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Abstract: Effective therapies for chronic or non-healing wounds are still lacking. These tissue insults
often result in severe clinical complications (i.e., infections and/or amputation) and sometimes lead
to patient death. Accordingly, several research groups have focused their efforts in finding innovative
and powerful therapeutic strategies to overcome these issues. On the basis of these considerations,
the comprehension of the molecular cascades behind these pathological conditions could allow the
identification of molecules against chronic wounds. In this context, the regulation of the Protein
Kinase C (PKC) cascade has gained relevance in the prevention and/or reparation of tissue damages.
This class of phosphorylating enzymes has already been considered for different physiological and
pathological pathways and modulation of such enzymes may be useful in reparative processes.
Herein, the recent developments in this field will be disclosed, highlighting the pivotal role of PKC α
and δ in regenerative medicine. Moreover, an overview of well-established PKC ligands, acting via
the modulation of these isoenzymes, will be deeply investigated. This study is aimed at re-evaluating
widely known PKC modulators, currently utilized for treating other diseases, as fruitful molecules
in wound-healing.

Keywords: regenerative medicine; chronic or non-healing wounds; protein kinase C (PKC);
re-epithelization; PKC ligands

1. Introduction

Regenerative medicine is a multi-approach branch of translational research, involving both
reparative and regenerative strategies, with the aim to restore the normal functions of damaged tissues.
Wound healing in particular represents an important target of regenerative medicine [1]. Accidental
traumas and/or surgery are the main causes of wounds, even if chronic wounds are often related to
other pathological conditions, i.e., cancer or diabetes [2]. When an injury occurs, the human body
promotes a dynamic process consisting of consecutive phases of inflammation, cell proliferation and
maturation, thus providing wound repair [3]. From a microscopic standpoint, damage triggers a series
of molecular cascades that collimate into self-repair processes; nonetheless, lesions such as chronic or
non-healing wounds (e.g., vascular insufficiency ulcers, diabetic ulcers, pressure sores and radiation
necrosis) do not activate these natural reparative mechanisms [4]. Accordingly, such conditions
often result in severe clinical complications (e.g., infections and/or amputation) and sometimes lead
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to patient death; therefore, regenerative medicine therapies may represent powerful strategies to
circumvent these issues [5]. Nevertheless, the significant percentage of morbidity and relapses, as well
as the high risk of treatment failure, render urgent the need to identify advanced therapies, aimed at
improving the outcome of related conditions and the quality of life of affected patients [6].

The past few years have seen a growing interest in drugs and technologies with the potential
to regenerate and to repair tissues [7]. Related research approaches are numerous, ranging from
treatments with single molecules or peptides to the engineering of entire organs and so far novel and,
at the same time, highly informative mammalian models for wound healing have been developed [8,9].
Several biochemical pathways have been studied for identifying potential targets against chronic
wounds and new small molecules are currently under investigation [9].

In the context of prevention and/or reparation of tissue damages, the activation of the
diacylglycerol (DAG)-protein kinase C (PKC) cascade has gained certain relevance [10] and the
role of PKCs in several physiological and pathological processes has been widely documented [11,12].
The PKC protein family is constituted of serine/threonine phosphorylating enzymes whose activation
via second messenger has direct involvement in the regulation of numerous cellular functions
(i.e., differentiation, metabolism and apoptosis) [13,14]. Ten well-characterized full-length mammalian
isoenzymes have been discovered and grouped into three classes, based on their structural features
and sensitivity to activators: (i) conventional or calcium-dependent cPKCs (α, βI, βII and γ); (ii) novel
or calcium-independent nPKCs (δ, ε, η and θ); (iii) atypical aPKCs (ζ, ι and λ) [15,16] (Figure 1).
Structurally, the polypeptide chain of PKCs presents four conserved domains (C1–C4) linked by a
hinge region. In detail, the N-terminal regulatory region includes the C1 and C2 domains, which
control the kinase activity of the enzyme as well as its subcellular localization. On the other hand,
the C3 and C4 domains form the C-terminal catalytic region and they are broadly known to bind
adenosine-5’-triphosphate (ATP) and substrate proteins, respectively [17–19]. Both endogenous and
exogenous activators of PKCs have been identified so far. In particular, diacyl glycerol (DAG) and
related phorbol esters display high affinity towards the C1 domain (respectively, related subdomains
C1a and C1b) of cPKCs and nPKCs, whereas anionic lipids bind the C2 domain in a Ca2+-dependent
manner (only cPKCs). Still, atypical isoenzymes (aPKCs) are unable to bind either DAG or Ca2+

