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An RNAi-mediated screen identifies novel targets for next-generation
antiepileptic drugs based on increased expression of the homeostatic
regulator pumilio
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ABSTRACT
Despite availability of a diverse range of anti-epileptic drugs (AEDs), only about two-thirds of epilepsy
patients respond well to drug treatment. Thus, novel targets are required to catalyse the design of
next-generation AEDs. Manipulation of neuron firing-rate homoeostasis, through enhancing Pumilio
(Pum) activity, has been shown to be potently anticonvulsant in Drosophila. In this study, we performed
a genome-wide RNAi screen in S2Rþ cells, using a luciferase-based dPum activity reporter and identi-
fied 1166 genes involved in dPum regulation. Of these genes, we focused on 699 genes that, on knock-
down, potentiate dPum activity/expression. Of this subgroup, 101 genes are activity-dependent based
on comparison with genes previously identified as activity-dependent by RNA-sequencing. Functional
cluster analysis shows these genes are enriched in pathways involved in DNA damage, regulation
of cell cycle and proteasomal protein catabolism. To test for anticonvulsant activity, we utilised an RNA-
interference approach in vivo. RNAi-mediated knockdown showed that 57/101 genes (61%) are suffi-
cient to significantly reduce seizure duration in the characterized seizure mutant, parabss. We further
show that chemical inhibitors of protein products of some of the genes targeted are similarly anticon-
vulsant. Finally, to establish whether the anticonvulsant activity of identified compounds results from
increased dpum transcription, we performed a luciferase-based assay to monitor dpum promoter activ-
ity. Third instar larvae exposed to sodium fluoride, gemcitabine, metformin, bestatin, WP1066 or
valproic acid all showed increased dpum promoter activity. Thus, this study validates Pum as a favour-
able target for AED design and, moreover, identifies a number of lead compounds capable of increasing
the expression of this homeostatic regulator.
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Introduction

Epilepsy is a common neurological disorder characterized by
recurrent and unprovoked seizures. The causes of epilepsy
are varied with, perhaps, the majority being due to gene
mutations. To date upwards of 500 genetic loci have been
identified as contributory to epilepsy (Noebels, 2015).
However, while the primary cause of epilepsy varies, a prin-
ciple commonality underlying seizure generation is neuronal
hyperexcitability and/or synchronicity of activity. A hyperac-
tivate state invariably occurs due to either increased excita-
tory or decreased inhibitory synaptic neurotransmission,
which itself is often caused by altered kinetics of voltage-
gated ion channels in either excitatory or inhibitory neurons
(Bradford, 1995; Lin and Baines, 2015; Turrigiano and
Nelson, 1998). Additional changes in either intra- or extra-
cellular ion concentrations can also lead to altered signalling
through wild-type ion channels. For example, mutations in
the Kþ/Cl� co-transporter NKCC1 can result in GABA-
induced excitation instead of inhibition (Lykke et al., 2016).

It is not surprising that a majority of AEDs target ion
channels or neurotransmitter signalling to limit neuronal
hyperexcitability. Primary targets include voltage-gated Naþ

channels (e.g. phenytoin and carbamazepine), GABA-signal-
ling, (e.g. gabapentin, vigabatrin, tiagabine) and synaptic ves-
icle protein 2A (levetiracetam) (Klitgaard et al., 2016; Lason,
Chlebicka, & Rejdak, 2013). However, despite the availability
of a wide range of AEDs, only about two-thirds of epilepsy
patients respond to drug treatment. Because of this, there is
a clear and currently unmet clinical need for next-generation
AEDs that modify novel targets. Exploitation of model
organisms such as Caenorhabditis elegans, Drosophila mela-
nogaster and Danio rerio offer the possibility to accelerate
the identification of novel targets. The high degree of conser-
vation in CNS development and function across animals
makes these ‘simpler’ models highly attractive for drug
development. In addition to being suited for high-through-
put screening, seizures can be induced in these models using
the same methods that prevail in rodents; proconvulsants,
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electroshock or genetic modification of homologous genes
(recently reviewed in: Baines, Giachello, & Lin, 2017;
Copmans, Siekierska, & de Witte, 2017; Takayanagi-Kiya
and Jin, 2017).

