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Analysis of newly developed 
fractal‑fractional derivative 
with power law kernel for MHD 
couple stress fluid in channel 
embedded in a porous medium
Muhammad Arif1,2, Poom Kumam1,2,3*, Wiyada Kumam4, Ali Akgul5 & 
Thana Sutthibutpong2,6

Fractal‑fractional derivative is a new class of fractional derivative with power Law kernel which has 
many applications in real world problems. This operator is used for the first time in such kind of fluid 
flow. The big advantage of this operator is that one can formulate models describing much better 
the systems with memory effects. Furthermore, in real world there are many problems where it is 
necessary to know that how much information the system carries. To explain the memory in a system 
fractal‑fractional derivatives with power law kernel is analyzed in the present work. Keeping these 
motivation in mind in the present paper new concept of fractal‑fractional derivative for the modeling 
of couple stress fluid (CSF) with the combined effect of heat and mass transfer have been used. The 
magnetohydrodynamics (MHD) flow of CSF is taken in channel with porous media in the presence of 
external pressure. The constant motion of the left plate generates the CSF motion while the right plate 
is kept stationary. The non‑dimensional fractal‑fractional model of couple stress fluid in Riemann–
Liouville sense with power law is solved numerically by using the implicit finite difference method. The 
obtained solutions for the present problem have been shown through graphs. The effects of various 
parameters are shown through graphs on velocity, temperature and concentration fields. The velocity, 
temperature and concentration profiles of the MHD CSF in channel with porous media decreases 
for the greater values of both fractional parameter α and fractal parameter β respectively. From the 
graphical results it can be noticed that the fractal‑fractional solutions are more general as compared to 
classical and fractional solutions of CSF motion in channel. Furthermore, the fractal‑fractional model 
of CSF explains good memory effect on the dynamics of couple stress fluid in channel as compared to 
fractional model of CSF. Finally, the skin friction, Nusselt number and Sherwood number are evaluated 
and presented in tabular form.

Fractional calculus is used to explain many real world problems with better memory effect. Fractional calculus 
FC is the generalization of integer order calculus which was not sufficient to explain some memory effect in some 
engineering and real world problems. Due to its enormous applications in many fields of sciences the FC is getting 
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attention of the researchers from the last three decades. In other words FC is used to describe the historical states 
of different phenomenon which we call as memory. Many researchers developed different definitions of fractional 
derivatives for different physical situations. Some applications of FC are given in the Tenreiro et al.1. Dalir and 
 Bashour2 investigated some applications of FC in applied sciences. Tavazoei et al.3 studied some uses of FC in 
modern sciences and in the processes of suppression of chaotic oscillations. Similarly, Sabatier et al.4 discussed 
some advanced applications of FC in modern sciences. Koca and  Atangana5 investigated Cattaneo-Hristov model 
with the effect of heat diffusion using Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. In another 
paper Atangana and  Baleanu6 discussed new fractional derivatives to highlight some applications and theory of 
heat and mass transfer models. Arif et al.7 investigated CSF in channel. In this study they generalized the clas-
sical model of CSF into time fractional models of AB and CF and compare their results.  Podlubny8 discussed 
fractional differential equations and their uses in different physical phenomenon. Abdeljawad and  Baleanu9 
studied fractional derivatives and their applications with generalized Mittag–Leffler function.

Recently,  Atangana10 developed the new idea of fractal-fractional derivative in FC. This new idea is very 
suitable in many situations in dealing some complex problems. In the operator there are two orders, the first 
is known as fractional order and the second operator is called the fractal dimension. This new idea of fractal 
fractional derivative is better than the classical one and fractional derivatives as well. It is due to the fact that by 
dealing with fractal-fractional derivatives we can study the fractional operator as well as fractal dimension at 
the same time. Motivated from the advance and unique properties many researchers taking interest in fractal-
fractional operator. Ali et al.11 investigated SIR model to study the dynamics of COVID-19 using fractal-fractional 
operator. Recently, Akgul and  Siddique12 investigated the fluid flow in channel with MHD effect using the idea 
of fractal-fractional derivatives on the CSF.  Esmonde13 studied fractal-fractional derivative modeling for the 
applications of material phase change. In another paper  Akgul14 discussed some advance and new applications 
of fractal fractional differential equations using power law kernel.

