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Abstract

Venous malformations (VMs) are slow-flow malformations of the venous vasculature and

are the most common type of vascular malformation with a prevalence of 1%. Germline and

somatic mutations have been shown to contribute to VM pathogenesis, but how these muta-

tions affect VM pathobiology is not well understood. The goal of this study was to character-

ize VM endothelial and mural cell expression by performing a comprehensive expression

analysis of VM vasculature. VM specimens (n = 16) were stained for pan-endothelial, arte-

rial, venous, and endothelial progenitor cell proteins; proliferation was assessed with KI67.

Endothelial cells in the VM vessels were abnormally orientated and improperly specified, as

seen by the misexpression of both arterial and endothelial cell progenitor proteins not

observed in control vessels. Consistent with arterialization of the endothelial cells, VM ves-

sels were often surrounded by multiple layers of disorganized mural cells. VM endothelium

also had a significant increase in proliferative endothelial cells, which may contribute to the

dilated channels seen in VMs. Together the expression analysis indicates that the VM endo-

thelium is misspecified and hyperproliferative, suggesting that VMs are biologically active

lesions, consistent with clinical observations of VM progression over time.

Introduction

The formation of blood vessels initiates with multipotent angioblasts differentiating into venous

and arterial endothelial cells (ECs) that form a uniform primary plexus, a process known as vascu-

logenesis [1]. The plexus is then remodeled and mural cells, pericytes, and vascular smooth muscle

cells are recruited to stabilize and mature the blood vessels, a process known as angiogenesis.

These processes may be dysregulated in vascular malformations. Vascular malformations are con-

genital disorders that result in the development of morphologically and architecturally abnormal

vascular channels; their development has been suggested to be a result of disruptions in cell fate

determination as well as endothelial cell-perivascular cell organization [2, 3]. Venous malforma-

tions (VMs) are slow-flow malformations of the venous vasculature [4–6].
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VMs affect up to 1% of the poplation [7, 8], making it the most common vascular malfor-

mation. While VMs were originally thought to be biologically quiescent [9], recent research

suggests that VMs are biologically active lesions that progress clinically and worsen over time

[10–12]. Consistent with their progressive nature, VMs have been linked to genetic mutations

that activate the RAS/MAPK (TIE2, MAP3K3, CCM1) and PI3K/AKT (TIE2, PIK3CA) path-

ways [13–16], which have a role in regulating EC growth and differentiation [17, 18]. The rela-

tionship between these germline/somatic mutations and the VM phenotype are still be

elucidated. Both morphologic and expression studies of VMs have pointed to inherent biologi-

cal and structural differences between vasculature in VM and normal tissues [19, 20]. In extra-

cranial VMs, the pathological endothelium ectopically expressed arterial protein EPHRINB2,

suggesting that VM endothelium is arterialized [21]. Similarly, expression of the arterial pro-

tein DLL4 was observed in the endothelium in mouse models of cerebral cavernous malforma-

tion (CCM), a VM of the brain [22]. Consistent with arterialization of VM vessels, αSMA

mural cell coverage is more extensive surrounding the CCM vessels relative to the normal

veins in the brain [23]. These findings suggest that VMs are associated with defects in endothe-

lial cell differentiation and dysregulated endothelial cell-perivascular cell interaction. However,

these studies are limited in scope and observation.

The goal of our study was to comprehensively analyze expression patterns and vascular

morphology in extracranial VM specimens in order to better understand VM pathobiology.

We performed a broad investigation of expression patterns of blood endothelial, endothelial

progenitor, arterial, and venous proteins, as well as mural cell markers.

