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The term pseudogene (“pseudo-” from Ancient Greek pseudés,
“fake, mimic”) was coined by Jacq et al1 in 1977 to indicate a
nearly identical reproduction of the 5S ribosomal RNA gene
paired with the gene itself in a unit tandemly repeated in Xenopus
laevis. Thenceforth, similar gene multiplications were recognized
for actin genes in Dictyostelium discoideum,2 globin genes in
mammals,3 and small nuclear RNA genes in humans.4

By the original definition, a pseudogene is a DNA sequence
that resembles a gene, but has accumulated (disrupting) variants
over the course of evolution. Therefore, pseudogenes, which
always derive from functional genes,5 are unable to produce func-
tional proteins due, for instance, to altered open reading frames
(ORF) with frameshift or nonsense mutations. Recently, next-
generation sequencing (NGS) and advanced bioinformatics algo-
rithms have enabled the interrogation of DNA sequences at an
unprecedented pace, with pseudogenes being systematically
detected throughout the genome of most eukaryotic organisms.6

To date, the reference annotation project GENCODE (v39) lists
�15,000 pseudogenes in the human genome (https://www.
gencodegenes.org/human/stats.html).7 Although several genes in
the human genome have one pseudogene, a few gene families
contain an incredibly high number of pseudogenes, including ribo-
somal proteins (�80 genes, >2000 pseudogenes)8 and olfactory
receptor genes.9

Pseudogenes in eukaryotic genomes are detected by computa-
tional pipelines and manual annotation. Bioinformatics tools
for pseudogene prediction have been developed and publicly

released.10,11 Pseudogenes are primarily identified by comparing
their sequence with that of their parental genes, with possible
lack of introns and disruptions to the ORF relative to the paren-
tal gene being the primary features used to identify pseudogenes.
Pseudogenes can be divided into two major groups, that is,
unprocessed pseudogenes and processed pseudogenes, with the
latter representing the majority of pseudogenes in humans
(�70%, https://www.gencodegenes.org/human/stats.html). In
brief, unprocessed pseudogenes arise from duplication of geno-
mic DNA sequences and lie on the same chromosome as their
parental gene. Processed pseudogenes derive from messenger
RNA (mRNA) retrotransposition and are usually located on a
different chromosome than the parental gene (Fig. 1A).

The high sequence similarity of parental genes, in which muta-
tions can lead to human disease and the non-coding pseudogene(s),
can pose a challenge to genetic testing, especially when using
short-read NGS-based assessments. In this issue of Movement Disor-
der Clinical Practice, Ribeiro et al12 report how they mastered this
challenge when they established a correct molecular diagnosis
despite targeting a pseudogene, which made trouble by overlaying
the genetic cause. Specifically, they describe a case of now geneti-
cally proven DYT-PRKRA (formerly DYT16) with the typical
phenotype consisting of childhood-onset, generalized dystonia.12,13

Biallelic mutations in PRKRA have undoubtedly been linked to a
recessively inherited form of early-onset generalized dystonia.14

They acknowledge that the delayed molecular diagnosis in their
patient on NGS-based gene panel analysis was because of incorrect
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alignment of wild-type NGS reads from the pseudogene
PRKRAP1 to the parental PRKRA gene.12 This led to the inter-
pretation of the pathogenic PRKRA variant NM_003690:
c.665C>T; p.(Pro222Leu) being present in the heterozygous state
only until Sanger sequencing unraveled the variant was actually
present homozygously.12

Second-generation, short-read NGS that is used for panel and
exome sequencing analyses is particularly prone to alignment
mistakes in homologous chromosomal regions. This is based on
the nature of short-read NGS where fragments of only 150 to
300 base pairs (bp) are generated and can show a perfect match
between the parental gene and the pseudogene. This is illustrated
in Figure 1B for exon 7 of PRKRA that shows 99.4% sequence
identity (174/175 identical bp) to the PRKRAP1 pseudogene
including 55 nucleotides upstream and 119 nucleotides down-
stream of the c.665C>T mutation. In contrast, the intronic
sequences of PRKRA do not show sequence similarity to its
pseudogene (Fig. 1B) because PRKRAP1 as a processed
pseudogene does not contain intronic sequences. For Sanger
sequencing, the primers are usually located in the intronic
regions and designed in a way to be specific for the parental gene.
However, only short reads are possible for second-generation
sequencing because of the so-called sequencing-by-synthesis
technology.

