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Abstract: Adult human brains consume a disproportionate amount of energy substrates (2–3% of
body weight; 20–25% of total glucose and oxygen). Adenosine triphosphate (ATP) is a universal
energy currency in brains and is produced by oxidative phosphorylation (OXPHOS) using ATP syn-
thase, a nano-rotor powered by the proton gradient generated from proton-coupled electron transfer
(PCET) in the multi-complex electron transport chain (ETC). ETC catalysis rates are reduced in brains
from humans with neurodegenerative diseases (NDDs). Declines of ETC function in NDDs may
result from combinations of nitrative stress (NS)–oxidative stress (OS) damage; mitochondrial and/or
nuclear genomic mutations of ETC/OXPHOS genes; epigenetic modifications of ETC/OXPHOS
genes; or defects in importation or assembly of ETC/OXPHOS proteins or complexes, respectively; or
alterations in mitochondrial dynamics (fusion, fission, mitophagy). Substantial free energy is gained
by direct O2-mediated oxidation of NADH. Traditional ETC mechanisms require separation between
O2 and electrons flowing from NADH/FADH2 through the ETC. Quantum tunneling of electrons
and much larger protons may facilitate this separation. Neuronal death may be viewed as a local
increase in entropy requiring constant energy input to avoid. The ATP requirement of the brain may
partially be used for avoidance of local entropy increase. Mitochondrial therapeutics seeks to correct
deficiencies in ETC and OXPHOS.

Keywords: mitochondria; electron transport chain; oxidative phosphorylation; ATP; brain energy
metabolism; neurodegenerative diseases; oxidative stress; nitrative stress

1. Introduction

A 70 kg human adult nominally makes ~70 kg of adenosine triphosphate (ATP)
per 24 h. Under conditions of normal oxygen availability, most of this ATP is made in
mitochondria by oxidative phosphorylation (OXPHOS) of energy substrates directly or in-
directly created by solar photons through photosynthesis. This amount of ATP (8.31 × 1025

molecules/24 h) requires ~20.8 × 1025 electrons/24 h to be passed through the mito-
chondrial electron transport chain (ETC), when ~2.5 electrons are required for each ATP
generated by ATP synthase under normal coupling. If the adult brain, which comprises
2–3% of body weight, but consumes at least ~20% of molecular oxygen and energy sub-
strates [1], contains on average 86 billion (86 × 109) neurons [2], and if each neuron contains
1000 mitochondria (likely an overestimate), then each neuronal mitochondrion in the brain
must pass on average 1.40 × 107 electrons/s to maintain ATP production. This estimation
is based on glucose utilization/oxygen consumption being split 1–1 between neurons and
nonneuronal cells in the brain and is not corrected for glial generation of lactate (from
glucose) and neuronal metabolism of glial lactate.
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If each neuronal mitochondrion has 104 ETC macrocomplexes (“respirasome”; likely
an overestimate) along the inner membrane cristae, then each ETC macrocomplex passes
~1400 electrons/s (0.0007 s·electron−1) and at least ~7000 protons/s (0.00014 s·proton−1) to
maintain ATP production. (Note that this estimate of proton translocation rate (1.4 × 10−4

s/proton) is comparable to the lower estimate (0.35 × 10−4 s) of proton tunneling time
through an AT base pair in DNA at room temperature [3,4].) These calculations represent
lower-limit averages with debatable assumptions (i.e., likely more protons are translocated),
and they do not include corrections for electron or proton leakage/scavenging, variations
in coupling between electron flow and ATP synthesis, variations in substrate availability,
or other conditions of mitochondrial “health”.

What is apparent from these average estimates of electron and proton velocities (mo-
menta, if particle masses are also considered) is that Nature has designed in mitochondria
efficient and stereotyped mechanisms for controlling electron and proton flow to transform
potential energies of solar photon-derived small molecules acquired by photosynthesis into
ATP. One intriguing but unresolved question is whether mitochondria ultimately represent
an organelle mediating a transition between quantum and classical behaviors of electrons
and protons. Again, note that several-fold more protons are pumped than electrons are
passed to maintain ATP production.

The ETC/OXPHOS process in mitochondria is therefore critical to energy metabolism
in the brain. The mitochondrial ETC/OXPHOS process is also damaged during human
aging, mainly as a result of consuming so much oxygen, leading to “oxidative stress”. Such
damage is particularly meaningful for brain energy metabolism and may account for the
increased incidence of degenerative brain diseases associated with aging.