We have recently reported a novel approach to control
seizure behaviour in Drosophila which, initial studies
suggest may be applicable to humans. In brief, pan-neuronal
up-regulation of dpum is sufficient to dramatically reduce
seizure duration in a range of bang-sensitive (bs, seizure)
mutations (specifically, parabss, easilyshocked and slamdance)
(Lin, Giachello, & Baines, 2017). Pum is a key component of
a neuronal homeostatic mechanism (termed firing-rate hom-
oeostasis) that maintains action potential firing within
physiologically-appropriate limits (Mee, Pym, Moffat, &
Baines, 2004; Muraro et al., 2008). Pum is a member of the
Pum and FBF (PuF) RNA-binding protein family and is evo-
lutionarily conserved in many species including flies and
mammals (Wickens, Bernstein, Kimble, & Parker, 2002;
Zamore, Williamson, & Lehmann, 1997). By binding an
eight nucleotide sequence in mRNA (UGUA(A/U/C)AUA),
termed a Pum Response Element (PRE), Pum represses
translation and reduces protein synthesis (Arvola,
Weidmann, Tanaka Hall, & Goldstrohm, 2017; Wharton,
Sonoda, Lee, Patterson, & Murata, 1998; Wreden, Verrotti,
Schisa, Lieberfarb, & Strickland, 1997). Pum activity is regu-
lated by neuronal depolarization: increased synaptic excita-
tion elevates Pum expression and increased translational
repression of voltage-gated sodium channel (Nav) transcripts.
This is sufficient to reduce neuron Naþ current (INa) and
action potential firing (Mee, et al., 2004; Muraro, et al.,
2008). An identical mechanism, mediated by the homologue
Pum2, acts to repress translation of mammalian Nav mRNA;
specifically scn1A and scn8A (Driscoll, Muraro, He, &
Baines, 2013; Vessey et al., 2006). Indeed, it is now widely
believed that without homoeostatic regulation of neuron
excitability, chronic changes in levels of synaptic excitation
would destabilise neural circuits leading to an imbalance in
the excitation-inhibition balance (Giachello and Baines,
2017). In this regard, it is intriguing that Pum expression is
down-regulated in fly seizure mutants, rat induced-seizure
models and in human temporal lobe epilepsy (Lin, et al.,
2017; Wu et al., 2015). Pum2 knockout mice also show
spontaneous seizures (Follwaczny et al., 2017; Siemen, Colas,
Heller, Brustle, & Pera, 2011). Thus, neuronal homeostasis
and, specifically Pum, may offer an attractive route for the
development of next-generation AEDs.

We have recently reported a luciferase-based reporter of
dPum activity and screened an FDA-approved drug library
to identify compounds that promote the activity of this
homeostatic regulator (Lin, et al., 2017). This screen identi-
fied, amongst other compounds, avobenzone. Our follow-on
studies indicate this compound promotes transcription of
dpum and increased dPum protein. Moreover, this com-
pound has potent anticonvulsive properties when fed to bs
mutant Drosophila. In this present study, we expand our
screening to incorporate a genome-wide RNAi library. We
identify 699 RNAi’s that are sufficient to potentiate dPum
activity. A comparison of these 699 genes with activity-
dependent genes, identified through an RNA-sequencing

approach (Lin, et al., 2017), shows that 101 genes are also
regulated by synaptic activity. The protein products of these
101 genes may prove to be favourable targets for drug-medi-
ated inhibition to better control epilepsy. To show proof-of-
principle, we express RNAi targeted to these genes in the
parabss seizure mutant background and report that 57 signifi-
cantly reduce seizure duration. We validate, where possible,
anticonvulsant effects through feeding of chemical inhibitors
for the respective gene protein products.

Materials and methods

Luciferase-based gene cassettes report dPum activity
in S2R1 cells

A firefly-PRE reporter gene, containing two Pum Response
Elements (PRE1 and PRE2) (Gupta et al., 2009), cloned from
a region of the hunchback 30UTR (NM_169233.2,
2390–2650), was used as described in Lin, et al., 2017. A
renilla luciferase reporter, lacking the PRE motifs, was used
as a reference to report expression efficiency.

Genome-wide double-stranded RNA library screen

Insect S2 cells, derived from a primary culture of late stage
(20–24 h old) Drosophila (Oregon-R) embryos (Schneider,
1972), are widely used to carry out large-scale functional
screens (Boutros et al., 2004; Kleino et al., 2005; Ramet,
Manfruelli, Pearson, Mathey-Prevot, & Ezekowitz, 2002).
The S2Rþ subtype, used in this study, differs in the expres-
sion of the membrane receptor Drosophila frizzled 2 (Dfz2)
(Yanagawa, Lee, & Ishimoto, 1998), making them more
adherent than S2 cells and readily attach and spread to tissue
culture plastic and glass. S2Rþ cells (1.5� 104 cells in 15 ll
of Schneider's Drosophila Medium, GibcoTM) were treated
with 250 ng of double-stranded RNA (�21,000 double-
stranded RNAs, �98.8% coverage, covering �14,000 protein
encoding genes and �1000 noncoding genes on 53� 384
well plates) for 48 h, followed by co-transfection (EffecteneVR ,
QIAGEN) with firefly-PRE and renilla luciferase reporters
(10 ng each) (Lin et al., 2017) for a further 48 h. The trans-
fection procedure is as described in the manufacturer’s
instructions (QIAGEN). S2Rþ cells were lysed with 0.35%
TritonTM X-100 in BL buffer (50mM HEPES, 0.5mM
EDTA, 0.36mM phenylacetic acid and 0.07mM oxalic acid)
and D-Luciferin (0.46mM, Molecular Probes) was added to
measure firefly luciferase activity. This was followed by the
addition of coelenterazine-h (3mM, Promega) to measure
renilla luciferase activity. A VarioskanVR flash plate reader
(Thermo Scientific) was used to measure luminescence.

Bioinformatics

Functional cluster analysis of 1166 dpum regulators was car-
ried out using DAVID 6.8 software (the Database for
Annotation, Visualization, and Integrated Discovery)
(https://david.ncifcrf.gov) (Huang da, Sherman, & Lempicki,
2009a, 2009b). Sets of genes were uploaded using FLYBASE
gene IDs. The p values for enrichment of genes in biological
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mechanisms were evaluated by Benjamini correction, and
values less than 0.05 were considered significant. The
molecular interaction networks of 101 dpum activity-depend-
ent regulators were investigated using Cytoscape v. 3.5.1
software (http://www.cytoscape.org/) (Saito et al., 2012;
Shannon et al., 2003). The networks of gene relationships
were based on the Drosophila melanogaster gene annotation
databases. Results were visualized using ClueGO v. 2.5.0
(Bindea et al., 2009), CluePedia v. 1.5.0 (Bindea, Galon, &
Mlecnik, 2013), and Cytoscape plug-in apps. Selection crite-
ria was at least three genes per node with a minimum of 4%
of the associated genes from all uploaded genes in one node.
The threshold of pathway network connectivity
(Kappa score) was 0.4 and pathways with p values �.05
are shown.