and they possess a peculiar mechanism of activation involving the formation of protein-protein
structures [20]. Besides, all PKCs present a pseudo-substrate sequence (PS), which maintains the
protein in an inactive state, further regulating enzyme activation [17,21,22].
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Figure 1. General structure of PKCs.

Upon binding of activators, PKCs translocate to the plasma membrane, providing an interaction
with the phospholipidic bilayer. This event results in the pseudo-substrate release from the catalytic
site, thus activating the enzyme [21,22]. Considering the broad involvement of PKCs in fundamental
cell mechanisms, alterations in their signaling cascade may contribute to the etiology of several
diseases (Figure 2) [23–28]. Accordingly, an overexpression of cPKC isoforms in breast, liver, kidney
and prostate cancers has been well documented, whereas high levels of aPKCs have been identified as
hallmark of malignant lung carcinoma [29–33]. It is worth noting that recent studies have shown that
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PKC isoforms involved in tumor genesis are actually inactivated mutations (mainly loss-of-function
(LOF) mutations), thus revealing the importance of PKCs as tumor suppressors [34,35]. Another
aspect to take into account is the strict relation between PKCs and neurodegenerative diseases [36–38].
In detail, under physiological conditions, these isoenzymes modulate the generation of amyloid
precursor protein (APP), promoting the α-secretase activity therefore decreasing the production of
amyloid-β proteins, which are the main macromolecular structures involved in Alzheimer’s disease.
Nonetheless, a strict balance in the activity of PKCs is needed: in fact, recent findings have suggested
the enhanced activity in gain-of-action mutations of PKCα to promote the insurgence of Alzheimer’s
disease by reducing synaptic activity through amyloid-β accumulation. [39]. Additionally, recent
in vitro and in vivo studies have demonstrated the involvement of PKCs, in particular isoform β,
as promoters of diabetic retinopathy, and thus inhibition of this isoform may contribute to erasing this
pathology [40].

In this review, we will focus on the emerging role of the PKC protein family in tissue regeneration,
which has attracted great attention in the last ten years, and we will draw an overview on historical
PKC ligands, from early discoveries to the present. Our aim is to disclose the possible applications of
well-established PKC modulators in regenerative therapy.
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Figure 2. Alterations of PKC signal cascades promote several diseases.

2. PKC Isoenzymes and Their Role in Tissue Regeneration

As stated in the previous paragraph, PKC isoenzymes are involved in a variety of both physio- and
pathological processes and are thus attractive as drug targets. Some compounds, such as ruboxistaurin
and delcasertib (Figure 3), targeting different PKC isoforms, have indeed entered clinical trials for
diverse pathologies (namely, diabetes and related complications, heart diseases and cancer) [41–43];
although promising, most of these molecules failed to complete the clinical development process due
to both unfavorable clinical outcomes and unexpected side effects [28].

Pharmaceuticals 2017, 10, 46 3 of 14 

 

that PKC isoforms involved in tumor genesis are actually inactivated mutations (mainly loss-of-

function (LOF) mutations), thus revealing the importance of PKCs as tumor suppressors [34,35]. 

Another aspect to take into account is the strict relation between PKCs and neurodegenerative 

diseases [36–38]. In detail, under physiological conditions, these isoenzymes modulate the generation 

of amyloid precursor protein (APP), promoting the α-secretase activity therefore decreasing the 

production of amyloid-β proteins, which are the main macromolecular structures involved in 

Alzheimer’s disease. Nonetheless, a strict balance in the activity of PKCs is needed: in fact, recent 

findings have suggested the enhanced activity in gain-of-action mutations of PKCα to promote the 

insurgence of Alzheimer’s disease by reducing synaptic activity through amyloid-β accumulation. 

