT-Plus buffer and RNA was isolated using RNeasy plus mini kit (Cat# 
74136, Qiagen) according to manufacturer’s instructions. cDNA was synthesized using a High Capacity 
cDNA Reverse Transcription Kit (Cat# 4368813, Applied Biosystems) according to the manufacturer’s 
instructions. Quantitative real-time PCR was performed using validated TaqMan Gene expression assays. 
Primer and probe sets (Life Technologies) for the following human genes were used: IFIT1 (Cat# 
Hs03027069_s1), OASL (Cat# Hs00984387_m1), ISG15 (Cat# Hs01921425_s1), IL22RA1 (Cat# 
Hs00222035_m1), IL10RB (Cat# Hs00175123_m1), IFNα2 (Cat# Hs00265051_s1), IFNβ1 (Cat# 
Hs01077958_s1), and HPRT1 (Cat# Hs02800695_m1). RSV-L polymerase gene expression was 
detected using the following primers and probe: forward primer (5′-
GAACTCAGTGTAGGTAGAATGTTTGCA-3′), reverse primer (5′-TTCAGCTATCATTTTCTCTGCCAAT-3′) 
and probe (5′-TTTGAACCTGTCTGAACATTCCCGGTT-3′). The primer sequences for the mouse genes 
were: Rplo, forward primer (5’-GGCGACCTGGAAGTCCAACT-3’), reverse primer (5’-
CCATCAGCACCACAGCCTTC-3’); Il22, forward primer (5’-CGACCAGAACATCCAGAAGAA-3’), reverse 
primer (5’-GAGACATAAACAGCAGGTCCA-3’); Reg3g, forward primer (5’-
GTACCCTGTCAAGAGCCTCA-3’), reverse primer (5’-TGTGGGGAGAATGTTCCCTT-3’). Gene 
expression was calculated using the 2−ΔCt (normalized to HPRT1 or Rplo). Results were analyzed using 
SDS 2.4 software. 

ELISA  

Levels of IFN-β (Type I) and IFN-λ (Type III) proteins were measured in debris-free cell culture 
supernatant from primary AECs and A549 cells using VeriKine Human Interferon Beta ELISA Kit (Cat# 
41410-1, PBL Assay Science) and DIY Human IFN Lambda 1/2/3 (IL-29/28A/28B) ELISA (TCM) Kit (Cat# 
61840-1, PBL Assay Science), respectively, according to the manufacturer’s protocol.  

Western Blotting 

Cell lysates were prepared by harvesting cells in cell lysis buffer supplemented with halt protease 
inhibitors and sodium orthovanadate. After clearing the lysate by centrifugation, supernatants were 
collected, and total protein content was measured by DC protein assay kit II (Cat# 5000112, BioRad) 
according to manufacturer’s instructions. Total protein (10 µg) was resolved on a 4-15% SDS–PAGE gel 
(Cat# 4568086, Biorad), and the proteins were transferred to an Immobilon-FL PVDF membrane (Cat# 
IPFL20200, Millipore Sigma). The blot was blocked using 5% milk and then probed with the specific 
primary antibody followed by HRP-conjugated secondary antibody and developed using SuperSignal 
West Femto Maximum Sensitivity Substrate (Cat# 34095, Thermo Fisher Scientific). ImageJ software was 
used to quantitate protein expression using GAPDH as an internal control. 

