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Abstract: Genome instability is an enabling characteristic of cancer, essential for cancer cell evolution.
Hotspots of genome instability, from small-scale point mutations to large-scale structural variants, are
associated with sequences that potentially form non-B DNA structures. G-quadruplex (G4) forming
motifs are enriched at structural variant endpoints in cancer genomes. Chronic inflammation is
a physiological state underlying cancer development, and oxidative DNA damage is commonly
invoked to explain how inflammation promotes genome instability. We summarize where G4s and
oxidative stress overlap, with a focus on DNA replication. Guanine has low ionization potential,
making G4s vulnerable to oxidative damage. Impacts to G4 structure are dependent upon lesion
type, location, and G4 conformation. Occasionally, G4s pose a challenge to replicative DNA poly-
merases, requiring specialized DNA polymerases to maintain genome stability. Therefore, chronic
inflammation creates a dual challenge for DNA polymerases to maintain genome stability: faithful
G4 synthesis and bypassing unrepaired oxidative lesions. Inflammation is also accompanied by
global transcriptome changes that may impact mutagenesis. Several studies suggest a regulatory role
for G4s within cancer- and inflammatory-related gene promoters. We discuss the extent to which
inflammation could influence gene regulation by G4s, thereby impacting genome instability, and
highlight key areas for new investigation.
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1. Introduction

In their seminal 2000 paper, Hanahan and Weinberg proposed the hallmarks of can-
cer, functional changes that are acquired during the multistep development of all human
tumors. Later, the authors proposed that acquiring these hallmarks is made possible by
the two “enabling characteristics” of genome instability and inflammation [1]. Impor-
tantly, the enabling characteristics of genome instability and inflammation are intricately
interconnected at the mechanistic level [2,3].

1.1. Non-B DNA Structure Formation Drives Some Forms of Genome Instability

Genome preservation necessarily relies on accurate and efficient DNA synthesis and
functional DNA repair processes. Although lesions from exogenous or endogenous sources
and/or defective repair contribute to genome instability, another characteristic of DNA
must also be considered, namely, primary DNA sequence and repetitive sequences. Repeti-
tive sequences can form a variety of DNA secondary structures (collectively called non-B
DNA structures) that induce variable chromosomal alterations in the human genome [4].
In fact, secondary structure can be a considerable contributor to genome instability, when
compared to the primary DNA sequence itself [5]. A detailed analysis of nucleotide variant
frequency from the 1000 Genomes Project showed a substantial enrichment of variants
at sites of potential non-B DNA, compared to B-DNA [6]. Likewise, analysis of whole
genome sequencing of cancer genomes revealed a correlation between non-B DNA forming
sequences and somatic mutations [7].
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Outside of inducing genome instability, non-B DNA may contribute to changes in gene
and protein expression, depending on location [5]. Certain non-B DNA types (i.e., slipped
DNA, G-quadruplex, Z-DNA) are particularly prominent at or near transcriptional start
sites [6], suggesting a location-dependent function of structured DNA. Analyses of ex-
pression quantitative trait loci (eQTL) showed reduced variants at sites of non-B DNA [6].
Taken together, these studies, as well as others not mentioned here, show different ways in
which non-B DNA can contribute to genome instability. For recent, detailed reviews on
repetitive DNA sequences and non-B DNA structures, see Khristich and Mirkin [8], and
Poggi and Richard [9].

1.2. Chronic Inflammation and Tumor Cell Evolution

Chronic inflammation is a key physiological mediator of cancer development, pro-
moting the outgrowth of mutant cells and enabling malignant progression. Inflammation
causes increased mucosal production of pro-inflammatory cytokines and dysregulated
redox signaling within the tissue microenvironment which contribute directly to malignant
progression [10–12]. Insights into the mechanistic relationship between inflammation and
genome instability have been gained by studies of chronic inflammatory conditions, such
as ulcerative colitis (UC). UC patients have an increased lifetime risk of colorectal can-
cer, and the progression to colitis-associated cancer has been well studied in both animal
models and human tissues (reviewed in [13–15]). Based on this research, a well-accepted
model proposes that inflammation-induced DNA damage in epithelial cells promotes
genome instability. Reactive oxygen and nitrogen species (RONS) generated during the
inflammatory response result in direct DNA, lipid, and protein damage to colon epithelial
cells [16,17]. The impact of inflammation-associated DNA damage on tumor development
has been tested directly using a dextran sulfate sodium (DSS)-induced mouse model of
chronic inflammatory bowel disease. RONS-induced base lesions are found in both acute
and chronic DSS-treated mice, and lesion levels are increased in colonic mucosa and tumors
of base excision repair-deficient mice treated with DSS [18,19]. Many types of genome
instability have been detected throughout phenotypically normal and pre-malignant colon
tissues of UC patients, including base substitutions [17], microsatellite instability [20,21],
large deletions [22], and chromosomal instability [23]. A recent whole genome sequencing
analysis of non-neoplastic UC patient colon samples revealed an overall 2.4-fold increase in
mutation rate compared to control colons. Consistent with earlier studies, the mutational
burden included excess base substitutions, indels, and structural variants [24].

Elucidating the interplay between DNA sequence and chronic inflammation is needed
to reveal the full spectrum of genome instability mechanisms operating in pre-malignant
tissues under chronic inflammation. Here, we discuss the replication of a specific type of
non-B DNA structure, the G-quadruplex, in the context of oxidative damage and conse-
quences for genome instability (Figure 1).
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Figure 1. Consequences of G4s on DNA Replication within the Context of Chronic Inflammation.
Several questions are posed throughout this review related to DNA polymerase engagement at, and
synthesis through G4s, upon oxidative damage, and are summarized in this schematic. (1A) G4s
can form during replication under normal, physiological conditions. A subset of G4 motifs can
lead to aberrant replication fork progression, due to inhibitory effects of structure formation on
polymerase activity alone and/or in conjunction with protein recruitment to regulate replication.
(1B) Oxidative stress from repeated bouts of inflammation causes persistent ROS-induced DNA
damage, and G4s are particularly susceptible sequences. This creates a dual challenge during
replication: synthesis of undamaged G4s and bypass of oxidative damage at G4s. (2) Stalled forks
caused by G4s (undamaged or damaged) have several fates: fork breakage and subsequent DNA
repair (e.g., end-joining through pol θ); structure unwinding by a specialized DNA helicase; or
recruitment of specialized DNA polymerases for completion of synthesis at G4s (including post-
replicative gap-filling). (3) Recruitment of specialized polymerases to bypass the G4 and/or oxidative
damage results in continued synthesis and mutagenesis. (4) Repeated oxidative damage with
unrepaired double-strand breaks and recruitment of error-prone polymerases leads to increased
genome instability.