Mainly, fluids are classified in two categories, Newtonian and non-Newtonian. Most of the real world prob-
lems are analyzed by non-Newtonian fluids. Many researchers have shown interest in non- Newtonian fluids due 
to enormous applications in daily life. Some applications of non-Newtonian fluids flow like laminar flow, micro 
channel flows and pipe flows are given  in15. Some industrial and engineering applications of non-Newtonian 
fluids are given in the book of Chhabra and  Richardson16. Pawar and  Sunnapwar17 examined some experi-
mental study of non-Newtonian fluids in helical coils with laminar and turbulent flow of the non-Newtonian 
fluids. The advanced applications of non-Newtonian fluids like, oil pipeline friction reduction, heating and 
cooling systems, scale-up and flow tracers are investigated by  Hoyt18. Sohail et al.19 investigated the features of 
non-Newtonian fluid and thermophysical characteristics of yield exhibiting non-Newtonian fluid flow under 
gyrotactic microorganisms. Bao et al.20 discussed the applications and practical uses of non-Newtonian fluids 
and calculated numerical modeling for this fluid flow in fractures and porous media. Some other applications 
of non-Newtonian fluid are given  in21–23.

Couple stress fluid CSF is in the class of non-Newtonian fluids and have many engineering applications in real 
world. The idea of couple stresses in fluid was first given by  Stokes24. After stokes many researchers used the model 
of CSF in different situations. Arif et al.25 discussed CSF in channel using AB fractional derivatives with gold 
nanoparticles suspended in the blood. Researchers are taking interest to analyzed CSF fluid in different domain 
for different scientific reasons. Like Adesanya et al.26 discussed irreversibility process using CSF in inclined chan-
nel with isothermal boundaries. Krishna and  Chamkha27 studied engineering applications using the concept of 
CSF through a porous media with slip effect. Khan et al.28 investigated some biomechanical problems of CSF with 
expanding or contracting porous channel. Akhtar et al.29 studied CSF in channel using fractional derivatives.

MHD play a vital role in different fluid flow problems and have many applications in biological sciences and 
engineering sciences. The applications of MHD is not limited to fluid flow problems but it can be used in many 
engineering problems like Kumar et al.30 discussed the impact of magnetic dipole on the fluid flow over a stretch-
ing cylinder. Gowda et al.31 investigated MHD effect in their study using magnetized flow with the theory of heat 
diffusion and Stefan blowing condition. In another paper Gowda et al.32 examined the contribution of MHD 
flow over a stretching sheet exploring the magnetic dipole on the fluid flow. Yusuf et al.33 discussed magneto-
Bioconvection flow over an inclined plate with entropy generation. Kumar et al.34 discussed the impact of MHD 
on thermophoretic particle in the fluid flow over a stretching sheet.

Heat and mass transfer have useful applications in industries and different engineering problems. Research-
ers investigate the effect of heat and mass transfer in different circumstances like Naveen et al.35 examined the 
influence of heat and mass transfer on the fluid flow along a stretching cylinder. Similarly Punith et al.36 dis-
cussed the impact of binary chemical reaction with the combined effect of heat and mass transfer on the fluid 
flow problem. Similarly other researchers examined the applications of heat and mass transfer in different field 
of sciences which are given  in37–39.