In a first step, the NGS workflow includes library preparation
by fragmenting genomic DNA in short size-uniform pieces of
double-stranded DNA, followed by ligating technology-specific
adapters to both fragment ends, and subsequent amplification
and sequencing of these DNA fragments to generate millions of
“reads.” After these steps, reference-based bioinformatics pipe-
lines include a mandatory “alignment” stage before downstream
algorithms can be run. Bioinformatics tools, such as the industry
standard “Burrows-Wheeler Aligner” (BWA),15 can execute
alignment and map (ie, report the positional genomic coordinates
of) NGS reads onto the indexed reference genome. Most align-
ment algorithms nowadays score each seed alignment based on
matches, mismatches, or gaps between each read and its assigned
reference genomic position, so that the highest score corresponds
to the primary alignment for that specific read. Primary align-
ment can, however, be assigned erroneously when, for instance,
a correct alignment of reads containing common polymorphisms
is scored lower than an incorrect one characterized by fewer mis-
matches. For this reason, alignment of the short reads from
highly homologous genomic loci, such as genes and their
corresponding pseudogenes, are particularly at risk to be mis-
aligned to one or the other as was the case for PRKRA and
PRKRAP1.12

Pseudogenes were once regarded as “genomic fossils,” that is,
functionless fragments of protein-coding genes being incorpo-
rated into the genome.16,17 Although most pseudogenes in the
human genome have not been characterized for biological func-
tions, growing evidence suggest that many of them have impor-
tant biological and genetic roles that are sometimes useful and
sometimes harmful. In some cases, the duplication does not result
in a complete loss-of-function of the duplicated gene, but rather
serves as a backup copy with at least some compensatory

function. This is for instance the case for SMN2, which origi-
nates from an inverse duplication of the SMN1 (survival motor
neuron protein) locus. Biallelic variants in SMN1 cause spinal
muscular atrophy (SMA). SMN2 differs from SMN1 by five
nucleotides, none of which changes the encoded protein
sequence, but one affects splicing, therefore, resulting in only
�10% of SMN2 transcripts including exon 7 and hence, full-
length SMN protein.18 Most importantly, SMN2 has become
the target of bifunctional antisense oligonucleotides preventing
exon 7 skipping and ultimately rescuing SMN synthesis in a
licensed disease-modifying treatment for SMA (nusinersen).19

Pseudogenes can act on their parental genes and alter their
sequence at the DNA level, or their expression and functionality
on the mRNA and protein level through several mechanisms
(Fig. 1C).

At the DNA level, for instance, the high homology between
a pseudogene and its parental gene predisposes to non-allelic
homologous recombination leading to a wide range of structural
variants (Fig. 1C). Importantly, such disruption of the functional-
ity of the parental gene can lead to human diseases. In the field
of movement disorders, paradigmatic is the case of GBA variants,
which are recognized as the single largest risk factor for the
development of Parkinson’s disease. GBA encodes the lysosomal
enzyme glucocerebrosidase. Detecting GBA variants is challeng-
ing because of its neighboring, unprocessed pseudogene
(GBAP1), which has an overall homology of 96% with GBA. In
particular, the homology rate peaks at 98% in the region from
intron 8 to the 30-UTR, where five identical segments >200 bp
each are recognized. Homologous recombinations between
GBA and GBAP1 have led to the generation of well-established
“complex” structural variants in GBA (termed as Rec1 to
Rec7),20 mainly including conversions and fusions. Pathogenic
variants, including these recombinations, can cause Gaucher’s
disease and be a risk factor for Parkinson’s disease, therefore, rep-
resenting a prime example for a pseudogene causing or
predisposing to disease in humans.21 The high homology of
GBA and GBAP1 also poses challenges on the sequence analysis
even when using Sanger sequencing of GBA.22,23

At the mRNA level, pseudogenes are capable to regulate the
expression of their parental genes by competitively binding to
microRNAs (ie, short non-coding RNAs that bind to their target
RNAs and repress protein production post-transcriptionally).24

Furthermore, they may generate endogenous small interfering RNAs
that downregulate the expression of functional genes. (Fig. 1C).