2. G-Quadruplex: A Non-B DNA Structure That Contributes to Genome Instability
2.1. G-Quadruplexes (G4s): Sequence and Structure Heterogeneity

The ability of G-rich sequences to fold into four-stranded structures was demonstrated
biochemically in 1988. Sen and Gilbert showed that G-rich sequences containing four
separate G-tracts of at least three contiguous guanine bases each form both intra- and inter-
molecular four-stranded structures [25,26]. These structures, known as G-quadruplexes
(G4s), are formed by Hoogsteen base pairing of the guanines from these G-tracts, separated
by N loops (G≥3N≥1G≥3N≥1G≥3N≥1G≥3, where N is any nucleotide), and stabilized by a
monovalent cation [27]. Though beyond the scope of this review, it is important to note that
G4 motifs are conserved in the genomes of multiple species, spanning across kingdoms
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and phyla. While all functions of G4s have not been fully elucidated, many G4 motifs in
the human genome and genomes of other species are located in regulatory regions [28–30]
and can be considered to be functional [31].

G4s form several different conformations (parallel, antiparallel, and hybrid) and are
either intramolecular, bimolecular, or tetramolecular in nature [32]. Cations are critical
to structure formation and stability. Ionic radius, hydration energy, and guanine oxy-
gen coordination are properties that determine which cations favor G4 stabilization or
destabilization, and these have been validated through biophysical and biochemical experi-
ments [32–34]. K+ and Na+ are physiologically relevant monovalent cations most favorable
for forming and sustaining G4 formation and have been used extensively in vitro to pro-
mote G4s. Between the two, K+ is most favorable due to a decrease in electrostatic repulsion
of K+ ions located between tetrads, compared to Na+ ions located within tetrads [34]. These
properties suggest that regulation of G4s may be, in part, reliant on the type of cation and
cation concentration present in vivo (i.e., in cells or tissues) [32].

Approaches to demonstrating G4 formation in vivo rely on detection by G4 structure-
specific antibodies. For example, the G4-specific BG4 antibody displays high affinity to
both intra- and intermolecular G4 structures, without a preference for the type of G4
conformation, and with no binding to ssDNA or dsDNA [35]. A more recent study details a
live cell imaging method using a fluorescence probe, DAOTA-M2, to overcome challenges
with other approaches and antibody use. This method relies on the fluorescence lifetime
of the probe, dependent on whether it is bound to dsDNA, RNA, or G4s, and has shown
promise for use in different cell lines [36].

Another widely used experimental approach to infer the effects of G4 formation
relies on G4-stabilizing drugs. A few stabilizers (e.g., telomestatin, BRACO19) have been
characterized for binding to the telomeric G4 using molecular dynamics simulations. These
simulations showed stabilizer binding is defined largely by a combination of van der
Waals, hydrophobic, and electrostatic interactions [37]. Pyridostatin (PDS) is one of the
more widely used G4 stabilizers. Circular dichroism and ultraviolet resonance Raman
spectroscopy data show the ability of PDS to bind to more than one type of G4, albeit the
strongest interaction occurs with a parallel G4, and the weakest interaction is with a hybrid
G4. Structural properties of PDS also suggest variable binding behaviors, with preferential
interactions between PDS and G4 loop adenine and thymine bases [38]. Treatment of cells
with low concentrations of PDS increases double-strand breaks, as visualized by γH2AX
foci, but these loci do not colocalize with the telomere binding protein TRF1, supporting
the occurrence of G4s outside of telomeres [39]. The use of G4 stabilizers in experiments
increases our understanding of the cellular occurrence of these structures. Understanding
the G4 stabilizer properties necessary for interacting with different types of structures will
be essential as the field designs and improves G4 stabilizers for therapeutic use.

2.2. G4s Contribute to Genome Instability

The mutagenic potential of G4 sequences was elegantly described by the Tijsterman
lab, using a Caenorhabditis elegans (C. elegans) genetic model system [40–42]. These authors
showed that endogenous G4-forming motifs are highly mutagenic in vivo in animals that
lack dog-1, the C. elegans ortholog of mammalian FANCJ helicase. Deletion frequency was
enhanced in G4-containing sequences, with most deletions ~50–300bp in length [40,41].
Deletions were primarily observed at the 3′ flanking sequence of a G4, which indirectly
suggested to the authors the occurrence of polymerase stalling [41,42]. These experimental
studies highlight that G4s can be hotspots for mutagenesis in vivo, and the influence of G4s
on the flanking sequences.

Genome instability caused by G4 formation within human minisatellite repeats has
been investigated using an Saccharomyces cerevisiae (S. cerevisiae) model system. The highly
polymorphic, G-C rich CEB1 minisatellite is comprised of a 39 nucleotide repeat unit that
forms a well-characterized G4 structure. A 42 unit CEB1 array inserted downstream of the
ARS 305 origin is relatively stable in wild-type yeast strains; however, when cells are grown
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in the presence of the G4 stabilizer Phen-DC3, CEB1 instability (measured as expansions
and contractions of the repeats) is observed [43]. In contrast, the CEB25 minisatellite, which
forms a similar parallel G4 conformation, is stable in the same assay. Extensive mutagenesis
of the CEB25 motif revealed a pronounced impact of loop length, base composition, and
position on G4-induced genome instability [44]. Specifically, G4 motifs with short (≤4 nt)
loops of pyrimidines display high thermostability and instability. Importantly, both the
CEB1 and CEB25 tandem arrays stimulate the rate of gross chromosomal rearrangements
in S. cerevisiae in a manner consistent with G4 formation [45].