Validation of RNAi knock down efficacy by
quantitative PCR

Quantitative RT-PCR was performed using a SYBR Green I
real-time PCR method (Roche, LightCyclerVR 480 SYBR
Green I Master, Mannheim, Germany) as described in Lin,
He, & Baines (2015). RNA was extracted from 20 male adult
heads using the RNeasy micro kit (QIAGEN). Primer
sequences (50–30) are listed in Supplementary Table 1.
Relative gene expression was calculated using 2�DCt, where
DCt was determined by subtracting the average actin-5C Ct
value for each gene measured.

Behavioural screening on a bang sensitive
mutant, parabss

Seizure duration in adult flies is determined as described in
Lin et al. (2015). In brief, 20 virgin females of
parabss;GAL4Cha(19B) (expressing in all cholinergic neurons)
were crossed to five UAS-RNAi males. Only parabss/
Y;GAL4Cha(19B)/UAS-RNAi hemizygous male progeny were
used for behavioural screening. Flies (two to three days old)
were tested at least one day after collection to ensure total
recovery from CO2-anaesthesia. Flies were transferred to an
empty vial (10 per vial) and left to recover for 30min, before
being exposed to mechanical shock by vortexing the vial at
maximum speed for 10 s. Recovery Time (RT) was calculated
from the average time taken for all 10 flies to recover from
paralysis to standing. At least five replicates were performed
for each RNAi line. Values were compared with control flies
(parabss/Y;GAL4Cha(19B)/þ).

Fly stocks

Flies were maintained on standard cornmeal medium at
25 �C. parabss were gifts from Dr. Kevin O’Dell (University
of Glasgow). The elav-GAL4C155 (stock no. 458) was
obtained from Bloomington and UAS-RNAi lines were
obtained from the Vienna Drosophila Resource Center.
Parabss;GAL4Cha(19B)was derived by crossing parabss with
GAL4Cha(19B) (a gift from Dr. Paul Salvaterra, City of
Hope, USA).

Drug feeding and seizure behaviour test in 3rd
instar larvae

Wall-climbing 3rd instar larvae were subjected to an electric
shock to induce seizure, with or without previous feeding of
drug, as described previously (Marley and Baines, 2011). For
drug feeding studies, eggs were laid on food containing drug
and larvae were raised until wall-climbing 3rd instar.
Concentration of the drugs used are as follows and the most
effective concentration shown in Table 2 is underlined:
SB203580 (2.6 and 13 mM, S1076, Selleckchem), Losmapimod
(2.6, 13 and 26 mM, S7215, Selleckchem), sodium fluoride
(1.2 and 2.4mM, S7920, Sigma-Aldrich), gemcitabine (3.3,
16.5 and 165mM, G6423, Sigma-Aldrich), Metformin (1.2,
2.4 and 3.6mM, PHR1084, Sigma-Aldrich), bestatin (81 and
162mM, J61106.MC, Alfa Aesar), WP1066 (140 and 281mM,
573097, Merck), valproic acid (0.6, 1.2 and 2.4mM, P4543,
Sigma-Aldrich) and phenytoin (1.6mM, D4505, Sigma-
Aldrich). In response to electroshock, larvae undergo a tran-
sitory paralysis during which they tonically contract and,
occasionally, spasm (see (Marley and Baines, 2011) for
details on seizure behavior). Recovery time reported repre-
sents the average time for larvae to resume normal crawling
behaviour and at least 30 larvae were tested for each chem-
ical inhibitor treatment.

Luciferase-based promoter assay

Luciferase activity in 3rd instar larvae was measured using
the Promega Steady-Glo Luciferase Assay Kit. Briefly, a
dpum promoter-GAL4 line (containing a 578-bp region
upstream of the dpum transcription start site) was crossed to
attP24 UAS-luciferase flies (Markstein, Pitsouli, Villalta,
Celniker, & Perrimon, 2008). Three larvae were collected in
200ml Promega Glo Lysis buffer for each sample, and at least
5 independent samples collected for each genotype. Larvae
were homogenized, incubated at room temperature for
10min, centrifuged for 5min, and supernatant was trans-
ferred to a new tube. For luciferase assays, 30 ml of each sam-
ple was transferred to a well of a white-walled 96-well plate
at room temperature, 30ml Promega Luciferase reagent was
added to each well and plates were incubated in the dark for
10min. Luminescence was measured with a GENios plate
reader (TECAN). The obtained values were normalized to
total protein concentration, measured using the Bradford
protein assay (Bio-rad).