The definition of a pseudogene has now broadened to include
any DNA sequence that is similar to a known gene and has lost
some of its original functionality.25 Therefore, pseudogenes can
be translated into proteins, as recently proven for 140 human
pseudogenes, and also act at the protein level.26 For instance,
pseudogene-derived proteins may have the same activity as the
parental proteins, but function in different tissues, cellular com-
partments, or pathophysiological conditions. Short ORFs within
pseudogenes can be translated and generate antigenic peptides
that are exposed on the cell surface triggering immune response
or altering identity and therefore, recognition of such cells
(Fig. 1C).
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Apart from GBA and PRKRA, a potential role of
pseudogenes has not (yet) caught our attention in the field of
movement disorders, although several well-established disease-
linked genes also have pseudogenes. For instance, there is a
processed pseudogene of the myoclonus-dystonia-linked gene

SGCE showing �80% sequence similarity to SGCE overall and
at most �90% within an exon. Furthermore, the ACTB gene,
which encodes β-actin and in which mutations can cause another
form of dystonia, has at least six processed pseudogenes with
<93% sequence identity overall, not reaching >95% at the exon

FIG. 1. Types and functions of pseudogenes. (A) Main mechanisms of formation of pseudogenes. (A-a) Processed pseudogenes derive
from reverse transcription of processed messenger RNA (mRNA) from parental genes followed by reintegration of DNA into the genome,
therefore, lacking regulatory regions and introns. (A-b) Unprocessed pseudogenes arise from gene duplication of the parental gene and
subsequent accumulation of variants and therefore, do contain introns and may contain regulatory regions depending on the respective
break points. Blue boxes represent regulatory regions; yellow and orange boxes are exons with and without coding potential,
respectively; gray boxes are introns; red lines symbolize mutations. (B) Sequence alignment of PRKRA and its pseudogene PRKRAP1. The
sequence of exon 7 (in upper case letters) of PRKRA and the adjacent intronic sequence (in lower case letters) is shown in the upper line
and aligned to the sequence of PRKRAP1 (lower line). There is a high homology in the coding part as indicated by dashes but not for the
intronic regions. The c.665C>T mutation is highlighted in red. (C) Selected functions of pseudogenes at the DNA, RNA, and protein level.
(C-a) Gene conversion consists of a monodirectional transfer of DNA from a (processed) pseudogene to its parental gene leading to
changes in the sequence of the latter. (C-b) Homologous recombination between the pseudogene and its parental gene leads to
accumulation of variants also in the parental gene. This is what is often seen in the GBA gene. (C-c) Regulatory sequences of the
pseudogene can positively or negatively interfere with the normal transcription of the parental gene. (C-d) Pseudogene RNAs compete
with their parental mRNAs for shared microRNAs, therefore, changing the expression of the parental gene (here shown as enhancement).
(C-e) Pseudogene RNAs compete with their parental mRNAs for shared stabilizing RNA-binding proteins (RBPs), therefore, inhibiting the
expression of the parental gene. (C-f) Pseudogene-derived proteins with partial or altered function affect the activity of their parental
proteins. (C-g) Pseudogene-derived proteins function as the parental proteins, but in different tissues, cellular compartments, or
pathophysiological conditions. (C-h) Antigenic peptides derived from short pseudogene’s open reading frames are exposed on the cell
surface. Blue boxes represent regulatory regions; yellow and orange boxes are exons with and without coding potential, respectively;
gray boxes are introns; red lines are mutations; green structures represent ribosomes; blue chains symbolize functional proteins, whereas
blue and orange chains symbolize pseudogenic proteins.
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level. To cause misalignment in NGS-based sequence analysis,
there should be <3 mismatches per 150-nucleotide read
(ie, >98% sequence identity). Therefore, the sequence identity
for these pseudogenes should be too less to seriously trouble
sequence analyses.27

Overall, pseudogenes have emerged as a hot topic because
they can challenge genetic testing and trigger mutational events
even in biologically functional parental genes. In the genetics of
movement disorders, they have mainly been brought into play
regarding GBA, but their role might actually be underestimated.
As illustrated by the DYT-PRKRA example,12 misalignment can
lead to false-negative genetic testing results, especially when
using high-throughput short-read NGS. Geneticists should be
aware of this challenge and address it either by using alternative
screening methods such as Sanger sequencing for selected
regions, or long-read sequencing, as proposed for GBA analy-
sis.28 Notably, the discovery that pseudogenes can have biologi-
cal functions and interfere with variant calling in NGS-based
diagnostics has opened up to their constant revision for possible
reclassification (eg, as protein-coding or modifier genes) and has
enhanced interest in their accurate annotation as part of
improved bioinformatics analysis.
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