2. Quantum Tunneling of Protons and Electrons in Mitochondria

Electrons (mass = 9.11 × 10−28 gm) and protons (mass = 1.67 × 10−24 gm) are both
quantum entities that are best described as waves existing in probabilistic vector spaces
(“quantum fields”) with “spin” one-half and are either elementary particles (electrons) or
composed of quarks (protons) in the standard model. These “waves” become “particles”
upon certain types of detection, potentially explaining the wave–particle duality universally
observed in quantum entities since their descriptions in the early 20th century (see [5]).

According to the Heisenberg uncertainty principle, the locations and momenta of
electrons and protons cannot be precisely known at the same time, at least when moving
through empty space. Yet contemporary descriptions of mitochondrial function appear to
violate this principle, and it is critical that the momentum-location constraints on electrons
and protons be kept in mind as mitochondrial ETC activity is analyzed.

It is likely, though not proven, that proton pumping (mitochondrial proton-coupled
electron transfer (PCET)) occurs in Complex I through protein subunits separable from
those mediating electron transport [6]. These proton-pumping complexes appear to be
composed of the seven hydrophobic Complex I subunits coded by the mitochondrial
genome (mtDNA) [6]. If this formulation is correct, then damage/mutations to mtDNA (at
least to the seven Complex I subunits) will selectively affect proton pumping rates and not
directly alter ETC catalytic rates.

Although the electron acceptor molecule (ubiquinone) for electron flow in Complex I
is well characterized, there does not appear to be a separate proton acceptor molecule in the
intermembrane space, other than water molecules. Because the downstream ATP synthase
rotor head (for OXPHOS) appears to accept only protons (not hydrated protons, [7]), this
situation begs the question of how pumped protons are “protected” from hydration by
water molecules in the mitochondrial intermembrane space. (Note that proton solvation
by water is very energetically favorable with Free energy ~266 kcal/mol.). Perhaps there
exists an as of yet unknown proton acceptor molecule in the intermembrane space (other
than water) with different thermodynamics of proton binding? An alternative mechanism
proposed by Leone, et al. [7] is that the rotor arms of ATP synthase operate using a gradient
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of un-hydrated protons bound to carboxylate anions, with water molecules separately
bound to the rotor arms.

3. Decoherence

It is debatable as to whether decoherence occurs to a significant degree in mitochondria.
Stated simplistically, decoherence (loss of “quantum-ness”) occurs when there is interaction
of quantum entities with non-quantum, classical macroscopic objects such that quantum
behavior is reduced or lost [8]. Mitochondria may properly be considered macroscopic
entities; whether Complex I iron–sulfur centers with low energy molecular orbitals that
are separated by 14 angstroms or less, and thus form “wires” for conducting electrons,
meet the same criterion is debatable. The addition of nearby water molecules arranged in
tandem appears to provide a pathway for electron tunneling through these wires, which
reduces activation energies (thus increasing rates) but theoretically has no effect on the
energetics of electron movement ([9] and references therein).

Tunneling is the phenomenon of quantum entities appearing to pass through energy
barriers due to their wave properties and small (nonzero) probabilities (wave function
(Ψ2)) of existing on either side of barriers defining an energy well [10] (also, see Figure 1).
Tunneling is considered to be a quantum phenomenon; thus, if decoherence is dominant in
mitochondrial ETC function, then tunneling is less probable. Contrarily stated, the greater
the quantum-ness of ETC behavior, the greater the probability that tunneling may occur.
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Figure 1. Cartoon of proton tunneling. Protons pumped from the mitochondrial matrix into the intermembrane space (IMS)
must overcome electrostatic repulsion of other protons (already in the IMS?) and likely avoid “irreversible” solvation by
water. These are but two of likely several energy barriers that protons must overcome, and “quantum tunneling” may
provide a mechanism to overcome energy barriers experienced by protons moving into the IMS and increase rates of
proton pumping.