Statistics
Normality of the data were checked using the D' Agostino-
Pearson omnibus test before parametric statistical tests were
applied. Statistical significance between group means was
assessed using either a Student’s t-test (where a single experi-
mental group is compared to a single control group) or
ANOVA followed by the Bonferroni’s post hoc test (multiple
experimental groups). Data shown is mean ± standard devi-
ation (s.d.).
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Results

A genome-wide RNAi screen to identify potential
regulators of pumilio

Since enhanced dpum expression is anticonvulsant in
Drosophila (Lin et al., 2017), we reasoned that identification
of gene knockdowns that increase dPum activity may pro-
vide a more realistic route for the development of novel
anticonvulsive compounds. This is because it is generally
easier to block, rather than enhance, protein function. To
identify genes capable of altering dPum activity, we screened
a genome-wide RNAi library using an actin promoter driven
firefly-luciferase (luc) reporter construct (FF-PRE). Increased
dPum is sufficient to reduce luc activity, through binding
the PRE and inhibiting translation. An identical reporter
lacking PRE sites and coupled to renilla luc (Ren) was
included to enable ratiometric determination of activity (Lin
et al., 2017). We performed two replicates of the screen (Z-
score �1.5 or��1.5) and identified 1191 dsRNAs (1166
genes). Among these, 467 genes enhanced FF-PRE (i.e.
reduced dPum activity) on knock-down. We identified dpum
in this group, which is predictable and serves to validate our
screen methodology. The remaining 699 genes supressed FF-
PRE expression when knocked-down (i.e. increased dPum
activity) (Figure 1, Supplementary Table 2 for gene list).
Furthermore, 25 transcripts, for example, proteasome beta3
subunit (CG11981) and mediator complex subunit 10
(CG5057), were hit twice by dsRNAs (BKN28041 and
BKN46221, BKN27744 and BKN46549, respectively) targeted
to different regions indicative of good reproducibility of the
screen. We are particularly interested in the 699 genes that,
on knock-down, act as dPum activators. The protein prod-
ucts of these genes may act as dPum repressors, inhibition
of which would be predicted to increase dPum activity (and
to reduce seizure).

To further investigate the biological importance of the 1166
identified genes, we performed a gene category analysis using
DAVID software (Huang da et al., 2009a, 2009b). Among
these genes, 988 were assigned to gene identifiers recognized
by the DAVID tool. Table 1 shows six significant functional
annotation clusters (for more details see Supplementary Table
3). The clusters represent genes involved/associated with tran-
scriptional regulation, the proteasome, chromatin organisa-
tion, RNA interference, DNA-directed RNA polymerase,
mRNA polyadenylation, gene silencing by miRNA and the
ribosome. The cluster with the highest enrichment score (8.1)
included 54 genes related to transcriptional regulation.

Identification of activity-dependent dPum regulators

Homeostatic control of neuron activity is itself regulated by
synaptic activity (Giachello and Baines, 2017). The 699
genes, which on knock-down increase dPum activity, are of
particular interest because inhibiting the gene protein prod-
ucts might similarly enhance dPum activity with predicted
anticonvulsant effects (Lin et al., 2017). To refine down the
number of genes to take forward, we focused on those genes
which show activity-dependent transcription. We have previ-
ously reported transcriptional change in CNS between wild-
type and wildtype raised on food containing the
proconvulsant picrotoxin (PTX) (Lin et al., 2017). This iden-
tified 1685 activity dependent genes (FDR 5%). Comparison
of the two gene-sets identifies 101 genes to be dPum repress-
ors and regulated by synaptic excitation. Cytoscape bioinfor-
matic analysis revealed that the major biological functions of
these genes are: cellular response to DNA damage stimulus,
negative regulation of cell cycle, proteasomal protein catabol-
ism, transcription from RNA polymerase I promoter, estab-
lishment of ommatidial planar polarity, response to lipid,
positive regulation of peptidase activity and response to

699 (60%)
increase dPum activity

467 (40%)
decrease dPum activity

RNAi RNAi

1166 dPum regulators

promoter Firefly luciferase PRE

firefly

dPum

firefly

firefly

increase luciferase expression

promoter Firefly luciferase PRE

dPum dPum

dPum

decrease luciferase expression

firefly

Figure 1. A genome-wide RNAi screen identified 1166 Drosophila (dPum) regulators. Using a dPum activity luciferase-reporter to screen a genome-wide RNAi library
identified 699 and 467 gene knockdowns that increase or supress dPum activity, respectively. The dPum activity reporter used is the firefly-luciferase gene driven by
an actin promoter (promoter) and containing two Pum Response Elements (PRE) in its 3’ UTR. Increased dPum is sufficient, through binding to the PRE and inhibiting
translation, to decrease luciferase expression. Conversely, decreased dPum expression/activity results in increased luciferase expression.
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temperature stimulus (Figure 2(A)). The majority of path-
ways identified in this analysis involve cellular response to
DNA damage (36%), regulation of cell cycle (36%) and pro-
teasomal protein catabolism (14%) (Figure 2(B)).