Methods

Patient recruitment and enrollment

This study was approved by Columbia University’s IRB (AAAA9976). Patients with a diagno-

sis of VM, and scheduled for a resection of their VMs for the patient’s direct benefit as part of

their clinical care, were recruited by the senior surgeons (JKW and GTR). Informed consent

was obtained from either patients or their parents/legal guardians. Patients who were not

scheduled to have a surgical resection for their direct benefit were excluded. Excess VM tissues

not needed for submission to the Department of Pathology were taken to the laboratory to be

processed. Patients were recruited between June 2007 through March 2018. Control neonatal

foreskins were anonymously collected and no patients (or parents/legal guardian) signed a

consent form. The waiver for consent was approved for controls tissues in the same IRB.

VM specimens and controls

VM diagnosis was confirmed with clinical examination as a lesion with blue hue discoloration

that may engorge in the dependent position or with Valsalva maneuvers, imaging studies dem-

onstrating absence of fast-flow, and/or clinical pathology reports confirming dilated vascular

channels with negative D2-40 (PODOPLANIN) staining. All tissues were fixed in 10% forma-

lin and dehydrated with alcohol before being paraffin-embedded. Fetal tissue array consisting

of 78 cores from 26 male and female fetuses at 5 months of gestation was used for fetal tissue

expression analysis (BE01014; Tissue Biomax).

Immunohistochemistry

Serial sections (5μm) were deparaffinized, rehydrated, and blocked as previously described

[24]. Primary antibodies (S1 Table) were detected with Alexa Fluor-conjugated Donkey-sec-

ondary antibodies at 1:1000 (Invitrogen) and slides mounted with DAPI Mounting Media

PLOS ONE Venous malformations are immature and hyperproliferative

PLOS ONE | https://doi.org/10.1371/journal.pone.0252342 May 27, 2021 2 / 17

W81XWH1910267 (JKW). The funders had no role

in the study design, data collection and analysis,

decision to publish, or preparation of the

manuscript. These studies used the resources of

the Herbert Irving Comprehensive Cancer Center

Pathology Shared Resources funded in part

through Center Grant P30CA013696.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0252342


(Vector). Specificity of NOTCH3 antibody was determined by preblocking with a NOTCH3--

specific blocking peptide at a ratio of 5:1 NOTCH3 blocking peptide to antibody. Images were

captured on Zeiss AxioCam MRc camera with Zeiss Zen software at 20X or 40X magnification.

All images for each staining were processed in the same manner.

Expression analyses

Protein expression in VMs was compared to control neonatal dermis. For each staining, 2–5

images were analyzed per tissue section and 3–8 vessels from each field of view were selected

as the region of interest (ROI) for quantification. Protein expression was quantified as signal

intensity for VEGFR2, EPHB4, DLL4, EPHRINB2, and CD146 over the perimeter or length of

endothelium (intensity/μm) of unadjusted images using ImageJ (NIH). VECADHERIN,

CD31, COUP-TFII, NOTCH3, PDGFRβ, CD133, and CKIT expression was measured as a

percentage of positive ECs/total ECs in selected ROIs and averaged for each VM specimen.

αSMA expression was tabulated as a descriptive phenotype based on arterial or venous charac-

teristics. Arterial phenotype was defined as continuous, multi-layer mural cells surrounding

ECs, whereas venous phenotype was defined as a continuous single layer, or lack of mural

cells. Disrupted or discontinuous mural cell coverage was defined as a “discontinuous”pheno-

type. Proliferation was assessed by counting the number of KI67+/VECADHERIN+/DAPI

+ nuclei and dividing by total # ECs (VECADHERIN+/DAPI+ cells) over 5 high powered

fields (hpfs; 20X). Average EC length was determined as the length of the perimeter of each

vessel divided by the # of ECs (VECADHERIN+/DAPI+ cells). Statistical analysis was per-

formed using Graphpad. Unpaired student’s t-test was used to compare control neonatal der-

mis to VM specimens and a p value of<0.05 was considered statistically significant. Statistical

analysis was performed with one-way ANOVA for DLL4 and EPHRINB2 and post-hoc t-test
was used for comparison between groups.