Shown in Figure 1 are protons (purple spheres) moving as a sine wave through barriers
of variable thickness. Mathematically, quantum tunneling may be viewed as follows: Let P
be the probability of a particle with mass m and energy E passing through a barrier with
energy V :

P = exp
(
−4απ

h

√
2m(V − E)

)
(1)



Biomedicines 2021, 9, 225 4 of 20

where V is the energy of the potential barrier, E is the kinetic energy possessed by the parti-
cle, α is the thickness of the barrier, m is mass of the particle (in the case of protons, mass =
1.67 × 10−24 gm), and h is Plank’s constant (6.626 × 10−34 m2·kg/s). (Above taken from
ChemLibre Texts: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_
Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry/
Quantum_Mechanics/02._Fundamental_Concepts_of_Quantum_Mechanics/Tunneling (ac-
cessed on 21 February 2021)). (The above are taken from [9]).

By this formula, decreasing barrier thickness (α) will increase the probability of tun-
neling through an energy barrier. This is presented in Figure 1.

Electron tunneling in Complex I was recently reviewed [9] (and references therein).
Proton tunneling has been described in laboratory experiments, typically performed at very
cold temperatures and high pressures [11]. Proton tunneling in mitochondrial ETC has
not been described but has been proposed to occur through hydrogen bonds in replicating
DNA molecules as a mechanism of spontaneous DNA mutation [3]. Proton tunneling may
also occur in the “Grotthuss” mechanism of “proton jumping”, whereby protons move
through a hydrogen bond network of adjacent water molecules [12,13].

PCET [14] has been proposed (at least in X-ray resolved crystals of bacterial Complex
I) to occur by the combination of electrostatic charge-mediated conformational change
in tertiary structure of proton channels following reduction of ubiquinone [15,16]. By
this “action at a distance” mechanism, channels in proton-pumping Complex I subunits
(see Figure 2) are opened as a result of two electron reduction of ubiquinone following
attachment of NADH to its binding site in the matrix side of Complex I and oxidation of
NADH to NAD+ with reduction of attached FMN cofactor, followed by passage of the two
resulting electrons to ubiquinone to form ubiquinol.

The energetics of ubiquinone reduction theoretically drive the translocation of protons
across the inner membrane through proton channels in Complex I subunits “opened” by
ubiquinone reduction, but a simpler proton tunneling mechanism may be operative and
contribute to the overall PCET rate of Complex I (please also see [6,15–17]). Note that the
proposal of proton tunneling does not change the bioenergetics, which depend on the free
energy of ubiquinone reduction to ubiquinol, but proton tunneling could lower activation
energy of proton passage and thus increase the rate of proton pumping. Ubiquinone
reduction-induced conformational changes (“action at a distance”) and proton tunneling
could synergistically work together to induce Complex I proton displacement, such that
proton pumping would not be rate limiting in Complex I PCET. (Please see Figure 2 for a
current model of Complex I subunits mediating proton pumping).

Which mechanism might be affected in neurodegenerative diseases (NDDs) (if either
mechanism is even operative) is unknown. The possibility should also be considered that
proton pumping is not directly affected by NDD pathobiology, and that the major deficit
leading to a reduced rate of ATP synthesis is lowering of electron transport rate. Finally, we
are aware of no data supporting or refuting the existence of electron quantum tunneling in
the other ETC complexes (beyond Complex I, which has been crystallized) and no data
supporting or refuting the existence of proton quantum tunneling in any ETC Complex.