Several groups have examined the genome-wide association of G4 motifs with sites
of increased genome instability in cancer genomes. This approach utilizes computer algo-
rithms to predict DNA sequences with G4-forming potential (PG4, potential G4). Although
the precise tools vary from study to study, most computational approaches are based on
rules derived from biochemical/biophysical characterization of a few sequences (see [46]
for a recent review comparing G4 computational methods). Across cancer genomes (pan-
cancer), hotspots of somatic copy number variant breakpoints are significantly enriched
for PG4s, along with other repeated sequences [47]. Similarly, analyses of translocation
and deletion endpoints in the COSMIC database revealed a significant association with
PG4 motifs [48]. In addition, a recent analysis of cancer genomes demonstrated significant
enrichment of base substitutions and insertion-deletion mutations near PG4s, across tumor
types [7].

2.3. Relationship of G4 Formation to DNA Replication

Current experimental evidence supports the hypothesis that G4 structures are formed
during DNA replication. In MCF7 cells, BG4 foci are highest in S phase cells and decrease in
number upon treatment with aphidicolin (a replication stress inducer that inhibits replica-
tive polymerases [49]), consistent with G4 structure formation during DNA replication [35].
U2OS cells display distinct nuclear BG4 antibody foci dispersed across chromosomes, pri-
marily outside of telomeres, and foci are increased upon PDS treatment, consistent with a
genome-wide distribution of G4 structures [35]. These data support computational studies
that have suggested more than 350,000 PG4s reside outside of telomeric regions; with the
inclusion of non-canonical motifs, the total number of PG4 motifs is over 700,000 in the
human genome [50,51]. Recently, single-molecule fluorescence microscopy was combined
with unbiased pattern recognition algorithms to analyze G4 structures associated with
replication [52]. In U2OS cells, ~2% of replisomes, identified by PCNA and MCM helicase
antibodies, colocalize with G4 structures.

Other evidence demonstrates an intimate relationship between G4 structures and
replication. Origin G-rich repeated elements (OGREs) are functionally associated with
sites of DNA replication initiation in mouse cells [53]. OGREs containing biophysically
confirmed G4-forming motifs can function as origins of replication when integrated at
ectopic genome locations, and such sequences can inhibit nuclear DNA replication in
Xenopus extracts. In human cells, the majority (83%) of core origins identified genome-
wide by short nascent strand sequencing of multiple cell lines contain at least one PG4
motif within a G-rich sequence element [54].

Though OGREs point to a positive functional impact of G4s, several studies suggest
G4s negatively impact replication. Expanded G-rich microsatellites associated with neu-
rodegenerative diseases, such as Fragile X-syndrome (e.g., [CGG]n and [CCG]n), cause
replication fork stalling in vivo [8]. While these sequences can form several non-B DNA
structures, the Usdin lab used biochemical assays with purified proteins to show that the for-
mation of four-stranded structures directly arrests DNA polymerases in vitro [55,56]. The
well-known “polymerase stop assay” demonstrated that prokaryotic DNA polymerases ar-
rest synthesis when utilizing poly (G) templates with four tracts of four or more consecutive
guanine bases. The arrest occurs immediately preceding the 3′ G-tract, is K+-dependent,
and is not observed on the complementary C-rich strand. These data provide compelling
evidence that the formation of intramolecular G4 structures in the ssDNA template pre-
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ceding the DNA polymerases act as a barrier to DNA synthesis. These data also form the
basis for a G4-Seq approach to map PG4s across the human genome [51]. DNA polymerase
inhibition during Illumina sequencing through PG4 motifs results in significantly decreased
sequencing quality (Phred) scores. By comparing quality scores after sequencing human
cell DNA in the absence or presence of KCl or PDS, Chambers et al. mapped ~380,000 PG4
motifs genome-wide, including those at the experimentally verified c-myc and c-kit genes.
Importantly, 70% of the PG4s are non-canonical motifs, comprised of either G tracts with
long loops (>7 bases) or with one interrupted G tract [51]. Because all these PG4 motifs
likely have varying stabilities, it can be assumed that PG4s will have variable effects on
genome-wide replication.

In the C. elegans mutagenesis studies described above, G4-induced genome instabil-
ity is inferred to be caused by a blocked replication fork. The S. cerevisiae/CEB genome
instability model (above) also has been used to investigate the effects of replication on insta-
bility [43]. The CEB1 minisatellite array was chromosomally inserted in two orientations,
such that the G4 motif was present on either the leading strand or lagging strand of replica-
tion forks emanating from ARS305. CEB1 instability was greatly increased in Pif1-deficient
cells only when the G4 motifs were present on the leading strand. Two-dimensional gel
electrophoresis was used to examine fork progression through the CEB1/G4 region. No
fork pausing was observed in wild-type cells, whereas aberrant replication intermediates
(X-spikes) were observed in Pif1-deficient cells, but only when the G4 motif was present on
the leading strand. Mutations that abolish G4 structure formation also abolished aberrant
replication and decreased instability in the Pif1-deficient cells [43].

Another experimental system, using DT40 chicken cells, has reached a similar infer-
ence; namely, that some G4s can block replication fork progression (for a recent review, [57]).
This approach monitors epigenetic instability caused by G4 motifs, which is inferred to re-
sult from G4-induced replication fork pausing and the creation of a gap in newly replicated
DNA after fork progression resumes. Because post-replication gap-filling is not coupled to
proper histone recycling, fork pausing/restart results in altered epigenetic marks in the
vicinity of the G4 secondary structure [58]. If the G4 motif is within a gene, this process
can be measured in a cell population by heritable changes in expression, and therefore
is an indirect measure of replication perturbations. This experimental model has been
used recently to demonstrate a role in G4 replication for the replication fork protection
complex proteins, Timeless and Tipin [59]. Deletion of either Timeless or Tipin in DT40
cells increases G4-induced epigenetic instability. Moreover, Timeless binds to G4s with
high affinity. Timeless also interacts with DDX11, a structure-specific helicase, and deletion
of DDX11 in the DT40 model induces G4-dependent epigenetic instability.