From the above mentioned literature no work is reported to investigate the MHD flow of CSF in channel with 
heat and mass transfer. The fluid is taken in channel with porous media. The left plate is moving with constant 
velocity which generates the fluid motion while the right plate is fixed. The main novelty of the present article 
is to apply the fractal-fractional derivatives on the classical model. Fractal-fractional derivative is a new class of 
fractional derivative with power Law kernel which has many applications in real world problems. This operator 
is used for the first time in such kind of fluid flow. The big advantage of this operator is that we can formulate 
models describing much better the systems with memory effects. Furthermore, in real world there are many 
problems where we need to know that how much information the system carries that is why need memory in a 
system which is explained by fractal-fractional derivatives with power law kernel. This distribution in memory 
effect in fractional derivatives follows a power-law distribution. Keeping these motivations in mind the classi-
cal model of CSF is transform to fractal-fractional model and the numerical solutions have been obtained via 
implicit finite difference method.
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Formulation of the problem
In the present study we have considered the incompressible unsteady MHD flow of CSF in channel. The couple 
stress fluid is taken in channel in the presence of external pressure with body couples. The fluid is taken between 
two plates and porous medium is considered. Initially, both plates and fluid were at rest after some time the left 
plate start moving with constant velocity due to which the fluid flow in channel and the right plate is fixed. The 
governing equations for the present flow regime are given below:

The continuity equation is given  by25,29,40:

The momentum equation of the given problem is given by:

The energy equation can be written as:

The concentration equation can be written as:

where in the momentum equation the term ρ
−→
b  shows the body forces which can be expressed as:

Here 
⇀

V,
⇀

T and 
⇀

C are the velocity, temperature and concentration vectors. p, ρ,µ, ρ�b, k,D, �g and r is the pres-
sure, density, dynamic viscosity, body forces, thermal conductivity, thermal diffusivity, gravitational acceleration 
and Darcy resistance respectively. 

⇀

J  and 
⇀

B is the current density and total magnetic field. As we have considered 
unidirectional flow, therefore, velocity, temperature and concentration fields of the given flow are as:

In the given study we have consider Darcy resistance in CSF, therefor, Darcy’s law can be written in the fol-
lowing form:

where φ represent porous media and k represent permeability of the porous medium. Maxwell equation can be 
defined as:

From Maxwell equation:

here E is the total electric field. By Ohm’s Law (generalized form):

Cross product with the magnetic field is:

here B0 is applied magnetic field and b is induced magnetic field by polarization. Now applying the vector scalar 
triple product, Eq. (11) becomes:

(1)∇ ·
⇀

V= 0,

(2)ρ
D
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V

Dt
= −∇p− µ∇ ×

(
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V

)
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(
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(
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)))
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(3)ρcp
∂
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T
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T ,

(4)∂
⇀

C

∂t
= D∇ × ∇ ×
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C,

(5)ρ
⇀
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⇀
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In this article we have considered the incompressible unsteady MHD flow of CSF in channel. The MHD CSF 
laminar fluid is considered to flow through an open channel of two parallel plates separated by a distance d. The 
medium is considered as a porous medium with porosity K in the presence of constant external pressure gradient 
G and the induced magnetic field B0 which is taken normal to the fluid flow. The motion of the fluid is considered 
in x-direction. Initially, for t ≤ 0 the fluid and both the plates are stationary with surrounding temperature T∞ 
and constant concentration C∞ . At t = 0+ , the temperature and concentration of the left plate raised to T and 
C  respectively. As a result the left plate moving with constant velocity and the right plate is stationary. The geo-
metrical sketch of the considered model is given in Fig. 1.

Using the assumptions which are considered in the problem the governing equations for the flow, energy and 
concentration equations are given  by2,25:

with the physical initial and boundary conditions:

From the above initial and boundary conditions it can be observed that the fluid and plates were at rest ini-
tially. After some time the left plate u(0, t) = H(t)U0 moving with constant velocity U0 , where H(t) shows the 
Heaviside step function and the right plate is fixed. At the left plate the wall temperature and concentration and 
at the right plate there is ambient temeprature and concentration. Furthermore, ∂

2u(0,t)
∂y2

= ∂2u(d,t)
∂y2

= 0 , shows 
the couple shear stresses at the left and right plates.