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry/Quantum_Mechanics/02._Fundamental_Concepts_of_Quantum_Mechanics/Tunneling
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry/Quantum_Mechanics/02._Fundamental_Concepts_of_Quantum_Mechanics/Tunneling
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry/Quantum_Mechanics/02._Fundamental_Concepts_of_Quantum_Mechanics/Tunneling
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Figure 2. Overview of Mitochondrial Electron Transport Chain ETC/Oxidative Phosphorylation (OXPHOS) and ATP
Production. (A). (left) Linear representation of the mitochondrial ETC/OXPHOS system. Shown are the 5 mitochondrial
complexes involved in ETC/OXPHOS. In pink are the 13 individual protein subunits derived by transcription of mtDNA
genes (usually maternally derived) and translated in the mitochondrial matrix. In blue are the protein subunits derived from
nDNA (paternally and maternally derived) that are synthesized in the cytosol and imported into mitochondria. Mammals
are now thought to have a total of 45 subunits in Complex I (7 from mtDNA, 38 from nDNA). In the brain, glucose is
believed to be the major carbon energy source that is transformed to ATP. In other tissues, mitochondria can metabolize fatty
acids and amino acids. Glucose (6 carbons) is broken down outside of mitochondria into 2 pyruvate molecules (3 carbons
each) by glycolysis, and the resulting pyruvate is imported into the mitochondrial matrix by specific pyruvate carrier
proteins that span the relatively protein-rich outer mitochondrial membrane (OMM), the intermembrane space (IMS), and
the relatively lipid-rich inner mitochondrial membrane (IMM). Once in the matrix, pyruvate is oxidatively decarboxylated
by the tricarboxylic acid cycle (TCA cycle), yielding reducing electrons that in pairs reduce the electron carrier NAD+ to
NADH. NADH is subsequently oxidized back to NAD+ at Complex I (thus its name, NADH-NAD oxidoreductase) and
transfers its two electrons to flavin mononucleotide (FMN) that is embedded in the hydrophilic (matrix) arm of Complex
I. FMN then passes these two electrons through the Fe–S centers of Complex I to reduce the electron carrier ubiquinone
to ubiquinol. This reaction provides the initial free energy that is used for proton pumping. Ubiquinol is reoxidized to
ubiquinone at Complex III, where a separate electron carrier in the IMS, cytochrome C, is reduced. Reduced cytochrome C
is reoxidized at Complex IV, giving up electrons that participate in the reduction of molecular oxygen to water. Protons are
pumped into the IMS at Complexes I, III, and IV (none at Complex II, now regarded as a component of the TCA cycle),
and the resulting proton gradient is used to drive ATP production by Complex V. (B). (right) Cartoon showing separate
ETC and proton-pumping components of Complex I (taken from Figure 6 of [6]). Shown are the embedded FMN moiety
and the nine Fe–S centers that pass electrons through Complex I (orange circles), leading to reduction of ubiquinone to
ubiquinol. Additionally shown are the proposed separate proton-pumping subunits of Complex I that consist of proximal
(PP) and distal (PD) subunits that are both believed to be located primarily in the lipid IMM and are in turn composed of the
7 hydrophobic proteins coded by mtDNA and 8 or 12 proteins coded by nDNA, respectively. Proton tunneling into the IMS
may occur at these sites.

4. Entropy and Neurodegeneration

Whatever origin of the observable universe hypothesis one subscribes to, all can
agree that the cosmological evidence supports the ongoing expansion of the observable
universe with a resulting steady increase in entropy. Earlier thermodynamic theorists
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(such as Clausius) describing the varying forms of this “Second Law of Thermodynamics”
developed the concept that the entropy in the Universe may remain constant but is more
likely constantly increased, regardless of what happens locally.

The human brain and its ~86 billion neurons display a marked (increase in or-
der)/(decrease in disorder) that represents thermodynamically a decrease in entropy of
cellular molecules. In fact, all cells, and life forms themselves, represent a reduction in
molecular entropy; from this perspective, cell and organismal death can be viewed as an
(inevitable) increase in molecular entropy.

Might neurodegeneration and neuronal death also be viewed as a local increase in
entropy, driven ultimately by a reduction in energy input, whatever the “genesis” cause(s)
of the bioenergetic deficit? By this paradigm, neuronal death and its attendant increase
in molecular entropy would be thermodynamically favored, independent of whether it
occurred during “life” or after organismal “death”. If occurring during life, then a clinical
phenotype is generated that can be discerned (i.e., loss of cognitive capacity in Alzheimer’s
disease (AD); loss of smooth voluntary movement in Parkinson’s disease (PD); loss of
muscle mass and appearance of weakness in amyotrophic lateral sclerosis (ALS), etc.).

If this paradigm is true, then prevention of neuronal death (in NDDs) can be viewed
as a thermodynamic problem with potential thermodynamic solutions. For example,
energy input, which is already disproportionately elevated in adult human brain, could
be increased by processes that stimulate mitochondrial energy transformation and ATP
synthesis. One could also attempt to increase synaptogenesis and size/interactions of
neuronal networks (which should also reduce neuronal molecular entropy). However, we
wish to note that no reported therapeutic strategies derived from the above thermodynamic
hypothesis of neuronal death have yet been published.