[39]. Additionally, recent in vitro and in vivo studies have demonstrated the involvement of PKCs, 

in particular isoform β, as promoters of diabetic retinopathy, and thus inhibition of this isoform may 

contribute to erasing this pathology [40]. 

In this review, we will focus on the emerging role of the PKC protein family in tissue 

regeneration, which has attracted great attention in the last ten years, and we will draw an overview 

on historical PKC ligands, from early discoveries to the present. Our aim is to disclose the possible 

applications of well-established PKC modulators in regenerative therapy. 

 

Figure 2. Alterations of PKC signal cascades promote several diseases. 

2. PKC Isoenzymes and Their Role in Tissue Regeneration 

As stated in the previous paragraph, PKC isoenzymes are involved in a variety of both physio- 

and pathological processes and are thus attractive as drug targets. Some compounds, such as 

ruboxistaurin and delcasertib (Figure 3), targeting different PKC isoforms, have indeed entered 

clinical trials for diverse pathologies (namely, diabetes and related complications, heart diseases and 

cancer) [41–43]; although promising, most of these molecules failed to complete the clinical 

development process due to both unfavorable clinical outcomes and unexpected side effects [28]. 

 

Figure 3. Ruboxistaurin and delcasertib have entered in clinical trials. Rottlerin, a PKCδ (nPKC) 

selective inhibitor. 
Figure 3. Ruboxistaurin and delcasertib have entered in clinical trials. Rottlerin, a PKCδ (nPKC)
selective inhibitor.



Pharmaceuticals 2017, 10, 46 4 of 14

Concerning regenerative therapy in particular, despite some pioneer studies on the involvement
of PKC signaling in regenerative mechanisms carried out in the early 90s, the role of PKC isoenzymes
in tissue repair has only started being investigated in depth during the past few years [44].
Recent literature shows that PKC isoforms α (cPKC) and δ (nPKC) are those mainly involved in
the regenerative process, especially associated to aforementioned non-healing or chronic wounds
secondary to conditions such as neuropathy, peripheral vascular disease and insulin resistance typical
of diabetes [45,46]. Herein, we briefly discuss the role of such isoenzymes in re-epitelization and lesion
repair, respectively related to two different intracellular mechanisms.

In 2012, the role of PKCα (belonging to the cPKCs) in the regulation of wound re-epithelialization,
and particularly their influence in the crucial process of cell-cell adhesion, was demonstrated [45].
In normal epidermis, tissue integrity is assured by cell adhesion complexes (desmosomes), which
undergo modifications to guarantee proper repair when wounds occur. In particular, after tissue
damage, desmosomes switch from “hyper-adhesive” and Ca2+-independent to a Ca2+-dependent
behavior. This process seems to be regulated by PKCαwhich, upon translocation to the desmosomal
plaque and activation, mediates the conversion to Ca2+-dependent desmosomes. The correlation
between PKCα and re-epithelization mechanisms was demonstrated through in vitro experiments,
where a selective PKCα inhibitor (Gö6976, Figure 4), caused delay in wound closure. In support of
this evidence, in vivo study on knockout PKCαmice (PKCα−/−) showed that, after incisional lesions,
these animals are unable to promote the re-epithelization processes. Moreover, in bistransgenic mice,
where the constitutively active PKCα is over-expressed, wound healing presented a two-fold increase
compared to wild-type mice. Altogether these results supported the idea that PKCαmodulation is a
possible strategy for promoting epidermal regeneration [45].
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Four years later, the effect of an nPKC, specifically of PKCδ, on wound healing was evaluated [46].
The study performed by Khamaisi et al. focused on the different attitude towards lesion repair of
diabetic and healthy fibroblast. The preliminary observation that fibroblasts involvement in tissue
regeneration is generally due to their paracrine secretion of crucial molecular mediators, such as
angiogenic factors, cytokines and immunomodulators, was the starting point for this investigation [46].
Moreover, the potential of these cells as therapeutic tool, had already brought to fibroblast transplant
being proposed as part of regenerative therapy in wounded patients with interesting results [47,48].