For dimensional analysis, the following non-dimensional variables are introduced:

(13)J × B = −σ

{

(B · B)
−→
V − 0

}

= −σB2
0u.

(14)ρ
∂u

∂t
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∂2u
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− η

∂4u

∂y4
− σB2

0u−
µφ

k0
u+ gρβ(T − T∞)+ gρβ(C − C∞),

(15)
(
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)∂T
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)
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∂2T
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∂y2

(16)
∂C
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)
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= D

∂2C
(

y, t
)

∂y2
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=
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Figure 1.  Geometry of the problem.
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After dimensionalization process we get the following dimensionless system of equations along with initial 
and boundary conditions.

where Gr represents Grashof number, Gm mass Grashof number, Pr represents Prandtl number, Re represents 
Reynolds number, Sc represents Schmidth number, M represnets magnetic parameter,K porosity parameter and 
H Hartmann number.

Definition of Fractal‑Fractional Derivative with Power Law Kernal
Let assume that f (t) is continuous in the interval (a, b) and let the function is fractal differentiable on (a, b) 
having order β , then the fractal-fractional derivative of f  having order α in Riemann–Liouville RL sense with 
power law kernel is given  by10:

where

Solutions of CSF with fractal‑fractional derivative
In order to transform the classical CSF model into fractal-fractional derivative Eqs. (19–21) can be written in 
the following form:

where FFPDα,β
t (., .) shows the fractal-fractional derivative, 0 < α ≤ 1 is the fractional order and 0 < β ≤ 1 is 

the fractal dimension.

Solution of Energy Equation. From Eq. (26), the following result is obtained:
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Equation (28) can be written as:

the above result can be written in the following form:

using the given initial condition from Eq. (22), Eq. (30) reduces to the following form:

by discretizing the above equation at (ξi , τ = τn+1), the following form is obtained:

From the above equation the following results are obtained:

Solution of concentration equation. From equation (27), the following result is obtained:

Equation (35) can be written as:

here

using the given initial condition from Eq. (22), Eq. (37) reduces to the following form:

by discretize the above equation at (ξi , τ = τn+1), one can get the following result:

the above result can be written as:
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Solution of momentum equation
From Eq. (25), one can get the following fractal-fractional form of momentum equation:

Equation (42) can be written as:

here

using the given initial condition from Eq. (22), Eq. (44) reduces to the following form:

by discretizing the above equation at (ξi , τ = τn+1), the discretized form is given as under:

from the above step the following result is obtained:
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Limiting case
In this section the present obtained solutions are reduced to already published work in order to verify the 
obtained solutions. Therefore, by putting  (Gr = 0),(Gm = 0),P = 0 and 1K → 0 present solutions reduced to 
the solutions recently obtained by Akgül and  Siddique12 which verify the present results.

Using the above assumptions Eq. (25) reduces to the following form:

Equation (49) can be written as:

here

using the given initial condition from Eq. (22), Eq. (51) gives to the following form:

by discretizing the above equation at (ξi , τ = τn+1), one can get the following form:

From the above equation the following result is obtaiend:
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Nusselt number, Sherwood number and Skin friction:
Nusselt number. Mathematically, Nusselt number for CSF can be written as:

Sherwood number:. Mathematically, Sherwood number for CSF can be written as:

Skin friction. Skin friction for CSF is as under:

As the given flow model is between two parallel plates. Therefore, the skin friction at the left and right plates 
is as under:

where Sflp(.) and Sfrp(.) denotes the skin friction at left and right plates respectively.

Results and discussion
This section provide fractal-fractional derivative model of unsteady MHD generalized Couette flow of CSF in 
channel with embedded in porous media with power law kernel. Numerical solutions for the proposed problem 
are obtained using the implicit finite difference method. In this study we have found the influence of fractal 
dimension and fractional operator on the fluid motion, fluid temeprature and concentration graphically. Fur-
thermore, for clear understanding the influence of all parameters is shown through graphs which effect the fluid 
motion, temperature and concentration.