5. Oxidative Phosphorylation (OXPHOS) Alterations in NDDs

OXPHOS is an evolved process in which electron flow through the ETC is coupled to
proton translocation from the mitochondrial matrix to the intermembrane space, creating a
proton and pH gradient between the mitochondrial matrix and intermembrane space. The
resulting proton gradient is used to rotate the arm of ATP synthase, an evolutionarily old
enzyme [18] that appears to require non-hydrated protons to operate [7] (see above). As
discussed previously, this PCET may utilize proton tunneling and/or structural alterations
in proton-pumping subunits of the ETC (at least for Complex I).

Because electron flow (at least in Complex I) is believed to use a tunneling mechanism
(for discussion see [9] and references therein), structural alterations to proteins critical to
electron tunneling may result in reduced rates of electron flow, leading to reduced rates of
proton pumping and ATP synthesis. This could result in a bioenergetic deficiency state,
based on maintaining a minimum rate of ATP synthesis necessary for neuronal functions
(see above). By this mechanism, proton pumping (PCET) would not be mechanistically
impaired per se, just reduced in rate.

In NDDs variable reductions in ETC rates at one or more specific complexes have been
described. Epigenetic modifications potentially responsible for these reductions include
pre-transcriptional changes to genes such as gene methylation and histone modifications
that affect gene promoter or repressor activities. Epigenetic alterations have been de-
scribed in amyotrophic lateral sclerosis (ALS, [19]), Parkinson’s disease (PD, [20–28]), and
Alzheimer’s disease (AD, [19–22,25,28–35]). In many studies, cell or animal models of
NDDs are utilized, with the understanding that similar phenomena may occur in the more
common sporadic forms of each NDD.

Reductions in bioenergetics may also derive from nitrative damage to proteins, particu-
larly to nitration of tyrosine residues by peroxynitrite anion (ONOO−). So-called “nitrative
stress”, which is frequently found in models that demonstrate “oxidative stress”, have been
described in ALS [36–43], AD [36,37,40,44–55], and PD [36,37,40,42,44,53,55–73] tissues.

Oxidative stress (OS) is the condition where production rates of oxidizing
species exceed rates of inactivation. Oxidizing species may damage lipids, nucleic
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acids, and proteins and thus are potentially toxic to cells and energy production at
several levels. Because most molecular oxygen is utilized by mitochondria for ETC
activity (and is reduced to water), mitochondria are particularly susceptible to OS.
OS damage has been described in ALS [74,75], AD [31,35,44,45,50,52,53,55,76–89],
and PD [24,36,53,55–57,60,62–67,71,77,90–97] tissues and models.

6. Summary of ETC-OXPHOS

The human brain has disproportionately elevated (~10-fold, relative to mass) energy
substrate and oxygen consumption rates. These elevated metabolic rates in brain likely
depend on electron and proton tunneling in mitochondria, although neither of these
processes has been conclusively demonstrated to occur. Mitochondria can be viewed as
transitional organelles that bridge the quantum world of very small wave-particle behavior
and the classical world of decoherent larger, more macroscopic structures such as cells.

Photosynthesis yields both the small molecules that directly or indirectly drive mi-
tochondrial electron transport and the toxic by-product (molecular oxygen) that is an
excellent electron acceptor (oxidant) for terrestrial life. The highly electrophilic nature of
molecular oxygen requires “protection” of reducing equivalents (as mainly NADH) and
competes with ETC thermodynamics to yield oxygen free radicals. These free radicals
must be detoxified or they will damage cellular constituents (proteins, lipids, nucleic acids)
and can combine in several ways with other molecules to yield nitrogen–oxygen toxins
(“nitrative stress”).

Protons pumped into the intermembrane space theoretically require protection from
thermodynamically favorable hydration, since non-hydrated protons appear to be favored
for driving the ATP synthase rotor [7]. How this occurs is presently unknown but may
require anatomic proximity of ATP synthase rotor proton-binding sites to proton-pumping
sites or an as yet unknown proton solvation system other than water alone. An alternative
mechanism presented by Leone et al., involves carboxylate protonation (by non-hydrated
protons) and binding of water (from hydronium ions) to ATP synthase [7]. By this mech-
anism, hydrated protons could drive ATP synthase, but the H3O+ ions would dissociate
rapidly into H+ and H2O that would separately bind to ATP synthase.