Together, the current in vivo studies, although indirect, are consistent with perturbed
replication fork progression through some G4 structures. Clearly, not all G4 motifs have a
negative impact on replication. Further investigation with more direct measurements of
replication fork pausing/arrest is needed to elucidate all the parameters determining which
G4s are detrimental to replication. In addition, the mechanism underlying G4-induced
fork pausing remains to be determined. Although inhibition of replicative polymerases
is a popular model (evidence for this is discussed below), other mechanisms should be
considered. For instance, several proteins associated with replication bind with high affinity
to G4 structures, and bound proteins are also obstacles to replication fork progression.
In addition, many fork-associated helicases (e.g., FANCJ) show in vitro activity towards
G4 structures, and have been implicated in G4 replication. For reviews concerning these
structure-specific DNA helicases and the evidence that these act to prevent replication fork
stalling at G4 motifs, see [57,60,61].

2.4. DNA Polymerases Implicated in G4 Maintenance

How do cells maintain replication through G4 motifs under physiologically normal
conditions? Below, we summarize the evidence regarding DNA polymerase synthesis
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through G4 motifs. The specialized Y-family polymerases (e.g., pol eta (η) and kappa (κ),
Rev1) have been of particular interest in this regard.

2.4.1. Replicative DNA Polymerases

Studies investigating the impact of G4 structure formation on DNA synthesis in vitro
by eukaryotic replicative DNA polymerases (pols) have shown that some G4s can nega-
tively impact synthesis efficiency. Synthesis by human and yeast pol delta (δ) holoenzymes
(in the presence of accessory proteins) is stalled when using telomeric repeat templates, but
only under certain conditions (short repeats and linear substrates) [62]. Importantly, this
study showed that Pol δ synthesis is not blocked by G4 formation within long telomeric
repeats, raising the possibility that dynamic G4 structure formation may allow polymerases
to synthesize through the repeats without stalling. Another study confirmed that the yeast
Pol δ holoenzyme pauses transiently within a telomeric G4 repeat; however, Pol δ synthesis
is inhibited at the base of the more stable c-myc G4 sequence [63]. The biophysical features
of G4 motifs needed for Pol δ inhibition were found to be related to short loop lengths,
which increase thermodynamic stability, and parallel G4 conformation [63]. The catalytic
core of human pol epsilon (ε) was also not efficient at synthesizing templates containing
the c-myc promoter G4 motif [64]. Clearly, more experimental evidence is needed to fully
elucidate the full range of G4 structure effects on eukaryotic replicative DNA polymerases.

2.4.2. Rev1

In DT40 chicken cells, the absence of the dCTP terminal transferase Rev1 disrupts
histone recycling and increases G4-induced epigenetic instability [58]. These data sug-
gest a potential role for Rev1, either directly or indirectly, in G4 maintenance, possibly
post-replicative gap-filling synthesis. Purified Rev1 can bind parallel G4s in vitro [65,66]
and interrupt G4 formation [65]. In Rev1 knockout HAP1 cells, G4-containing plasmids
display substantially increased mutation frequencies in the presence of PDS, while Rev1-
complemented knockout cells display reduced mutation frequency at G4s [66], suggesting
that Rev1 plays a role in sustaining low error rates during G4 synthesis.

2.4.3. Y Family Polymerases

Specialized polymerases η and κ are reasonable alternatives for the cell to utilize in
sustaining replication at G4s. However, direct evidence to support roles for pols η and κ in
synthesizing G4s remains elusive. Eddy et al. showed that the catalytic cores of both human
pols η and κ efficiently bind G4s and have enhanced fidelity at G4 motifs in vitro [64,67].
However, a study by Edwards et al. observed some stalling of η and κ at telomeric G4s
when stabilized by lower temperatures. Nucleotide misincorporation and extension by
these polymerases was also observed when increasing temperature relaxed the G4 [68].
Though Edwards et al. suggested pols η and κmight not be critical in replicating G4s, it is
not immediately clear if temperature and telomeric G4 conformation and/or sequence has
an impact on impact polymerase activity, compared to the parallel G4 investigated by Eddy,
et al. [64,67]. Interestingly, in the presence of KCl, the catalytic core of pol η stalled at the G4
in vitro, compared to its activity in the presence of NaCl [64]. Because the presence of K+

more favorably promotes G4 formation over Na+, a less stable G4 may be formed in NaCl,
allowing for flexible interaction between the catalytic core of η and the G4 in this context.
Though these conditions are physiologically relevant, it is difficult to extrapolate these
results to cells, especially when only the catalytic domain of the polymerases was studied.

Only a few ex vivo studies have examined the roles of Y family polymerases. Be-
tous, et al. observed sensitization to telomestatin in U2OS cells with pol η or κ knockdown,
suggesting the presence of these specialized polymerases is important for overcoming
G4 stabilization, but neither compensates for the other [69]. Increased DNA damage,
determined by the presence of γH2AX, was observed in pol η or κ depleted HeLa cells
containing plasmids harboring the c-MYC promoter region containing a G4 motif and two
other types of non-B DNA sequences, compared to HeLa cells with B-DNA plasmids [69].
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Overall, this study suggests that pol η and κmay have some role in preventing non-B DNA-
induced damage. It will be important to determine if these results are observed in other
cell lines, and in what manner pols η and κmay be recruited to sites of G4s. Taken together,
the available evidence suggests Y-family polymerases may function at sites of G4s. Possible
recruitment of Rev1 to disrupt G4 formation [58] and act as a scaffold for pols η and κ, or
recruitment of a specialized polymerase like pol η to take over at the replication fork when
a G4 is encountered [64] are plausible hypotheses that warrant further investigation.