Genes identified have anticonvulsant effects
on knockdown

Increasing dPum expression and/or activity is anticonvulsant
in Drosophila bs mutants (Lin et al., 2017). Thus, to verify
that the 101 activity-dependent genes which, on knockdown,
potentiate dPum activity have an anticonvulsant effect, we
performed a behaviour screen in adult parabss flies. The par-
abss mutation is a missense allele (hypomorphic) of the sole
voltage-gated sodium channel and exhibits robust seizure like
behaviour when adult flies are exposed to strong sensory
stimuli (e.g. vortexing) (Parker, Padilla, Du, Dong, &
Tanouye, 2011). We expressed UAS-RNAi constructs in the
parabss background, driving expression in cholinergic neurons
(GAL4Cha(19B)) which is the principle excitatory neurotrans-
mitter of the insect CNS. We determined the effectiveness of
94 RNAi candidates (available from Vienna Drosophila
Resource Centre). Out of 94 RNAi lines expressed, 57
(�61%) exhibited significant behavioural rescue of seizure
duration (Figure 3 and see Supplementary Table 4 for full
list). The different genetic backgrounds of the various RNAi
lines may also influence seizure behavior. We did not first
outcross these RNAi lines to generate similar genetic back-
grounds, therefore, this influence is undetermined. To allow
comparison of RNAi efficacy, we compared effect to that pro-
duced by phenytoin. Phenytoin is a potent AED (Keppel
Hesselink, 2017) and shows good anticonvulsant effect in
Drosophila (Lin et al., 2015). Thus, we also fed parabss adult
flies with phenytoin (1.6mM) for 24 h and tested seizure
behaviour. Phenytoin fed flies exhibited significant reduction
in seizure duration (64.2 ± 17.0%) compared to vehicle control
(set at 100%, n¼ 5, p¼ .0049, t-test). Of the 57 RNAi lines
tested, 42 exhibited similar or greater rescue effect compared
to phenytoin (Figure 3). The most significant reduction was
observed on knocking-down Glutamate-cysteine ligase cata-
lytic subunit (GCL, the rate-limiting enzyme for glutathione
synthesis (Franklin et al., 2009)). Similar significant rescues
were observed for knock-down of Bab Interacting Protein 1
(bip1) (Pointud, Larsson, Dastugue, & Couderc, 2001),
Tyrosyl-tRNA synthetase or Ribosomal protein S5a (both core
components of translational machinery (Schimmel and Soll,

1979)). To determine whether efficacy of seizure rescue is dic-
tated by knockdown efficiency, we used quantitative RT-PCR
to compare 11 randomly selected RNAi lines, driven by a
pan-neuronal GAL4 line, elav-GAL4C155. Knockdown ranged
between 41 to 80% (Figure 4(A)) but, importantly, did not
significantly correlate to seizure reduction (the line fit is not
significantly different from a ‘zero’ horizontal line, Pearson’s
correlation) (Figure 4(B)). Thus, we conclude that anticonvul-
sive efficacy is dictated by targeted gene knock-down and not
efficacy of individually-expressed RNAi’s .

Rescue of seizure by chemical inhibitors

Our rationale to identify genes which, on knock-down,
reduce seizure in Drosophila is that the same outcome
should be recapitulated through pharmacological block of
the gene-derived protein product. To test this, we identified
known chemical inhibitors for a selection of genes identified
and raised parabss mutant larvae on food containing these
compounds (it is easier to feed drugs to larvae than to
adults). Wall-climbing 3rd instar larvae were subjected to
electric shock to test seizure severity (Marley and Baines,
2011). Although knock-down of GCL, bip1, Tyrosyl-tRNA
synthetase or Ribosomal protein S5a showed the most effect-
ive seizure rescue effect (Figure 3), no chemical inhibitors
that specifically inhibit these gene products are currently
available. Therefore, we searched for chemical inhibitors
which are well characterised and accessible. The drugs tested
and their relevant targets are listed in Table 2. Exposure of
parabss mutant larvae to phenytoin (1.6mM) is sufficient, as
expected, to produce a significant reduction in larval seizure
duration (52.3 ± 15.1%) compared to vehicle control (set at
100%, n¼ 30, p¼ 1.4� 10�16, t-test) mirroring the result of
24 h phenytoin feeding in adults (64.2 ± 17.0%). Mutant par-
abss larvae exposed to SB203580 or losmapimod (MAP kinase
inhibitors), sodium fluoride (protein phosphatase inhibitor),
gemcitabine (ribonucleoside diphosphate reductase inhibi-
tor), metformin (inhibit NADH dehydrogenase activity),
bestatin (aminopeptidase inhibitor), WP1066 (inhibitor of
JAK-STAT signalling) or valproic acid (histone deacetylase
inhibitor) similarly showed a significant reduction in seizure
duration (ranging from 46 to 78%, set vehicle control at
100%) (Table 2). We also tested additional compounds that
did not show significant anticonvulsive activity. These were:
MG-132 (84 mM) (protease inhibitor), zaprinast (737 mM)
(phosphodieasterase inhibitors), BEZ235 (213 mM) (inhibits

Table 1. Functional cluster analysis for 1166 Drosophila pumilio regulators.

Functional cluster analysis

Biological function Enrichment score Number of involved genes Ontology

Transcriptional regulation 8.1 54 BP/CC/MF
proteasome 4.8 25 BP/CC/MF
chromatin organization 4.1 48 BP/CC
RNA interference 4.0 13 BP
DNA-directed RNA polymerase 2.9 11 CC/MF
mRNA polyadenylation 2.6 8 BP
gene silencing by miRNA 2.4 8 BP
ribosome 2.2 21 CC

Clustering was performed using DAVID 6.8 software.
BP: biological process; CC: cellular component; MF: molecular function.
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PI3K and mTOR kinase activity), (±)-thalidomide (387 mM)
(inhibits E3 ubiquitin ligase) or exthosuximide (1.4mM) (T-
type Ca2þ channel blocker). The concentrations stated were
the maximum dose that larvae could tolerate. However, for
all drugs tested, we are unable to determine the actual con-
centration of drug that reached the CNS. This is why we
compare anticonvulsant effect achieved to phenytoin, which
we use to standardize effect. The effectiveness of drugs,
which target protein products of genes identified in our
RNAi-screen, not only validates the screen methodology but,
more importantly, identifies potential novel targets that may
prove favourable for next-generation AEDs.