Results

Tissue characteristics

VMs analyzed (n = 16) were extracranial in the subcutaneous soft tissue and located in various

anatomic locations, including the head and neck (n = 7), trunk (n = 2), upper extremity

(n = 3), and lower extremity (n = 4). Neonatal foreskin (n = 5) served as normal control dermal

tissue.

VM endothelium has reduced and mislocalized expression of essential EC

adhesion proteins

Morphological analysis of VM tissues revealed that pathological vessels were dilated, irregu-

larly-shaped vascular channels lined by disorganized endothelial cells with nuclei often ori-

ented perpendicular to the lumen, suggesting defects in EC polarity or cell-cell associations (S1

Fig). To evaluate the tight and adherens junctions, VM specimens were stained for VECAD-

HERIN, CD31, and VEGFR2.

Expression of VECADHERIN and CD31 was analyzed across multiple stainings to achieve

a total of n = 16 VMs. VECADHERIN expression was punctated and discontinuous relative to

neonatal dermal vessels in 15/16 VMs evaluated (Fig 1A) and there were significantly fewer

VECADHERIN+ ECs lining VM vessels than in control tissues (Fig 1C). Similar to VECAD-

HERIN, CD31 expression was not continuous, with a loss of CD31 expression observed in

15/16 VMs (Fig 1A and 1B) and significantly less CD31+ ECs lining the VM endothelium than

found in controls (Fig 1D). Unlike VECADHERIN and CD31, VEGFR2, a pan-endothelial
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Fig 1. CD31, VECADHERIN, and VEGFR2 expression was altered in the VM endothelium. (A) Representative images of VM and control

neonatal dermis co-stained for CD31 and VECADHERIN. White arrowheads mark discontinuous CD31 and VECADHERIN expression

observed in VM vessels. Yellow arrowheads mark CD31-/VECADHERIN+ ECs. (B) Representative images of VMs and control neonatal

dermis co-stained for CD31 and VEGFR2. White arrowheads mark CD31+/VEGFR2+ ECs. (A, B) Boxed areas are enlarged to the right.

Scale bars—50μm. A-artery, V-vein, VC-VM channel. (C) Quantification of percent VECADHERIN+ ECs in VMs (n = 16) and controls

(n = 5). Bar represents median value, �p<0.005. D) Quantification of percent CD31+ ECs in VMs (n = 16) and controls (n = 5). Bar

represents median value, �p<0.001. (E) Mean VEGFR2 expression determined as signal intensity normalized by vessel length in VMs (n = 6)

and controls (n = 3) tissues. Bar represents median value, �p<0.05.

https://doi.org/10.1371/journal.pone.0252342.g001
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marker, had significantly higher signal intensity in VM endothelium than in controls (Fig 1B

and 1E). This high expression of VEGFR2 is consistent with ECs lining VM channels.

VMs have characteristics of arterial vessels

Since venous ECs in VMs have been shown to express the arterial marker EPHRINB2 [21, 22],

we next characterized VM endothelium by staining for both venous (COUP-TFII, EPHB4)

(Fig 2) and arterial (DLL4, EPHRINB2) (Fig 3) EC proteins. VM endothelium expressed both

venous proteins, but their expression differed from that of the venous endothelium in controls

(Fig 2A and 2B). The percentage of COUP-TFII+ cells in VM endothelium was significantly

less than control veins (Fig 2A and 2C). By contrast, EPHB4 expression was significantly

increased in VM ECs (Fig 2B and 2D) relative to controls.

VM endothelium also misexpressed arterial proteins. In control tissues, DLL4 expression in

the venous endothelium was significantly less than that of arterial ECs (Fig 3A and 3C). In con-

trast, DLL4 expression in VM endothelium was significantly increased relative to control

veins, and was similar to DLL4 expression observed in control arteries (Fig 3A and 3C).