This approach was less effective in diabetic subjects, probably owing to the multiple alterations
determined by diabetes itself, such as abnormal blood glucose levels, impaired Vascular Endothelial
Growth Factor (VEGF) expression levels and PKC activation [49]. Comparing diabetic and healthy
fibroblast, Khamaisi studied the involvement of PKC isoforms in wound healing and hypothesized
that an altered expression/activation of PKCδmay be responsible for the impaired ability of diabetic
fibroblasts in effectively stimulating wound healing as confirmed by in vitro/in vivo analysis [46].
Moreover, treatment with the PKCδ selective inhibitor rottlerin (Figure 3) and with the PKCβ selective
inhibitor ruboxistaurin (Figure 3), confirmed that the isoform δ is the mainly involved in wound healing
processes, in fact ruboxistaurin failed to reproduce the effects exerted by rottlerin [46]. Altogether,
these data suggested the central role of PKCδ in the impairment of healing ability of diabetic fibroblasts.
The hypothesis was confirmed in vivo, through transplant in nude mice of either control or diabetic
fibroblasts both presenting inhibited PKCδ; such inhibition significantly improved the healing ability
upon wounding, as well as increased VEGF expression and neovascularization. Given the final
evidence collected through experiments on murine models of diabetes (STZ-induced diabetic mice),
the authors concluded by proposing transplant of fibroblasts where activation of PKCδ has been
blocked ex vivo as possible therapeutic tool for promoting wound healing in diabetic subjects [46].

To sum up, PKCα and PKCδ seem to be valuable targets for promoting tissue regeneration and
ligands selective towards PKCα and PKCδmay then represent innovative drugs for the treatment of
chronic or non-healing wounds. To stimulate the interest of medicinal chemists in developing novel
selective PKC ligands, in the next section an overview of the most relevant compounds discovered so
far will be discussed.

3. PKC Ligands

The most common target of PKC ligands is the highly conserved ATP-binding C3 domain,
common to several protein kinases and accordingly, molecules active on this site are characterized
by lack of selectivity [47]. Differently, PKC regulatory domain C1 constitutes an intriguing
pharmacological target for the development of new selective ligands. This domain is tightly related to
PKC activation and it is only shared with six other non-PKC small kinase families (PKD, chimaerins,
the guanyl nucleotide-releasing proteins (RasGRPs), the Unc-13 scaffolding proteins, the myotonic
dystrophy kinase-related Cdc42-binding kinases (MRCKs), DAG kinase (DGK) isoforms β and γ)).
In the last decade, numerous efforts for the design of new ligands have focused on domain C1 that
displays higher variability among PKC isoforms [50]. Moreover, the co-crystal structure of PKC δ

domain C1 with phorbol-13-O-acetate (PDB code: 1PTR) has been solved, allowing for a rational drug
design approach to access new PKC modulators [50]. Hereinafter, a concise and detailed overview
of the principal classes of PKCs α and δ ligands targeting domains C3 and C1 will be reported in
chronological order.

3.1. C3 Domain Ligands

As previously stated, the majority of current PKC ligands target the catalytic ATP-binding C3
domain; however, since this domain is highly conserved among different protein kinase families,
selectivity is still a crucial issue [47,51]. Accordingly, the scientific community has focused its attention
on identifying molecules able to selectively interact with the ATP-binding site of PKCs. Among the
plethora of well-established PKC C3 domain ligands, Staurosporine (Figure 4) and its derivatives
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are the most studied [51–53]. This natural compound isolated from the bacterium Streptomyces
staurosporeus [54] is now commercially available as a potent, non-selective PKC inhibitor. Given
its high structural complexity, several research groups have oriented their efforts to designing
and synthesizing novel derivatives in the attempt to improve PKC subtype selectivity. In virtue
of their chemical structure, they can be grouped into two main classes: (i) bisindolylmaleimides
and (ii) indolocarbazoles. Hereinafter, we report the most representative compounds for each
group (Figure 4).