dsiRNA-mediated knockdown of gene expression 

dsiRNAs specific to LC3B (dsiLC3B) (hs.Ri.MAP1LC3B.13.1) and negative control (dsiNC1) (Cat# 51-01-
14-03) were purchased from IDT. Lipofectamine 2000 (Cat# 11668-019, Thermo Fisher Scientific) was 
used as a transfection reagent. A suspension of primary AECs was prepared at a density of 1–2 × 105 
cells in 150 µl of BEBM media with supplements (Cat# CC-3170, Lonza) for each well of a 12-well 
transwell insert. Similarly, A549 cell suspension was prepared at a density of 2 × 105 cells in 400 µl of 
DMEM/F-12 complete medium for each well of a 24-well plate. For each transfection sample, dicer 
oligomer-Lipofectamine 2000 complex was prepared using 2 µl of Lipofectamine 2000 and 50 nM of 
dsiRNA oligomer. Briefly, 50 nM of each of dsiLC3 and dsiNC1 were prepared, and 2 µl of Lipofectamine 
2000 was diluted in 50 µl Opti-MEM reduced serum medium in separate tubes, mixed gently, and 
incubated for 5 minutes at room temperature. After the 5-minute incubation, the diluted dsiRNA oligomer 
was combined with the diluted Lipofectamine 2000, mixed gently, and then incubated for 20 minutes at 
room temperature. Lipofectamine 2000 complex (100 µl) was combined with 150 µl of AEC and 400 µl of 
A549 cell suspension and then plated on the collagen-coated transwell inserts and 24-well plate, 
respectively. The cells were then incubated at 37°C and 5% CO2 for 12–16 h, and then the medium was 
changed. Gene knockdown was assayed after 6 to 7 days and 48 to 72 hours of transfection for AEC and 
A549 cells, respectively. Transfected cells were then used for RSV infection. 



Co-localization of RSV and LC3B in A549 cells 

A549 cells were cultured on cover glasses, infected with RSV, and then treated with IL-22 as described 
before. After 24 hours of infection, cells were fixed with 2% PFA and then processed for 
immunofluorescent staining for RSV and LC3B. After rehydration and permeabilization, cells were 
blocked using 5% donkey serum and stained overnight at 4°C in the dark with goat anti-RSV all antigen 
antibody and rabbit anti-LC3B antibody. The cells were then stained with Cy3-conjugated donkey anti-
goat IgG and Cy5-conjugated donkey anti-rabbit IgG secondary antibody respectively along with F-actin 
counterstain AF488 phalloidin for 1 hour at room temperature in the dark. Nuclei were stained with 
Hoechst and cells were mounted with gelvatol. Images were obtained under identical conditions at ×60 
(1.43NA) magnification on Nikon A1 confocal microscope and quantitation was performed using NIS 
Elements software. Co-localization was assessed by determining the degree of overlap on a per pixel 
basis. RSV and LC3 emissions were first segmented based on intensity in order to generate a binary 
mask. Co-localization was determined using a binary “having” statement to identify LC3 positive puncta 
containing RSV. 

Transduction using Tandem Sensor RFP-GFP-LC3B 

The Premo™ Autophagy Tandem Sensor RFP-GFP-LC3B Kit (Cat# P36239, Thermo Fisher Scientific) 
combines the selectivity of an LC3B-fluorescent protein (FP) chimera with the transduction efficiency of 
the BacMam (insect Baculovirus with a Mammalian promoter) 2.0 technology and was used to 
discriminate between acidic and neutral LC3B-positive vesicles (i.e., autolysosomes and 
autophagosomes, respectively). A549 cells were plated at a density of 1 × 105 cells/well on 18 mm 
coverslips and then transduced with 50 particles per cell (ppc). The cells were then infected with RSV at 
24 hours post-transduction and then treated with IL-22 as previously discussed. Cells were fixed using 
2% PFA and stained with F-actin counterstain AF647 phalloidin for 1 hour at room temperature in the 
dark. Nuclei were stained with Hoechst 33342, and cells were mounted with gelvatol. Cells were then 
imaged on a Nikon A1 confocal microscope at 60× magnification. Quantitation was performed using spot 
detection to identify puncta that were positive for red and green, followed by a binary “and” statement to 
identify puncta that were positive for both red and green (yellow), with a binary in NIS Elements software. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Statistical analyses 

Mann Whitney test and one-way ANOVA with Tukey post hoc test were used as appropriate. Specific 
details with regard to statistical tests, as well as, sample sizes (n) and replicates can be found in the 
figure legends. Differences between groups were considered significant when P < 0.05. All statistical 
analyses were performed using GraphPad Prism 7 software.  
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