EPHRINB2 expression in VMs was more similar to arteries than veins but the difference was

not significant (Fig 3B and 3D). The presence of arterial proteins had no correlation with the

status of venous protein expression in the VMs.

Given that VM endothelium expressed arterial EC proteins, we assessed the mural cell

investment and organization of VM vessels. Mural cell coverage differs between arteries and

veins [25]. Arteries are surrounded by several layers of αSMA, PDGFRβ, and NOTCH3

expressing mural cells, while veins are more sparsely covered with a single layer of PDGFRβ
and NOTCH3 expressing mural cells [2, 25–27]. In control tissues, arterial vessels were

invested with a continuous, multi-layer of αSMA+ and NOTCH3+ mural cells, whereas the

veins had sparse or no mural cell coverage (Fig 4A and 4B). Only a minority of VM channels

exhibited a vein-like mural cell phenotype (22%) of either sparse or no mural cell coverage

(Fig 4C). While 8% of VM channels were surrounded by continuous, multi-layer mural cells,

similar to arteries, the majority of VM channels (70%) were surrounded by discontinuous

multi-layer mural cells (Fig 4C). No association between channel-size and perivascular cell

coverage was observed in VM specimens. Thus, misexpression of arterial EC proteins in the

endothelium of VMs was associated with increased and disorganized perivascular coverage,

suggesting the VM endothelium failed to properly differentiate and displays characteristics of

both arteries and veins.

VM endothelium expressed NOTCH3 and PDGFRβ
Unlike the control tissues where NOTCH3 and PDGFRβ expression was restricted to perivas-

cular cells surrounding the control arteries, their expression was also observed in VM endothe-

lium (Fig 5A, S2 Fig). NOTCH3 expression was analyzed over 2 independent experiments to

achieve a total of 11 VM specimens. The number of NOTCH3+ ECs in VM endothelium was

significantly higher than in control tissues (Fig 5B). Similar to NOTCH3, spotty endothelial

PDGFRβ expression was observed in VM endothelium, which was significantly higher than

in control vessel ECs (Fig 5C, S2 Fig). Since NOTCH1, 2, and 4 are also expressed in ECs, we

confirmed the specificity of the anti-NOTCH3 antibody using a NOTCH3 blocking peptide

(S3 Fig).

We previously observed that NOTCH3 is expressed in the immature ECs of infantile hem-

angiomas (IH), a blood vascular anomaly [28]. A human fetal tissue array was used to further

explore NOTCH3 expression in immature endothelium, and endothelial NOTCH3 expression

was determined. NOTCH3 was expressed in at least 20% of ECs in 14/19 fetal organs queried
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Fig 2. Venous endothelial proteins were altered in VM endothelium. (A) Representative images of VMs and control neonatal dermis co-

stained for VECADHERIN (VECAD) and COUP-TFII. White arrowheads mark VECADHERIN+/COUP-TFII+ ECs. (B) Representative

sections of VMs and control neonatal dermis co-stained for VECADHERIN and EPHB4. White arrowheads mark CD31+/EPHB4+ cells. (A,

B) Boxed areas are enlarged to the right. V-vein, VC-VM channel. Scale bars—50μm. V-vein, VC-VM channel. (C) Percent COUP-TFII

+ ECs in VMs (n = 10) and controls (n = 3). (D) Mean EPHB4 expression normalized by vessel length in VMs (n = 10) and controls (n = 3).