2.4.4. POLQ

Pol theta (θ; POLQ gene) has been shown to maintain translesion synthesis (TLS) and
suppress skin tumorigenesis. Yoon, et al. demonstrated that in the absence of pol η, pol θ
facilitates TLS of UV-induced lesions [70]. Pol θ−/− pol η−/− mice display increased skin
tumor incidence, compared to pol η−/− mice, indicating pol θ exerts a protective effect
in repressing skin tumorigenesis. Additionally, elevated sister chromatid exchanges were
observed in pol θ-deficient mouse cells, independent of UV irradiation. In both human and
mouse embryonic fibroblasts depleted for pol η, fork progression and cell survival were
decreased after pol θ depletion, suggesting pol θ compensates for a loss of pol η [70].

The role of pol θ in maintaining genome integrity is not restricted to UV-induced
lesions. In the C. elegans studies described above, deletion events are polq-dependent [41,42].
Pol θ contributes to the repair of DNA breaks caused by failed replication through G4-
motifs via theta-mediated end joining (TMEJ), a conclusion supported by the specificity of
deletion events [41]. TMEJ could represent a compensatory mechanism, active when other
pathways of G4 synthesis are not possible to maintain genome integrity. Therefore, it will
be important to determine if TMEJ is more frequently induced in cells that are deficient in
another specialized polymerase.

Indeed, a more recent study highlights a need to investigate POLQ in this context
ex vivo. A CRISPR-Cas9 dropout screen to assess cellular sensitivity associated with G4
stabilization was conducted using HCT116 cells treated with CX-5461, PDS, or BMH-21
(a non-G4 binding RNA pol I inhibitor) [71]. CX-5461 is an RNA pol I inhibitor and G4 stabi-
lizer, currently in two phase I clinical trials for solid tumors (NCT02719977, NCT04890613).
Several genes related to DNA replication, damage response, and chromatin remodeling,
among others, were identified in this screen, including POLQ. Sensitivity to CX-5461, but
not BMH-21, was validated in multiple cell lines with sgRNA or siRNA-mediated POLQ
deficiency [71], further supporting a possible role for pol θmaintaining genome stability at
G4 motifs.

2.4.5. PrimPol

The polymerase-primase enzyme PrimPol also has been implicated in replication
fork progression through G4 regions. The catalytic and zinc finger domains of PrimPol
are critical to its activity at G4s, as evidenced using the DT40 epigenetic assay described
above [72]. Though PrimPol cannot synthesize DNA past G4s in vitro [72,73], it can bind
with high affinity to stable G4s [72], much like Rev1 and specialized pols η and κ. Addition
of replication factors such as PCNA or RPA did not improve PrimPol’s synthesizing
capability at G4s [72]. However, the primase activity of PrimPol can reprime the template,
downstream of the G4, allowing synthesis to continue in vitro. These data support PrimPol
as an active player in overcoming the G4 barrier during replication. Further studies are
necessary to determine how, and in what cellular context, PrimPol might be recruited when
replicating G4s.

3. Direct Impact of Chronic Inflammation: G4 DNA Oxidation

Oxidative lesions in DNA can arise in response to exogenous or endogenous sources
that generate RONS, including inflammation (Section 1.2). These RONS remove an electron
from a DNA base, creating an electron hole that gets transferred to bases of lower ionization
potential [74,75]. Guanine possesses the lowest ionization energy of all four bases, making
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it highly susceptible to oxidative damage [74–76]. Left unrepaired, these DNA lesions can
lead to base substitutions. Indeed, computational analysis has indicated an association
between base substitutions and electron transfer, highlighted by ionization energy of the
nucleotides and base stacking interactions [74]. Here, we review the impacts of guanine
oxidation in G4s, with a brief look at possible impacts of oxidation on other bases located
in loop sequences. For a detailed discussion on oxidative lesions and their intermediates,
see a review by Cadet and Wagner [76].

3.1. Guanine Oxidation at G4 Sequences
3.1.1. Types of Lesions

Given the low ionization potential at guanines, it is easy to see the problem that
oxidation poses to non-B DNA with consecutive G-tracts. An analysis of variants within
mononucleotide repeats, using data from the 1000 Genomes Project, revealed that base
substitutions occurring at G-tracts are associated with electron transfer rather than tem-
plate misalignment or slippage [77]. Given what we know about guanine oxidation, this
correlation may be a good predictor of the impact of chronic oxidation on DNA in cells.
One of the most notable and well-studied oxidative lesions is 8-oxo-7,8-dihydroguanine
(8oxoG), which results from the interaction of guanine with a hydroxyl radical. The 8oxoG
can base pair with adenine, subsequently resulting in a G > T transversion during replica-
tion [78]. This consequence may be more substantial at sequences containing consecutive
guanine bases.

Further oxidation of 8oxoG can occur, producing products such as spiroiminodihy-
dantoin (Sp) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In vitro com-
parisons of purified telomeric G4 oligodeoxynucleotides showed that the major oxidation
products differ between guanines within duplex DNA and those within G4s [79]. Inter-
estingly, guanine oxidation in duplex DNA yielded different products dependent on the
oxidant, but guanine oxidation in G4s yielded Sp as the major product [79]. Whether this
difference in oxidation products is unique to telomeric G4s has yet to be determined.