Anticonvulsive effect is achieved through increased
transcription of pumilio

Our RNAi screen identified genes that, on knock-down,
increase dPum activity. The mode of action for this effect
may, conceivably, be increased expression of dpum (i.e. a
transcriptional effect) or modification of protein function

(i.e. post-translational modification). To begin to resolve
this, we identified and cloned the dpum promoter region
and placed it upstream of GAL4 (W.-H.L. and R.A.B., to
be reported elsewhere). This was necessary because anti-
Pum antibodies, whilst effective in mammals, do not work
well in Drosophila (W.-H.L. and R.A.B., personal observa-
tions). Predictably, GAL4-mediated expression of GFP
shows ubiquitous and low level pan-neuronal expression in
3rd instar CNS (W.-H.L. and R.A.B., unpublished observa-
tions). GAL4-mediated expression of luciferase allowed us
to better quantitate expression levels. Raising transgenic
larvae on food containing the proconvulsant PTX (1 mg/
ml) was sufficient to result in a significant increase in luc-
activity (1.7 ± 0.4-fold increase, compared to vehicle con-
trol, set at 1, n¼ 5, p¼ .003). This expected result vali-
dates that the dpum promoter is responsive to synaptic
activity. Raising larvae on food containing sodium
fluoride, gemcitabine, metformin, bestatin, WP1066 or val-
proic acid, respectively, resulted in 1.9 ± 0.4, 2.8 ± 0.9,
3.2 ± 1.3, 1.6 ± 0.7, 3.1 ± 1.2 and 2.5 ± 0.4-fold increase in
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luc-activity compared to vehicle control (set at 1) (n¼ 5,
p¼ .001, .01, .0008, .02, .003 and .03, respectively) (Figure
5). However, we did not observe a notable change follow-
ing exposure to MAPK inhibitors, SB203580 or losmapi-
mod (1.1 ± 0.5 and 0.9 ± 0.2-fold, respectively, n¼ 5,
p> .05). This result suggests that the anticonvulsant effect
of sodium fluoride, gemcitabine, metformin and valproic
acid is achieved, at least in part, through increased tran-
scription of dpum.

Discussion

The majority of AEDs target ion channels or neurotransmit-
ter signalling to limit neuronal hyperexcitability. However,
despite the availability of numerous drugs, �30% of epilepsy
patients do not respond to drug treatment (Bradford, 1995;
Loscher and Schmidt, 2011; Sillanpaa and Schmidt, 2006).
Development of next-generation AEDs, that modify novel
targets, is needed to meet this shortfall. Taking advantage of
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our previous demonstration that manipulating dpum expres-
sion effectively diminishes seizure behaviour in Drosophila
(Lin et al., 2017), we conducted a genome-wide RNAi
screen, using a luciferase-based reporter of dPum activity,
and have identified 101 activity-dependent dPum regulators.
Functional cluster analysis demonstrated that cellular
response to DNA damage (36%) and regulation of cell cycle

(36%) are the major pathways involved in regulation of
dPum expression/activity. Notably, our previous FDA-
approved drug library screen, which identified 12 com-
pounds to enhance dPum activity, showed 5 compounds,
cladribine, gemcitabine, floxuridine, clofarabine and bleo-
mycin, that similarly influence DNA damage and/or DNA/
RNA synthesis (Lin et al., 2017). Indeed, several ribosomal
components, including Ribosomal protein S8 (RpS8), have
been shown to associate with chromatin at active transcrip-
tion sites and to associate with nascent transcripts to form
ribonucleoprotein complexes that regulate transcript expres-
sion (Brogna, Sato, & Rosbash, 2002). RpS8 has also been
identified in genomic-scale yeast two-hybrid analyses as a
Bip1-interacting protein (Formstecher et al., 2005; Giot
et al., 2003; Stark et al., 2006). In this study, we identified
both Bip1 and RpS8 indicative that both may co-operate to
regulate dpum expression. Knockdown of either bip1 or rps8
resulted in a dramatic reduction of seizure duration in par-
abss (reduced to 27% and 45%, respectively), suggesting a
Bip1/RpS8 complex functions as a negative regulator of
dpum transcription.

The results of this study, together with results from our
previous work (Lin et al., 2017) identify a number of path-
ways that may prove favourable for the design of next-gener-
ation AEDs. These pathways include the following.

Proteasomal protein catabolism

Epileptogenesis is associated with large-scale changes in
protein expression which contribute to hyperexcitability-
promoting alterations in neuronal networks and synaptic
transmission (Pitkanen, Lukasiuk, Dudek, & Staley, 2015).
The ubiquitin proteasome is one of the major proteolytic sys-
tems. Upregulation of proteasome subunits has been observed
in animal seizure models and human epilepsy (Broekaart
et al., 2017; Engel, Lucas, & Henshall, 2017; Engel et al., 2017;
Lin et al., 2017). In our screen, knockdown of proteasome
subunits (i.e. alpha1, beta1, beta3, alpha5, beta6 and beta7)
enhanced dPum activity suggesting that dPum is a prote-
asome target. Interestingly, rapamycin (an mTOR pathway
inhibitor) treatment attenuated proteasome beta5 subunit
expression in the electrical post-status epilepticus (SE) rat
model, which was associated with a reduced seizure frequency