(C, D) Bars represent median values, �p<0.05.

https://doi.org/10.1371/journal.pone.0252342.g002
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Fig 3. VM endothelium misexpressed arterial EC proteins. (A) Representative images of VM and control neonatal dermis co-stained for

CD31 and DLL4. White arrowheads mark CD31+/DLL4+ ECs. Yellow arrowheads mark CD31+/DLL4- ECs. (B) Representative images of

VM and control neonatal dermis co-stained for CD31 and EPHRINB2. White arrowheads mark CD31+/EPHRINB2+ cells. (A, B) Boxed

areas are enlarged to the right. A-artery, V-vein, VC-VM channel. Scale bars– 50μm. (C). Mean DLL4 expression normalized by vessel length

in VMs (n = 5) and controls (n = 3). Bar represents median value; ANOVA, p<0.0005; T-Test �p< 0.01, ��p<0.0001, ns, non-significant. (D)

Mean EPHRINB2 expression normalized by vessel length in VMs (n = 5) and controls (n = 3). Bar represents median value. V-vein, Art-

artery, VM-venous malformation.

https://doi.org/10.1371/journal.pone.0252342.g003
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Fig 4. VMs had increased and disorganized αSMA expressing mural cells. (A) Representative images of VM and control neonatal dermis co-

stained for CD31 and αSMA. White arrowheads mark CD31-/αSMA+ mural cells. (B) Representative sections of VMs and control neonatal

dermis co-stained for VECADHERIN and NOTCH3. White arrowheads mark VECADHERIN-/NOTCH3+ mural cells. (A, B) Boxed areas are

enlarged to the right. A-artery, V-vein, VC-VM channel. Scale bars– 50μm. (C) Percentage of mural cell phenotype (arterial-like, continuous

multi layer; vein-like, single layer/no layer, and discontinuous layers) in arteries and veins of controls (n = 3), and VMs (n = 11).

https://doi.org/10.1371/journal.pone.0252342.g004
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(S2 Table, S4 Fig). Thus, similar to the endothelium in VMs and in IHs, the immature fetal

endothelium expressed NOTCH3; this was not observed in the more mature postnatal vessels

(Fig 5A).

VM endothelium expressed EC progenitor proteins

Since VM endothelium expressed NOTCH3 (similar to fetal tissues), we next determined the

expression of endothelial progenitor proteins CD133, CKIT, and CD146 in VM and control

tissues. In the neonatal dermis, an occasional CD133+/VECADHERIN+ EC was observed

within the endothelium of blood vessels (Fig 6A). By contrast, there was a significantly higher

percentage of CD133+ ECs in VM vessels relative to control tissues (Fig 6C). CKIT expression

was not seen in control tissues; in contrast, a subset of CKIT+ ECs were found in VM endothe-

lium (Fig 6B and 6D). CD146 expression was similar between VM and control vessels (Fig 6E,

S5 Fig). However, CD146 expression was inconsistent in VM vessels with areas of both intense

and faint CD146 staining and other areas with no CD146 expression. This data demonstrates

that VM endothelium had increased or altered expression of EC progenitor proteins when

compared to neonatal dermal vessels, consistent with the immaturity of VM endothelium.

Fig 5. NOTCH3 and PDGFRβ were expressed in the endothelium of VMs. (A) Representative images of VMs and control neonatal dermis

co-stained for VECADHERIN and NOTCH3. Yellow arrowheads mark VECADHERIN-/NOTCH3+ mural cells, and white arrowheads

mark VECADHERIN+/NOTCH3+ ECs. Boxed areas are enlarged to the right. A-artery, V-vein, VC-VM channel. Scale bars—50μm. (B)

Quantification of percent NOTCH3+ ECs in VMs (n = 11) and controls (n = 5). Bar represents median value, �p<0.0001. (C) Quantification

of percent PDGFRβ+ ECs in VMs (n = 7) and controls (n = 3). Bar represents median value, �p<0.005.

https://doi.org/10.1371/journal.pone.0252342.g005
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Fig 6. VM endothelium expressed progenitor markers. (A) Representative images of VM and control neonatal dermis co-stained for

VECADHERIN and CD133. White arrowheads mark VECADHERIN+/CD133+ ECs. (B). Representative images of VM and control neonatal

dermis co-stained for VECADHERIN and CKIT. White arrowheads mark VECADHERIN+/CKIT+ ECs. (A, B) Boxed areas are enlarged to

the right. A-artery, V-vein, VC-VM channel. Scale bars—50μm. (C) Quantification of percent CD133+ ECs in VMs (n = 10) and controls