Structurally related compounds Gö6983 and BisI, belonging to bisindolylmaleimides, have
shown good selectivity for PKC over other kinases, especially towards conventional and novel
isozymes (Figure 4) [52,55,56]. Interestingly, they do not interact with closely related PKA and
PKD. From a pharmacological standpoint, these PKC inhibitors, endowed with high affinity towards
different isoenzymes (pan-PKC ligands), have a crucial role in myocardial dysfunctions, promoting
cardio-protective effects. Compounds Ro-31-8220 and Ro-32-0432, designed by Roche, are commercially
available as PKC inhibitors and associated literature collected during the past years shows their
usefulness as a pro-apoptotic and anti-inflammatory agent respectively [53,57].

Concerning the indolocarbazole class, compound Gö6976 has emerged as a potent and selective
inhibitor of conventional PKC isozymes [52,55,58,59]. It possesses a wide spectrum of therapeutic
applications, exerting both cytotoxic effects towards cancer cells and and anti-viral action. Moreover,
as mentioned in the previous paragraph, Gö6976 activity has been exploited in a study aimed at
correlating PKCα and re-epithelialization, demonstrating that inhibition of this peculiar isoform
prevents human keratinocyte migration and thus delays tissue repair [45]. The ability of Gö6976 in
thwarting cell migration was reported in another study focused on verifying the relation between
PKCα and wound-healing. In detail, upon treatment with carbon monoxide, this molecule inhibits
murine gastric cell repair [60].

Another important ligand of the PKC catalytic domain is riluzole (Figure 5), commonly used in the
treatment of Amyotrophic Lateral Sclerosis (ALS) [61,62]. In general, the neuroprotective mechanisms
associated to riluzole may be ascribed to its antagonistic effect against glutamate receptors [61,62].
Nevertheless, recent studies have highlighted that such compound may inhibit PKC within the
catalytic domain, leading to the enancement of the glial glutamate transporter (the excitatory amino
acid transporter type 2 (EAAT2)) thus producing antioxidative neuroprotective effect [63].
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In the last decade, new selective modulators of the ATP-binding site have been discovered
through a mechanism-based approach. The most characteristic class of new ATP-binding site ligands
is represented by bisubstrate analog inhibitors. The rationale behind these compounds takes into
account the possibility to inhibit PKCs by targeting both C3 and C4 domains [64–67]. In fact, these
molecules present one portion mimicking the phosphate donor region (ATP) and one the acceptor (Ser-,
Thr-, or Tyr-containing peptides) bridged by a spacer (Figure 6). Accordingly, these ligands are able to
disrupt signal transduction pathways by exploiting two binding sites and even more they may enhance
selectivity. Generally, this class of compounds includes sulfonamides, sulfonylbenzoyl, carboxylic
acid, dipeptidyl and N-acylated peptide, phosphodiester derivatives. In Figure 6, we illustrate two
examples highly selective for PKCα (1 and 2), which present the described structural features [64–67].
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3.2. C1 Domain Ligands