0

20

40

60

80

100(A)

(B)

CG
10

32
0

CG
11

11
5

CG
13

63
0

CG
21

28

CG
22

59

CG
41

73

CG
45

61

CG
73

40

CG
73

93

CG
83

92

CG
99

00
a b c d e f g h i j k

RN
A

i k
no

ck
 d

ow
n 

(%
)

gene expression % knock down %

0

20

40

60

80

100

30 50 70 90

R
el

at
iv

e 
R

ec
ov

er
y 

T
im

e 
(%

)

RNAi knock down (%)

f

g

k

e

c i

b
d a h

j

Figure 4. Efficacy of RNAi-mediated knockdown of gene expression does not
correlate to seizure reduction in the parabss mutant. Male flies of 11 UAS-RNAi
lines that spanned the effective range of seizure observed (cf. Figure 3) were
crossed with elav-GAL4C155 females. The total RNA of F1 male fly heads (elav-
GAL4C155/Y;UAS-RNAi/þ) was extracted and quantitative RT-PCR performed to
examine RNAi knockdown efficiency. (A) Black bars show gene expression per-
centage, while the complementary white bars show the RNAi knockdown per-
centage. RNAi knockdown efficiency ranges between 41 and 80%. The letters a-
k and the corresponding CG numbers along the x-axis indicate the individual
UAS-RNAi lines (Supplementary Table 4 for the detail of these genes). (B) RNAi
knockdown efficacy plotted against relative recovery time (normalized to the
controls parabss/Y;GAL4Cha(19B)/þ, set at 100%) of each line tested in (A). The let-
ters a-k indicate the corresponding CG numbers shown in (A). The line of best
fit is not significantly different to a horizontal line (representing no correlation,
Pearson’s correlation).

Table 2. Chemical inhibitors used to validate rescue effect in parabss 3rd instar larvae.

Chemical inhibitor Target gene CG number Seizure duration (%) p-value

Phenytoin – – 52.3 ± 15.1 1.4� 10�16

Gemcitabine ribonucleoside diphosphate reductase large subunit CG5371 46.0 ± 16.7 7.8� 10�15

Sodium fluoride protein phosphatase 1 at 87B CG5650 52.7 ± 27.8 1.3� 10�9

Metformin NADH dehydrogenase (ubiquinone) B12 subunit CG10320 55.4 ± 29.6 2.5� 10�6

Losmapimod p38b MAPK CG7393 59.3 ± 23.4 4.8� 10�9

SB203580 67.9 ± 26.0 4.8� 10�7

WP1066 unknown gene (predicted to involve in the regulation of JAT-STAT cascade) CG4022 61.3 ± 27.8 2.0� 10�6

Valproic acid Histone deacetylase 3 CG2128 71.3 ± 17.8 2.9� 10�8

Bestatin granny smith (contains aminopeptidase activity) CG7340 77.6 ± 33.5 0.0015
MG-132 proteasome beta3 subunit CG11981 88.0 ± 42.0 n.s
Zaprinast phosphodiesterase 9 CG42276 100.9 ± 24.3 n.s
BEZ235 meiotic 41 (aka ATR, belongs to the PI3/PI4-kinase family) CG4252 94.0 ± 26.5 n.s
Thalidomide vihar (contains ubiquitin protein ligase activity) CG10682 92.5 ± 31.1 n.s
Ethosuximide Ca2þ-channel protein alpha1 subunit T CG15899 92.1 ± 28.7 n.s

The wall-climbing parabss 3rd instar larvae ingested chemical inhibitors were subjected to electric shock to induce seizure-like behaviour. Averaged seizure dur-
ation was normalised to vehicle control (set at 100%). Values (n� 30, mean ± s.d.). n.s: not significant.
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(Broekaart et al., 2017). Rapamycin is an effective anticonvul-
sant in both flies and mammals. For example, acutely fed
rapamycin reduces seizure duration in bangsensitive (a bs-
mutant) adult flies (Lin et al., 2015), prevents the develop-
ment of absence seizures in WAG/Rij rats (Russo et al., 2013),
reduces kindling-induced seizure in Tsc1GFAPCKO mice
(Zeng, Xu, Gutmann, & Wong, 2008), and kainite-induced
status epilepticus in rats (Macias et al., 2013). Rapamycin is
also an effective treatment for epilepsy in children suffering
tuberous sclerosis (Canpolat et al., 2014). Taken together,
these results imply that the anticonvulsant effect of rapamycin
may be achieved, at least in part, by reducing proteasome
activity that, in turn, may increase Pum activity.

MAPK pathway

The mitogen-activated protein kinase (MAPK) family
includes three pathways: the extracellular signal regulated
kinase (ERK) pathway, the p38 pathway and the C-Jun N-
terminal kinases (JNK) pathway. MAPK signalling has a sig-
nificant role in epileptogenesis (Pernice, Schieweck, Kiebler,
& Popper, 2016). For example, a transcriptomic analysis of
brain tissue in human temporal lobe epilepsy (TLE) and
mouse pilocarpine induced status epilepticus reported dysre-
gulated gene expression involved in MAPK-signalling,
including up-regulation of MAPK (Hansen, Sakamoto, Pelz,
Impey, & Obrietan, 2014; Salman et al., 2017). Acute seizure
induction, using kainic acid, leads to a rapid activation of
ERK and p38 in mouse hippocampus. Pre-treatment with
the ERK inhibitor PD98059 and p38 inhibitor SB203580
selectively reduces evoked seizures (Jiang et al., 2005). On
the other hand, p38aþ/� mice showed resistance to kainite-
induced seizure (Namiki et al., 2007). These observations
implicate that MAPK induction is critical for seizure gener-
ation. Our previous report identified the p38b transcript to
be up-regulated in 3rd instar larvae exposed to PTX (Lin
et al., 2017). In this study, we show that p38b knockdown
enhances dPum activity and, in turn, reduces parabss seizure
behaviour. The p38 MAPK inhibitors, SB203580 and losma-
pimod, are similarly sufficient to reduce seizure duration in