(n = 3). Bar represents median value, �p<0.02. (D) Quantification of percent CKIT+ ECs in VMs (n = 8) and controls (n = 3). Bar represents

median value, �p = 0.05. (E) Mean CD146 expression normalized by vessel length in VMs (n = 5) and controls (n = 2). Bar represents median

value.

https://doi.org/10.1371/journal.pone.0252342.g006
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VM endothelium were hyperproliferative

Since immature endothelium has increased proliferation, we stained VM specimens (n = 10)

for the proliferative marker KI67 with the EC protein VECADHERIN. Relative to control neo-

natal dermal ECs (n = 5), the VM endothelium had a significant increase in the number of

KI67+/VECADHERIN+ ECs (Fig 7A and 7B). Average EC length, a proxy for EC size, did not

differ between control and VM specimens (Fig 7C). These results demonstrate that VM endo-

thelium is hyperproliferative and not hypertrophic.

Discussion

Expression studies, presented here, demonstrate that the VM endothelium was disorganized,

proliferative, and partially arterialized, while also expressing venous EC proteins. ECs in VMs

expressed significantly higher levels of VEGFR2, a protein expressed in endothelial progenitor

cells and differentiated ECs, thus confirming the endothelial identity of cells lining VM chan-

nels. In contrast, VM vessels had significantly reduced expression of key endothelial junctional

proteins CD31 and VECADHERIN, and their expression patterns were spotty. Abnormal

VECADHERIN and CD31 expression at EC-EC junctions in VMs may lead to a failure of EC

polarization and contribute to the altered EC morphology in VMs. VM endothelium also had

a significant increase in EC proliferation, significantly upregulated expression of the arterial

protein DLL4, and were surrounded by disorganized PDGFRβ+/NOTCH3+/αSMA+ mural

cells. While the mural cells were more similar to arteries than veins, they were often disorga-

nized and discontinous. Finally, VM endothelium had significantly higher expression of

Fig 7. Increased in proliferative ECs in VM vessels. (A) Representative images of VM and control neonatal dermis

co-stained for VECADHERIN and KI67. White arrowheads mark VECADHERIN+/KI67+ ECs. Yellow arrowhead

marks a KI67+ non-EC in the control. Scale bars—50μm. (B) Quantification of percent KI67+ ECs in VMs (n = 10)

and controls (n = 5). Bar represents median value, �p<0.0002. (C) Quantification of EC length in VMs (n = 10) and

controls (n = 5). Bar represents median value.

https://doi.org/10.1371/journal.pone.0252342.g007
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endothelial progenitor cell proteins CKIT and CD133. Taken together, this data demonstrates

that the VM endothelium failed to properly differentiate, co-expressed both venous and arte-

rial EC proteins, and was immature and hyperproliferative. These expression patterns suggest

a failure in proper venous EC differentiation.

We observed that a majority of VMs had reduced and/or inconsistent expression of the

tight and adherens junction proteins, CD31 and VECADHERIN. Consistent with these find-

ings, loss-of-function Krit1 mutations in CCM1, an intracranial VM, has been associated with

reduced expression of VECADHERIN at the cell surface [29]. In VMs, the decrease in CD31

and mislocations of VECADHERIN may contribute to the altered EC morphology, increased

permeability, and thrombi formation [30–32]. In ECs, CD31 functions as a flow sensor and

promotes EC polarity via VECADHERIN regulation [33–35]. The altered VMEC morphology

suggested a loss of cell polarity that could be secondary to a loss of EC flow sensing. While dis-

rupted EC junctions in VM endothelium may contribute to the morphological changes in the

ECs, CD31 and VECADHERIN are also required for vessel barrier formation. This loss of bar-

rier function would allow extravasation of blood into the surrounding tissues, which is often

experienced by VM patients. Finally, the reduction of CD31 may contribute to the intravascu-

lar coagulopathies seen in VMs as there is an increase in thrombi in Cd31 null mice [30].