3.1.2. Dependence on Location and G4 Conformation

Though the mutagenic potential of oxidation products, such as 8oxoG, Sp, and FapyG,
likely occurs at G4 motifs in cells under oxidative stress, we also need to assess other
impacts of this microenvironment on G4 stability. In a state of oxidative stress, are all
guanines within a G4 susceptible to potential damage? This interesting question may
seem simple on its surface, but in fact, is complex. In terms of electron transfer within
mononucleotide repeats, simulations highlight a dependence of where the substitution
occurs on G-tract length [77]. In a shorter G-tract, the initial position may be most frequently
targeted by oxidation, as predicted by increased mutation rates at that position, but the
longer the G-tract, the more likely electron transfer will occur, as indicated by a shift in
mutations downstream of the initial G [77]. For G4s, oxidation at the most 5′ guanines
is dominant; however, the formed secondary structure appears to determine location of
oxidative lesions. In vitro, one-electron oxidants (e.g., riboflavin) most frequently acted on
guanines that were part of the external tetrads of the G4 (i.e., the most 5′ Gs of each G-tract),
while other types of oxidants, such as H2O2 and Cu, did not show a preference for guanine
location [79]. K+ or Na+ are favorable in maintaining G4 formation, and steric hindrance
and charges associated with different lesions would necessarily interrupt the metal cation
coordination. Miclot, et al. observed instances of cation expulsion in a telomeric G4 via
molecular dynamics simulations, particularly when two 8oxoG lesions were present [80],
suggesting oxidative lesions may impact cation arrangement and coordination. However,
the telomeric G4 motif containing 8oxoG could still bond with other nucleotides, resulting
in rearrangement of base conformations that have minor impacts on structure in vitro.
In fact, biophysical measurements showed no change in the parallel structure and only
slightly reduced peaks in the hybrid structure upon H2O2 addition, suggesting that this
oxidant does not create lesions that change the overall G4 structure [80].
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Dependence on location is a predominant theme that is not limited to telomeric
G4s. Effects of 8oxoG were evaluated recently for the G4 antiparallel structure within the
P1 promoter of Bcl2 [81]. NMR and UV melting demonstrated that 8oxoG at guanines
located in an external tetrad and loop did not show significant impacts on G4 structure,
whereas 8oxoG located at middle tetrad positions resulted in decreased thermostability
and broader imino resonance peaks, consistent with an effect of 8oxoG on G4 structure.
This might be due to formation of an antiparallel structure with base orientations (i.e., anti
or syn) and bonding partners that differ from the non-damaged sequence [81]. Though
the entire G-rich sequence in the Bcl2 promoter was not evaluated, this study points to an
interesting phenomenon that could translate to cells under oxidative stress. Minimal effects
of oxidative damage at certain guanines could be observed for other G4s in regulatory
regions. As a result, G4 stability could be retained such that oxidative damage does not
pose major functional consequences.

Another study demonstrated that the degree of interruption and unfolding of the
telomeric G4 structure by oxidation is dependent on the type of lesion and location of
the guanine affected in vitro, with the central guanine modifications causing the most
destabilization [82]. Telomerase activity has been investigated extensively in the context of
oxidation. Much like G4 stability, the effects on telomerase are dependent on the location of
the lesion within the G4 [83,84] and dependent on whether the lesion occurs in the dNTP
pool or in the motif itself [83]. Extension by telomerase in vitro is impeded when an 8oxoG
is inserted from the dNTP pool [83] or when an oxidative lesion occurs within the terminal
G-tetrad at the end of the sequence [82]. However, at other positions, oxidative lesions
do not inhibit telomerase binding and extension, possibly due to minimal effects to base
pairing on the RNA template compared to the effects of point mutations [82].

An outstanding question is whether adaptability of G4 structures to oxidative base
lesions is dependent on surrounding nucleotides, loop sequences, or original conformation
(parallel, antiparallel, and hybrid). Indeed, the consequences of oxidative damage at G4-
forming genome sequences in cells have only recently been investigated. The Opresko lab
developed an experimental tool to target 8-oxoG damage specifically to telomeres. Using
this approach, the lab revealed that chronic 8oxoG formation and persistence at telomeres
impairs replication, resulting in telomere shortening and genome instability [85]. An
immunofluorescence study showed that non-tumorigenic MCF-10A breast epithelial cells
express elevated G4 levels that colocalize with 8oxoG upon H2O2 treatment [80]. These
results support the above in vitro studies that G4s largely remain formed and stabilized
upon oxidation. A caveat of note is that the BG4 antibody used by Miclot, et al. only
detects formed G4s, so partial or destabilized G4 structures are not identifiable. Given that
chronic inflammation is a hallmark of cancer, it will be particularly important to determine
if similar results are obtained in cancer cell lines and with various oxidants.

3.2. Base Oxidation in Loop Sequences

Though guanine is the most susceptible base to oxidation, it would be remiss to not
discuss oxidation of the other three bases that can occur at G4 loop sequences. Loop
sequences contribute to formation and stability of the G4, so it is necessary to understand
oxidative damage at these sites. In the same way that a hydroxyl radical can lead to an
8oxoG, 8-oxo-7,8-dihydroadenosine (8oxoA) is a major product of adenine oxidation [76].
Interestingly, the effects of the 8oxoA lesion are also dependent upon G4 location (i.e., which
loop sequence harbors the lesion). PAGE analysis and CD spectra of the 22-nucleotide oligo
representing the telomeric G4 (AG3(TTAG3)3) in the presence of Na+ or K+ showed presence
of the adduct did not substantially alter the antiparallel G4 structure [86]. Additionally,
thermal melting showed slight variability between sequences harboring different lesions.
The 8oxoA at the first loop or third loop induced a marginal increase in thermostability,
suggesting a slight increase in G4 stability. Again, there is a dependence on the position of
the 8oxoA, albeit only mild effects were observed. Apurinic (AP) sites at the same positions
in the loops were investigated as well, showing a stronger dependence on location. For
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instance, the CD spectrum of the AP site located in the third loop changed compared to
undamaged DNA [86]. This also suggests that the absence of adenine rather than just
replacement with an oxidation product impacts G4 conformation, whether it is the structure
itself or H-bonding partners.

One of the main products of thymidine oxidation is 5-hmU [76]. As with 8oxoA, the
effect of 5-hmU in place of thymidine at individual loop sequences has been studied in vitro.
Biochemical analyses have shown 5-hmU has inconsequential effects on G4 conformation
and stability [76,87]. Interestingly, these authors suggested that 5-hmU at loop positions
created more inflexible secondary structures [87]. Other thymidine oxidation products
exist, and it will be important to assess those lesions, especially in the context of other
(non-telomeric) G4 motifs, particularly those with varying loop lengths. Short loop lengths
increase the stability of the G4, and long loop lengths decrease its stability. The telomeric
G4 has loop lengths of three nucleotides, so oxidation of G4 motifs with longer loop lengths
may have a negligible effect, whereas oxidation of G4 motifs with a single nucleotide loop
may have a more substantial impact.