parabss. However, these same inhibitors did not influence
dpum promoter activity indicative that p38 MAPK may
regulate dPum through an alternative mechanism (perhaps
protein phosphorylation). Use of the NetPhos 3.1
server (http://www.cbs.dtu.dk/services/NetPhos/) (Blom,
Gammeltoft, & Brunak, 1999; Blom, Sicheritz-Ponten, Gupta,
Gammeltoft, & Brunak, 2004) identifies 13 different putative
p38 MAPK phosphorylation sites in dPum (W.-H.L. and R.
A.B., unpublished data).

JAK/STAT pathway

We show that both knockdown of CG4022 expression (an
unknown gene) and ingestion of WP1066 (JAK-STAT inhibi-
tor) effectively reduced seizure duration in parabss. These
findings implicate JAK/STAT signalling to contribute to seiz-
ure, perhaps through regulation of dpum expression. CG4022
is predicted to be a component in the JAK/STAT signalling
pathway (Muller, Kuttenkeuler, Gesellchen, Zeidler, &
Boutros, 2005). JAK/STAT signalling transmits information
from extracellular stimuli, often through interaction with
receptor tyrosine kinase (RTK)/Ras/MAPK pathways, to the
nucleus to affect gene expression (Rawlings, Rosler, &
Harrison, 2004). The JAK/STAT pathway is up-regulated in
both pilocarpine- and kainite-induced status epilepticus (Choi
et al., 2003; Xu et al., 2011). Administration of the JAK/STAT
inhibitor, WP1066, reduces the severity of pilocarpine-
induced seizure and altered JAK/STAT downstream target
transcript expression (Grabenstatter et al., 2014).

Histone deacetylase

Epilepsy-induced alteration in gene expression is presumably
guided by epigenetic mechanisms, including chromatin
modification via DNA methylation and/or histone modifica-
tion (Hwang, Aromolaran, & Zukin, 2013; Kobow and
Blumcke, 2014; McClelland et al., 2011). Histone acetylation
is catalysed by histone acetyltransferases and reversed by his-
tone deacetylases (HDACs). In general, acetylated histones,
H3 and H4, reflect a more permissive (open) state of
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chromatin allowing increased gene expression, whereas
deacetylation mostly suppresses transcription (Kimura,
Matsubara, & Horikoshi, 2005). Thus, HDAC inhibitors
often serve to re-activate silenced genes (Butler and
Kozikowski, 2008). We show that knockdown of HDAC3
enhances both dPum activity and reduces seizure duration in
parabss. This result implies that enhanced dPum activity, on
HDAC3 knockdown, may result from increased dpum tran-
scription. On the other hand, rapid change in HDAC tran-
script expression has been demonstrated in both kainic acid-
and pilocarpine-induced TLE mouse models (Jagirdar,
Drexel, Bukovac, Tasan, & Sperk, 2015; Jagirdar, Drexel,
Kirchmair, Tasan, & Sperk, 2015). These findings suggest
HDAC expression responds to activity alteration and may
thus be involved in epileptogenesis. Valproic acid inhibits
HDAC activity (Gottlicher et al., 2001; Phiel et al., 2001)
and is one of the most commonly used AEDs. However, the
underlining mechanism of valproic acid remains uncertain.
For example, valproic acid is reported to enhance GABA-
receptor activation (Harrison and Simmonds, 1982), increase
the synthesis of GABA by stimulating glutamate decarboxyl-
ase (GAD) (Nau and Loscher, 1982) and to modulate volt-
age-gated sodium channel steady-state inactivation kinetics
(Vreugdenhil, van Veelen, van Rijen, Lopes da Silva, &
Wadman, 1998). We show that valproic acid effectively
ameliorates parabss 3rd instar larvae seizure duration and
enhances dpum promoter activity. We postulate that the
action of valproic acid, by inhibiting HDAC activity,
increases dpum expression which, in turn, reduces neuron
action potential firing. Intriguingly, valproic acid exposure
decreases p300/CBP protein expression in mouse P19 cells
(Lamparter and Winn, 2016). We also observed that knock-
down of p300/CBP (nejire) is anticonvulsant.

Conclusions

Epileptic seizures are associated with a pathological dysregula-
tion of Pum expression. It has been shown that increasing
dpum expression in Drosophila reduces seizure. We present a
genome-wide RNAi screen that identifies 101 activity-depend-
ent repressors of dpum. Expression of RNA interference
(RNAi) in vivo shows that knockdown of 57 of these genes
provides significant behavioural rescue of an induced-seizure
phenotype in the parabss seizure mutant. We further show
that chemical inhibitors, targeting the protein products of
some of the identified genes, are similarly effective as anticon-
vulsants. Finally, we provide evidence to suggest that many of
these chemical inhibitors act to enhance dpum expression.
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