As expected, VM endothelium expressed venous proteins COUP-TFII and EPHB4,

although at different levels when compared to normal veins. The VM endothelium also

expressed the arterial protein DLL4 and were surrounded by disorganized PDGFRβ+/αSMA

+/NOTCH3+ perivascular cells (Fig 4) which suggests that the VM endothelium has partially

arterialized. A similar phenotype has been reported for both intracranial and extracranial

VMs, suggesting that this is a common pathological phenotype observed in VMs [5, 10, 21, 22,

36–38]. Unlike arteriovenous malformations (AVMs), where veins are exposed to arterial flow

due to the absence of an intervening capillary bed, VMs are slow-flow lesions. Given this,

altered flow is most likely not promoting the expression of arterial proteins in VMs. Addition-

ally, arterialization is not likely downstream of PI3K/AKT signal hyperactivation. In mice,

ectopic EC expression of a Pik3ca variant associated with VMs was associated with venous

specification of the vasculature characterized by a reduction in pericyte coverage and downre-

gulated EPHRINB2 expression [39].

The arterialization of the VM endothelium may be secondary to either loss of VECAD-

HERIN regulation of VEGFR2 or endothelial NOTCH3 signaling. In the endothelium,

VECADHERIN suppresses VEGFR2 and its loss leads to an increase in VEGFR2 signaling

[31]. The level of VEGFA/VEGFR2 signaling promotes distinct EC fates: high VEGFA leads to

arterial ECs, while low levels of VEGFA promotes venous ECs [40]. Thus, VECADHERINlow/

VEGFR2high ECs (Fig 2) in VMs may lead to hyperactivation of the VEGFA/VEGFR2 pathway,

which then induces the expression of arterial proteins. Alternatively, ectopic expression of

NOTCH3 in ECs was associated with both increased DLL4 expression and increased tumor

angiogenesis in a murine xenograft model [41].

Consistent with Diehl et al. [21], we demonstrate that the VM endothelium has a significant

increase in EC proliferation with no significant changes in EC size relative to the neonatal vas-

culature (Fig 7), suggesting that VMs are hyperproliferative, and not hypertrophic, lesions.

This hyperproliferation is most likely due to hyperactivation of the PI3K/AKT pathway. In-

hibiting the PI3K/AKT pathway in VMs carrying activating mutations suppressed EC growth

in mice [39, 42]. In transgenic mice, ectopic expression of a Pik3ca variant in ECs led to

increased EC proliferation and a hyperplastic retinal vascular plexus [39]. These expression

studies suggest that alternative pathological mechanisms could also contribute to the prolifer-

ative phenotype in the VM endothelium. The increase in EC proliferation may be due to loss

of VECADHERIN and its function as a suppressor of VEGFR2 signaling, which is pro-
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proliferative in ECs. Alternatively, EC NOTCH3 functions may contribute to EC proliferation

in VMs. Unlike the neonatal vasculature, we observed NOTCH3 expression in the biologically

active endothelium in a majority of human fetal organs, while EC NOTCH3 expression has

been reported for tumor vessels [41]. Consistent with the murine model, we have observed

NOTCH3 expression in the proliferative ECs in IHs [24, 28]. As NOTCH3 signaling upregu-

lates PDGFRβ in perivascular cells [26, 43], NOTCH3 may also regulate vascular PDGFRβ in

the ECs to promote proliferation. In ECs, PDGFRβ expression is associated with proliferative

angiogenic ECs. Blocking PDGFRβ in cultured ECs blunted angiogenic responses; PDGFRβ
activity loss results in increased endothelial cell numbers and capillary caliber in vitro [44] as

well as endothelial maturation and patterning defects in vivo [45]. Taken together there may

be three pathways that converge to promote EC proliferation in VMs: 1) PI3K hyperactivation,

2) loss of VEGFR2 suppression due to VECADHERIN defects, and 3) the NOTCH3/PDGFRβ
signaling axis.