These massive energy transformation systems appear to be damaged in neurodegener-
ative diseases (NDDs), at least in terms of ease of detecting epigenetic alterations/oxidative
stress damage/nitrative stress damage. The result could be a reduction in neuronal ATP
synthesis rate, with neuronal dysfunction leading to emergence of early clinical phenotypes
and an ultimate increase in entropy following neuronal death or even autophagic digestion
of organelles (i.e., mitophagy).

Nature was tasked with producing large quantities of ATP that are used by neurons
for many purposes, including the lifetime (usually over many decades) maintenance of
nondividing state and recharging of neuronal potentials where rapid potential swings are
necessary for functions of both individual neurons and neuronal networks. A truly remark-
able system resulted, which appears to fade as organisms age and accumulate biochemical
damages over a lifetime. Whether these aging phenomena can be more successfully con-
trolled and the burden of NDD reduced are future challenges to mitochondrial therapeutics.

7. Brain Mitochondrial Therapeutics

The human brain is one of several tissues that are “non-mitotic”, meaning that the
majority of its cells do not undergo cell division during most of the organism’s lifetime. In
fact, entering the cell cycle is considered a lethal event for mature neurons, compared to
“mitotic” cells of mesodermal and endodermal origins that regularly die, divide, and are
thus replaced.

Even in non-mitotic neurons, mitochondria undergo their own cycles of DNA (mito-
chondrial DNA, mtDNA) replication. While the mechanistic details of mtDNA replication
remain debated, all agree that mtDNA replication is independent of host cell division in
both non-mitotic (should be small or nonexistent) and mitotic tissues.
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We have yet to learn how mtDNA replication is regulated, although some knowledge
exists about the molecules and their hierarchy of control for mtDNA replication. For
instance, mtDNA replication utilizes a DNA polymerase specially synthesized by nuclear
genes for mtDNA replication, coded for by host cells (DNA polymerase gamma) and
imported into mitochondria. There appear to be multiple copies of mtDNA within each
mitochondrion, but it remains unclear how that number is regulated. Additionally, not all
copies of mtDNA within each mitochondrion, and thus within each cell, are necessarily
identical, a condition known as heteroplasmy. In addition, mtDNA appears to have a
higher mutation rate than does nuclear DNA, ascribed to both the relative lack of protective
proteins and limited DNA repair mechanisms.

The thirteen genes encoded by mtDNA (all for ETC/OXPHOS function) are believed
to be translated within the mitochondrial matrix using a genetic code similar to but not
identical with the code used in nuclear DNA–nuclear mRNA translation. Special mito-
chondrial chaperone proteins (again provided by the host cell) appear to assist assembly
of the ETC/OXPHOS complexes that are characterized by many nuclear DNA-encoded
subunits and lesser numbers of more hydrophobic mtDNA-encoded subunits. Again,
several of the regulatory proteins for mtDNA transcription (synthesized from nuclear DNA
genes and imported into mitochondria) are known, but the complete details of regula-
tion of mtDNA transcription and translation/assembly into functioning ETC/OXPHOS
complexes remain unclear.

Mitochondrial therapeutics strategies, in terms of ATP production, are difficult to
implement currently, due mainly to ignorance about details of how mitochondria within
brain neurons (and many other cell types) regulate/are regulated in terms of ETC/OXPHOS
and thus ATP production capacities. Several approaches can be discussed, and this list is
by no means complete:

• Correction of mtDNA mutations
• Correction of mtRNA and/or mitochondrial mRNA errors
• Increase in mitochondrial mass leading to increased ETC/OXPHOS capacity to

make ATP
• Prevention of epigenetic, nitrative stress (NS) and oxidative stress (OS) damage to

ETC/OXPHOS genes or proteins

The above potential strategies relate solely to mitochondrial ETC/OXPHOS function
and not directly to regulation of mitochondrial calcium signaling or cell death initiation,
important mitochondrial functions not addressed in this review.