To our knowledge, cytosine oxidation within G4 loops has not been extensively investi-
gated. However, one study from Morgan, et al. exploring the impact of 5-hydroxymethylcytosine
(5-hmC) on the G4 within the VEGF promoter may provide insight. In general, G4 oligonu-
cleotides containing a 5-hmC modification at different loop locations did not disrupt G4
formation, according to circular dichroism analysis [88]. VEGF G4 wildtype and 5-hmC
containing oligonucleotides were also incubated with the G4 stabilizer TMPyP4 or the
protein nucleolin, whose ability to bind G4s has been established. Overall, G4s containing
5-hmC could not be efficiently stabilized by TMPyP4 and nucleolin exhibited reduced
or no binding to G4s containing 5-hmC, indicating the correct nucleotide composition
is important for stabilizer and protein binding [88]. However, other G4 stabilizers and
proteins known to bind to G4s should be investigated to determine if this is a common
trend. Additionally, there may be a dependency on sequence and/or conformation, as well
as the type of cytosine modification.

Although limited, the available evidence suggests that oxidation at loop sequences
has less of an impact on G4 stability and conformation than does oxidation at G-tracts.
Translated to cells, it is possible that oxidation at loop sequences may be favorable in
maintaining conformation and/or stability, depending on location and function.

3.3. DNA Polymerase Response to Oxidative Lesions at Guanines

If DNA lesions, like 8oxoG, are not repaired by the cell (e.g., through base excision
repair) they will be substrates for DNA replication. Given that polymerase bypass of 8oxoG
has been well-studied, we will focus on the response to 8oxoG by polymerases implicated
in G4 synthesis. For further discussion on polymerase response to other oxidative lesions,
see the review from Berquist and Wilson [89].

During times of oxidative stress, Y-family polymerases appear critical in preserving
genome integrity. From in vitro studies, replicative yeast pol δ has difficulty replicating
and extending opposite 8oxoG lesions, showing very low bypass efficiency compared to
templates containing an undamaged G at the same position [90,91]. Human pol δ (hpol
δ) also has compromised accuracy and efficiency when bypassing 8oxoG [91]. Therefore,
bypass by TLS polymerases may be more important for maintaining genome integrity at
oxidized G4 motifs.

3.3.1. Pol η

Pol η is a likely player in the successful and efficient bypass of 8oxoG lesions. Yeast
pol η can efficiently bypass 8oxoG and extend past the lesion [90,91], as evidenced by
in vitro steady-state kinetics analyses. Though yeast pol η is more accurate than mouse
and hpol η, hpol η can still synthesize past this lesion with more ease than other Y-family
polymerases [91]. Several biochemical studies using the catalytic core of hpol η has shown
pol η can efficiently and accurately insert C opposite the 8oxoG lesion and does so with
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higher efficiency than mispairing with A [90,92,93]. Comparisons of Y-family pols hpols η,
κ, iota (ι), and hRev1 to hpol η alone suggest that pol ηmay be the major enzyme necessary
for 8oxoG bypass [93].

3.3.2. Pol k

Less evidence suggests a role of pol κ in bypassing 8oxoG. In vitro, hpol κ stalls
opposite 8oxoG, and when extending [93]. This agrees with steady-state kinetics analysis
of hpol κ, revealing that hpol κ has substantially reduced efficiency when inserting C
opposite 8oxoG when compared to templates containing an undamaged G at the same
position [94]. Importantly, hpol κ frequently and efficiently misincorporates A opposite
8oxoG in vitro, as evidenced by steady-state kinetics [94] and a short oligonucleotide
sequencing assay [93]. By itself, hpol κ does not seem like a feasible candidate recruited
for replication at guanines under oxidative stress. However, hpol κ still may play a crucial
part in suppressing mutagenesis under oxidative stress conditions. Hpol κmay possibly
act in conjunction with another polymerase. In vitro, hpol δ together with hpol κ can insert
and extend from 8oxoG more efficiently than hpol κ by itself [94]. Hakura, et al. treated
pol κ−/− and pol κ+/+ mice with either the mutagen benzo(a)pyrene (BP), DSS, or both.
There was no significant difference in the incidence of tumor development between pol
κ−/− and pol κ+/+ mice when treated with both BP and DSS, suggesting that pol κ does
not function to repress tumorigenesis [95]. However, using a gpt transgene reporter, the
authors showed that DSS treatment alone increased mutagenesis in pol κ−/− mice, and not
in pol κ+/+ mice, with G > C transversions being the most frequent errors in both the distal
colon and lungs of these mice [95]. Taken together, pol κ may display lower fidelity during
8oxoG TLS, but the described in vivo study suggests it does play a role in suppressing
mutagenesis in an oxidative stress environment.

3.3.3. Pol ι

Pol ι has not been thoroughly investigated for any possible role in G4 bypass; however,
that does not rule out its possible recruitment at sites of G4s during oxidative stress. Indeed,
pol ι can insert C opposite 8oxoG most of the time but is negatively affected in its ability to
correctly incorporate other bases in vitro [93]. Additionally, pol ιwas previously implicated
in base excision repair in SV40-transformed human lung fibroblasts (MRC5-SV) following
H2O2-induced oxidative damage [96]. If oxidative damage at G-tracts is replicated, pol
ι could be recruited to these sites or may be a critical replicative enzyme upon repair of
this damage.

3.3.4. Rev1

Current evidence suggests that complete replication of G4s may entail recruitment
of Rev1 under normal physiological conditions. Whether this is true of Rev1 when cells
are under oxidative stress remains unclear. Rev1 and pol κ proved to be an efficient
combination in vitro for 8oxoG bypass, as C was correctly inserted opposite 8oxoG ~92%
of the time compared to A misinsertion; however, a significant number of single nucleotide
deletions at the flanking nucleotides was observed [93]. These data suggest that Rev1
could function to correctly insert C opposite 8oxoG and act as a scaffold to recruit another
polymerase that efficiently extends the lesion base pair.