Together, misexpression of arterial proteins and increased proliferation suggest that the

endothelium in VMs has failed to terminally differentiate. Consistent with this idea, the VM

endothelium had significantly higher expression of endothelial progenitor cell markers CD133

and CKIT. Although PDGFRβ is a mural cell marker in the vasculature [25, 46], it is also

expressed in circulating endothelial progenitors, hemangioblasts [47, 48], and the immature

proliferative endothelium of infantile hemangiomas [24]. This data further supports the theory

that VM endothelium retained progenitor identity due to incomplete or incorrect differentia-

tion and specification. How the misspecification and persistent expression of progenitor mark-

ers affects VM pathobiology remains to be elucidated.

This study has limitations. As an expression study, it is observational and does not provide

insight into mechanisms of VM pathogenesis. It is not known whether or how genetic mutations

seen in VMs contributed to the expression patterns described here. It is also unknown whether

these protein misexpression patterns are the cause or result of VM pathobiology. Future studies

on endothelial biology of VM-dervied endothelial cells may provide further insight.

Conclusions

We found that VM vessels failed to properly differentiate into venous ECs, misexpressed arte-

rial and endothelial progenitor proteins, had increased and disorganized mural cell coverage,

and were hyperproliferative. These findings suggest that VM endothelium and ECs differ from

normal venous endothelium, are not as biologically quiescent as previously thought, and are

consistent with clinical observations of a progressive natural history [11].

Supporting information

S1 Fig. Altered endothelial cell morphology in VMs. Representative H&Es of VMs and con-

trol neonatal skin. Boxed areas are enlarged to the right. Blue arrowheads highlight normal EC

morphology. Black arrowheads mark ECs with abnormal morphology. A-artery, V-vein,

VC-VM channel. Scale bars—50μm.

(TIF)

S2 Fig. VM endothelium expresses PDGFRβ. A) Representative sections of VMs and control

neonatal dermis co-stained for CD31 and PDGFRβ. Red open arrowheads mark CD31+/

PDGFRβ- ECs, yellow arrowheads mark CD31-/PDGFR β+ mural cells. White arrowheads

mark CD31+/PDGFR β+ cells. A, B) Boxed areas are enlarged to the right. V-vein, VC-VM

channel. Scale bars—50μm. V-vein, VC-VM channel.

(TIF)
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S3 Fig. Specificity of NOTCH3 antibody. Neonatal dermis stained for NOTCH3 (left) and

neonatal dermis stained for NOTCH3 which was blocked by pretreatment with a NOTCH3

blocking peptide (right). A-artery, V-vein. Scale bar—50μm.

(TIF)

S4 Fig. The fetal endothelium expressed NOTCH3. A fetal tissue array was co-stained for

NOTCH3 and CD31. Representative images from adrenal gland, gallbladder, and umbilical

cord shown. Boxed areas are enlarged to the right. Yellow arrowheads mark VECADHERIN-/

NOTCH3+ mural cells, and white arrowheads mark VECADHERIN+/NOTCH3+ ECs. Scale

bars—50μm.

(TIF)

S5 Fig. VM endothelium expresses CD146. A) Representative sections of VMs and control

neonatal dermis co-stained for VECADHERIN and CD146. White arrowheads mark VECAD-

HERIN+/CD146+ cells. A, B) Boxed areas are enlarged to the right. V-vein, VC-VM channel.

Scale bars—50μm. V-vein, VC-VM channel.

(TIF)

S6 Fig.

(TIF)

S1 Table. List of antibodies, sources, and dilutions.

(DOCX)

S2 Table. Summary of NOTCH3 expression in ECs of fetal organs.

(DOCX)
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