The most studied non-endogenous-PKC activators targeting domain C1 are the natural
compounds phorbol (general structure I) and bryostatin-1 [68,69] (Figure 7). Phorbol is a tetracyclic
diterpene derived from the plant Croton tiglium L. In particular, phorbol 12,13-dibutyrate (PDBu) is an
ester derivative with optimized potency and solubility which was employed to prove the importance
of PKC in cell proliferation and cancer [70]. On the other hand, bryostatin-1 is a macrolide isolated
from marine bryozoan Bugula neritina in 1967; considering the low efficiency of bryostatin extraction
from its non-renewable natural sources and its challenging synthesis, researchers have produced a
series of synthetic simplified analogues [71–75] (Figure 7). Among them, compound 3 has shown
interesting selectivity toward novel PKC isoforms (δ, ε) [74].
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Other C1 ligands isolated from natural sources and structurally related to phorbol are teleocidine
B-4 and aplysiatoxin (ATX) [76,77] (Figure 8). Regardless of their promising ability to interact with
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PKC isoforms, the carcinogenic properties of these molecules have harshly limited their utility [78,79].
Several synthetic efforts have been employed to overcome this significant drawback through the
development of new derivatives based on these natural scaffolds. In this context, Irie et al. designed
and synthetized various indolactam and benzolactam analogues of teleodicin B-4 (general structures
II and III, Figure 8 [80–83]. Related SAR studies allowed the identification of promising compounds
endowed with good affinity and selectivity towards conventional (PKC α, β) and novel isoforms
(i.e., PKC δ, ε). Moreover, some of these investigations successfully assessed the compounds affinities
towards C1a and C1b sub-domains [80–83]. The most effective synthetic derivatives of each class
(compounds 4–8) are reported in Figure 8. Concerning ATX derivatives, compounds 9 and 10 (Figure 8)
are noteworthy for their antiproliferative properties and their high affinity towards the C1 domain of
nPKCs, particularly PKCδ [84].
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Keeping in mind that DAG is the endogenous substrate of cPKCs and nPKCs, another strategy to
develop new C1-ligands exploits the use of DAG derivatives [50]. Accordingly, the group of Blumberg
and Marquez synthesized a new series of DAG-lactones (general structure IV, Figure 9) with the
aim to reduce the entropic penalty associated with the flexible glycerol backbone of DAG [85,86].
Interestingly, the rigid DAG-analogues displayed affinity in the nanomolar range for PKC α and δ,
acting as antiproliferative and pro-apoptotic molecules, in the best cases with Ki values lower than
10 nM (compounds 11 and 12). Despite these valuable results, the lack of selectivity over other kinases
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is still an important issue to consider; in fact, these molecules also showed extremely good affinity
towards RasGRPs 1 and 3, due to the presence of the C1 domain [87,88].

In 2006, Lee et al. designed and synthesized 2-phenyl-3-hydroxy propyl pivalates (general
structure VI, Figure 9), which combined the main pharmacophore features of both DAG and phorbol
esters, to identify novel small molecules with high affinity towards PKC α. Related in vitro and in
silico assays showed that through the whole series, compound 13 is the most active with a Ki value in
the submicromolar range [89]. On the basis of these interesting data, our research group synthesized
a small library of 13 analogues (general structure VII, Figure 9) - ester and amide derivatives—in
order to understand which structural modifications on the pivalate template could cause retention
or enhancement of affinity towards the C1 domain of PKC. From in vitro and in silico evaluations,
compound 14 emerged for its good binding affinities towards PKC α and δ, which resulted comparable
to compound 13 [90].

Another class of new synthetic compounds includes isophthalate derivatives (general structure
VII, Figure 9) designed by Yli-Kauhaluoma et al. through a structure-based approach, easily
prepared through four synthetic steps [91]. These molecules are DAG phenylogs, where phorbol
ester pharmacophore features are maintained. Biological investigations have disclosed their ability to
promote neurite outgrowth via the activation of PKC αwith Ki values ranging from 210 to 920 nM [91].
In particular, compounds 15 and 16 emerged as the most effective compounds (Figure 9) [92].
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4. Conclusions

Drugs which benefit wound healing are of high interest to both academia and the pharmaceutical
industry. The discovery of effective drugs for the treatment of chronic or non-healing lesions is
still a challenge and, as illustrated throughout the present work, further studies on the mechanisms
involved in wound healing are still required. Considering the link between PKCα and PKCδ and
tissue regeneration pathways, here we propose the identification of novel ligands selective towards
PKCα and PKCδ, as a promising strategy for promoting wound healing. The re-evaluation of some
well-established PKC ligands already studied for the treatment of different pathologies could be useful
as well, as the case-study of riluzole demonstrated. Indeed, riluzole is a well-established drug for
treating amyotrophic lateral sclerosis which has been recently proposed for the treatment of diabetic
rethinopaty, thanks to its inhibitory effect on PKC.

To fully exploit the potential impact of such approach in wound healing therapy, ad-hoc small
molecules should be developed. We believe that the combination of selective PKC modulators with
appropriate wound dressing materials could lead to effective therapies able to satisfy the still unmet
needs of this area.
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