7.1. Correction of mtDNA Mutations

The development of rapid and relatively inexpensive “next-generation” DNA sequenc-
ing has allowed the development of “3-parent babies” as a viable strategy for prevention
of mtDNA-transmitted mutations. If precautions are taken to screen out mitochondrial
“pseudogenes” (stretches of nuclear DNA containing variable amounts of mtDNA se-
quences [98]), then specific mtDNA mutations can be defined in oocytes of mothers who
have given birth to a child with a mtDNA mutation-derived disease. Because the mother’s
oocytes may contain variable proportions of mutant compared to wild-type mtDNA (recall
heteroplasmy), and because maternal transmission of mtDNA is the rule, implantation
and growth of oocytes containing only wild-type mtDNA and both maternal and paternal
nuclear genomes is now possible with mitochondrial replacement therapy. This can be
accomplished by transferring the maternal meiotic nuclear spindle into a donor oocyte
that contains only wild-type mtDNA (and has its own nuclear meiotic spindle removed),
followed by fertilization with paternal sperm. This technique is referred to as maternal
spindle transfer (MST). An alternative approach is to fertilize a donor oocyte with paternal
sperm, then remove the paternal-donor pronuclei and replace them with pre-fusion mater-
nal and paternal pronuclei. This approach is known as pronuclei transfer (PNT). See [99]
for details. These approaches to a 3-parent baby have been developed, discussed, and
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implemented in the UK by the Newcastle group [99–104] and by the Mitalipov group at
Oregon Health Sciences University [100,105–119].

7.2. Correction of mtRNA and/or Mitochondrial mRNA Errors

The mtDNA genome contains 13 sequences/genes for ETC/OXPHOS proteins that are
made in the mitochondrial matrix, 22 tRNA sequences for ribosomal protein synthesis, and
2 rRNA’s that assist in making ETC/OXPHOS proteins from mtDNA genome sequences
(that first must be transcribed into mtRNAs). Many of the mtDNA mutational errors
that impact translation of mtRNA sequences are mutations in one or more of the tRNA
genes in circular mtDNA [120,121]. In addition, it remains unclear how mitochondria
maintain an adequate supply of tRNAs needed for synthesis of multiple proteins [122].
Post-transcriptional mt-tRNA gene modifications may also play a role in mitochondrial
RNA-based diseases [123].

There are several published reports of correcting mt-tRNA mutation defects, usually
by rescuing the respiratory phenotypes of cells harboring specific mt-tRNA mutations (for
example, see [124]). These are successful but appear to be restricted to specific mutations,
although a more “generic” approach has been reported [125]. This approach utilizes the mi-
tochondrial importation of wild-type tRNAs fused with a mitochondrial importation signal.
Using this approach, the authors were able to partially correct metabolic abnormalities of
cybrid cells carrying mutations for MELAS (mitochondrial encephalopathy lactic acidosis
and stroke) or MERRF (mitochondrial encephalopathy and ragged red fiber disease) [125].

7.3. Increase in Mitochondrial Mass Leading to Increased ETC/OXPHOS Capacity to Make ATP

Mitochondrial mass is controlled by the processes of mitochondrial biogenesis
(also known as mitobiogenesis, increases mitochondrial mass) and mitochondrial au-
tophagy (also known as mitophagy, decreases mitochondrial mass). Both processes
are important for maintaining overall neuronal and cellular bioenergetic function,
are operative under normal circumstances, and can be impaired in certain disease
phenotypes. Several key pathways are known for mitobiogenesis [126–218] and mi-
tophagy [56,61,64,93,139,145,151,163,192,194,195,205,209,213,219–248]. The reader is
directed to comprehensive reviews of these two important subjects (for mitobiogene-
sis: [129,130,136,164,167,192,193], and [211]; for mitophagy: [226,233], and [243]).

An obvious question relates to increasing mass of mitochondria containing damaged
mtDNA. There are at least two related issues to consider. First, increasing mass of impaired
mtDNA-containing mitochondria may improve bioenergetics for the host cell, which
is a desired therapeutic goal. The same argument can be applied to cells containing
mutated nuclear DNA coding for mitochondrial genes. Second, it remains unclear whether
stimulation of mitobiogenesis (or manipulation of mitophagy) will yield net positive or
negative effects on cells harboring a heterogenous collection of mitochondria. It must be
remembered that effects on peripheral tissues do not necessarily extend into brain tissues.

It is likely that such experiments will need to be tested on an individual’s cells before
being applied to that individual. Stimulating mitobiogenesis or manipulating mitophagy
could be performed on white blood cells or muscle cells, both readily accessible tissues that
are mitotic and non-mitotic, respectively. Improvements in respiration or ATP synthesis
rates can be assayed in response to several agents.