In summary, the terminal G-tetrads and loop sequences are more susceptible to
oxidation than central G-tetrads, suggesting a possible protective effect that allows for
continued stabilization of the G4. Given the implied roles of specialized polymerases in
facilitating both the bypass of G4s and 8oxoG lesions, the recruitment of these enzymes
to such sites during times of oxidative stress is a question that deserves investigation.
G4 oxidation presents a two-fold issue for a polymerase to overcome during replication:
(1) secondary structure and (2) oxidative lesion(s). The secondary structure would need to
be resolved or bypassed, which was described in the previous sections. If the oxidative
lesion is not excised and repaired, then a Y-family polymerase is likely to be recruited to
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bypass the lesion and maintain genome integrity. What would determine which Y-family
polymerase(s) are recruited to G4s under oxidative stress? Our knowledge of G4s does
not point to a clear answer, but evidence indicates that this could vary depending on
G4 motif sequence and conformation. For instance, if polymerase recruitment depends
on G4 conformation, then oxidative lesions that change the structure even slightly may
change which polymerase is recruited. Additionally, a lesion like 8oxoG can be accurately
synthesized in many cases by a specialized polymerase like pol η; however, these are low
fidelity polymerases and errors will occur. The presence of an oxidative lesion within a
G4 may facilitate mutagenesis. In some cases, inaccurate synthesis may lead to a mutated
G4 motif that may have altered conformation, which may have functional consequences
depending on the G4’s genomic location.

4. Potential Indirect Impacts of Inflammation on G4 Stability

Chronic inflammation promotes profound changes to the tumor microenvironment
that contribute to neoplastic progression. Our knowledge of the mechanisms by which
stromal-epithelial interactions contribute to chronic inflammation-induced genome stability
has been examined from the perspective of RONS and cytokines produced by inflammatory
cells. For instance, myeloid cell-derived ROS causes increased DNA damage and mutagen-
esis in intestinal epithelial cells and contributes to tumorigenesis by inducing epithelial cell
secretion of cytokines in a feed-forward loop [97]. Below, we highlight another potential
RONS target that could alter gene expression; namely, G4 motifs.

4.1. 8oxoG Formation at G4s in Promoters Regulate Gene Expression

PG4 motifs of high thermostability are overrepresented within functional genic compo-
nents (e.g., promoters, 3′ and 5′ UTRs) and subject to purifying selection, consistent with a
regulatory role for G4s in gene expression [31]. Studies have identified G4s in the promoter
regions of oncogenes (e.g., c-myc, H-ras, see ref. [98] for further review), cancer-related
genes (e.g., VEGF [98,99]), and genes related to development and neurologic function in
humans [30]. As discussed above, oxidation at such G4s may or may not have detrimental
effects on that regulation, depending on the location of the lesion within the G4. Those
lesions that minimally affect G4 stability would allow for continued G4 formation and
usual gene expression control.

A critical factor determining whether oxidation affects G4 stability includes the num-
ber of G-tracts, as motifs with a fifth G-tract can stabilize the structure when the central
G-tract in the motif is oxidized [100]. However, there is more of a consequence to this than
just stabilizing the secondary structure. One study that investigated the effects of 8oxoG on
gene expression by incorporating the VEGF promoter G4 motif with 8oxoG lesions into a
luciferase reporter highlighted downstream regulation of expression [101]. Briefly, elevated
Renilla luciferase was observed independent of 8oxoG position but was largely unchanged
in OGG1−/− MEFs compared to OGG1−/− MEFs without 8oxoG containing plasmids. It
was suggested that 8oxoG, excised by OGG1, generates an AP site, and new H-bonding
and ion coordination with the fifth G-tract allows for APE1 binding and an increase in
transcription [101]. Other impacts of oxidative damage on G4s involved in transcription
regulation, including stabilization that decreases gene expression, are possible and not
thoroughly discussed here. However, oxidative damage to G4s is clearly an additional
challenge in transcription regulation, particularly the regulation of cancer-related genes.

4.2. Potential Impact of G4s Located in Genes Related to Inflammation

Research investigating the direct and/or indirect impact of G4s within genes related
to the inflammatory response is limited. A recent study by Stefan Bidula lays a foundation
for this area of study by analyzing genes from the Eukaryotic Promoter Database and using
G4Hunter to identify PG4s [102]. PG4 frequency within the promoters of immune-related
gene families was variable in comparison to PG4 frequencies in oncogene promoters. Of
note, genic PG4s were identified in several interleukin (IL), colony stimulating factor (CSF),
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CC chemokine (CCL), and tumor necrosis factor (TNF) gene families [102]. Whether any
of these G4s are biologically relevant remains to be determined. G4s in the promoters of
these genes may have a similar regulatory function to G4s in the promoters of oncogenes,
where the formation of and/or protein recruitment to the G4 acts as an on/off switch for
transcription. In the context of chronic inflammation, G4s may in this way contribute to
the dysregulation of cytokines and chemokines at the transcriptional level.

5. Discussion: G4s within the Context of Chronic Inflammatory Diseases

Here, we provide a foundation for the interplay between G4s and chronic inflamma-
tion. G4s may create an additive effect contributing to dysfunctional replication and/or
transcription, among other processes not discussed. Consequences may be wide-ranging,
necessarily increasing genome instability in the context of persistent, inflammation-related
injury. Several questions have been posed throughout this review related to DNA poly-
merase engagement at, and synthesis through, G4s upon oxidative damage. Mechanistic
insights into the susceptibility of G4s to oxidation and elucidation of novel replication
processes at these sites to maintain genome stability are critical. Notwithstanding helicase
involvement, recruitment of specialized polymerases in vivo may be necessary to overcome
not only G4s but also for oxidative damage translesion synthesis at these sites. We note
that consequences to G4 stability depend on sequence, type and location of lesion, which
also may influence polymerase recruitment. Regardless, error-prone synthesis at these
sites may increase mutational burden, thereby increasing genome instability. Additionally,
failure to efficiently bypass oxidatively damaged G4s would lead to DNA breaks and
structural variation.
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