7.4. Prevention of Epigenetic, Nitrative Stress (NS) and Oxidative Stress (OS) Damage to
ETC/OXPHOS Genes (Epigenetics) or Proteins (NS and OS)

This final approach represents decades of investigation by many scientists, is potentially
applicable to both specific clinical phenotypes and the broad area of aging, and likely will
continue to be popular in the future. Mitochondrial respiration, particularly in brain neurons
and generally throughout the body, suffers from taking place in environments with relatively
high levels of oxygen molecules and oxygen–nitrogen adducts (such as peroxynitrite anion,
ONOO-), or nitric oxide (NO) itself). In addition, it remains unclear how the > 80 genes
responsible for mitochondrial proteins of the ETC and OXPHOS systems are regulated by
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epigenetics, but recent studies suggest that this does occur and that mitochondrial metabolism
can affect nuclear epigenetics [107,249–252].

There have been many attempts to develop therapies directed toward reduction of
OS and/or NS. The most promising utilize molecules that are either organic cations at
physiological pH, such as pramipexole [253,254], or are attached to “inactive” organic cationic
groups such as triphenylphosphonium (TPP) [255–258] or rhodamine [256,259–262]. The
underlying concepts are that by virtue of lipophilicity, such potential therapeutics can pass
through cell and mitochondrial membranes, and the cationic nature suggests that such
molecules will be concentrated into the relatively negative mitochondrial matrix (a result of
proton pumping).

The OS/NS scavenging molecules must have intrinsic activity and their concentration
into the mitochondrial matrix adds organelle specificity. It is striking that the capacity of
mitochondrially-targeted ROS and RNS ultimately derive from proton pumping across
the inner membrane (responsible for the mitochondria membrane potential), which may
involve several mechanisms of PCET, including proton tunneling.

Both NS and OS have been reduced in brain and specifically human disease mod-
els [39,50,52,53,55,56,67,76,78,80,84,91,94–96,257,262] by such approaches. This thera-
peutic area appears to be popular in attempting to improve mitochondrial bioenergetics
in nervous tissues, as well as other organs.

8. Conclusions

Mitochondria have evolved, likely from protobacterial precursors through endosym-
biosis [263], and now inhabit cells of almost all terrestrial and marine plants and animals,
including humans. In addition to their critical roles in modulating cellular calcium signal-
ing and cell death initiation, mitochondria through ETC/OXPHOS appear to supply most
of the substantial daily ATP requirement for humans. Adult human brain has a ~10-fold
disproportionate (relative to mass) ATP production rate and depends on the stereotyped
movement of reducing electrons down an energy gradient in the ETC and conservation
of this ETC energy decrease by proton displacement across the mitochondrial inner mem-
brane. This electron movement and proton displacement, however they occur, must respect
quantum mechanical constraints.

Both electrons moving through the ETC and proton displacement from the matrix
to the intermembrane space (IMS) may utilize quantum tunneling in addition to other
mechanisms. It is not yet clear whether tunneling occurs at all, but it is a theoretically
appealing mechanism for quantum entities to pass through energy barriers and reduce
activation energies (thus increasing rates of proton transfer).

Mitochondria must likely segregate electrons from electrophilic molecular oxygen and
protons from solvation by water. How these feats are accomplished remains unclear, but
our daily ATP requirements likely require these biochemical gymnastics. Mitochondria
may represent a necessary transitional organelle between the quantum world of elementary
particles and energy-releasing catabolism of molecules created from absorbed solar-derived
photons. Decoherence (loss of quantum-ness) may assist ATP production in mitochondria,
and theoretically its presence may vary with energy needs.

Many neurodegenerative diseases (NDDs) afflicting humans may be viewed ther-
modynamically as increases in molecular entropy during life of the organism as neurons
die. Such local entropy increases may arise from decreased neuronal energy production
traceable to decline of OXPHOS rates. OXPHOS rates in turn depend on availability of
intact ATP synthase complexes and (likely) non-hydrated protons in the intermembrane
space or at the proton-binding sites of the ATP synthase rotor.

Mitochondrial therapeutics can address bioenergetic deficiencies at multiple levels,
from epigenetic changes in mitochondrial and/or nuclear genomes, through measures
to reduce post-translational damage to ETC/OXPHOS proteins. Many such approaches
have been/are being developed, and optimism exists for varied solutions to the human
problems of mitochondrial ETC/OP dysfunction in NDDs.
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