Figure 1 shows the physical sketch of the proposed problem. The effect of fractal dimension β on velocity 
profile is highlighted in Fig. 2. From the graph it is quite clear that for greater values of fractal parameter result a 
decay in the fluid velocity it is due to the power law kernel. The effect of fractional parameter α is shown in Fig. 3. 
From the figure a decreasing in the CSF velocity is noticed. The influence of α on CSF velocity is similar to the 
effect of fractal dimension β on the velocity field. The comparison between fractal-fractional CSF velocity and 
fractional velocity is plotted in Fig. 4. From the figure it can be noticed that the magnitude of fractional velocity 
is greater than fractal-fractional velocity. In this paper we have added a parameter β known as fractal-fractional 
dimension. This parameter β shows the combined effect of fractal-fractional derivative with fractional derivative. 
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∣

∣

∣

∣

ξ=0
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∂3w
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)
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Figure 2.  The impact of fractal parameter β on couple stress fluid velocity in channel when α = 0.5 , Gr = 2 , 
Gm = 3 , M = 2 , K = 3 , ηA = 1 , P = 1.5 , Pr = 1.5 , Re = 2.5 and Sc = 0.3.
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By introducing β in CSF flow can explain better memory effect compared to fractional and classical CSF fluid. 
The effect of Gr and Gm on CSF velocity is highlighted in Figs. 5 and 6 respectively. From the graphs it is very 
clear that for greater values of Gr and Gm result an increase in the CSF velocity. This increase in the fluid veloc-
ity is due to the fact that Gr and Gm are the ratios of boyancy forces and viscous forces which are responsible to 
accelerate the fluid motion as a result CSF velocity increases. The effect of magnetic parameter M is highlighted 
if Fig. 7. From the figure it is clear that increasing M result a decrease in the fractal-fractional CSF velocity. This 
is due to the fact that for greater values of M Lorentz forces increases in the CSF which control the boundary 
layer thickness as a result velocity of the fractal-fractional CSF decreases. The influence of porosity K on fractal-
fractional CSF velocity is highlighted in Fig. 8. From this figure it seems that the CSF velocity increases with the 
greater values of K it is due to the fact that increasing K increases the pores in the channel as a result the fluid 
velocity accelerates.

The effect of couple stress parameter ηA is depicted in Fig. 9. This figure shows the influence of ηA on the 
fractal-fractional velocity in channel. Increasing the values of couple stress parameter ηA increases the viscosity 
of the fluid as a result the CSF velocity retards in channel. From this figure it can also be noticed that for ηA = 0 
shows the comparison of simple Newtonian viscous fluid with fractal-fractional velocity in channel. The influ-
ence of external pressure P is highlighted in Fig. 10. From the figure it can be noticed that increasing the values 
of P result an increase in the CSF velocity in channel.

The comparison of fractal-fractional temperature with fractal temperature β and fractional temperature α 
is highlighted in Fig. 11. From the comparison we can see that the classical temperature is higher than fractal-
fractional, fractal and fractional temperature. The influence of fractional parameter α and fractal parameter β 
on temperature is depicted in Figs. 12 and 13 respectively. From both the figures it can be noticed that for the 
greater values of fractional parameter α and fractal parameter β the temeprature of the CSF in channel reduces. 

Figure 3.  The impact of fractional parameter α on couple stress fluid velocity in channel when, β = 0.5 , 
Gr = 2 , Gm = 3 , M = 2 , K = 3 , ηA = 1 , P = 1.5 , Pr = 1.5 , Re = 2.5 and Sc = 0.3.

Figure 4.  The comparison of fractal-fractional CSF velocity with fractional CSF velocity in channel when, 
α = 0.5 , β = 0.5 , Gr = 2 , Gm = 3 , M = 2 , K = 3 , ηA = 1 , P = 1.5 , Pr = 1.5 , Re = 2.5 and Sc = 0.3.
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The effect of Pr on temperature profile is highlighted in Fig. 14. From the figure we can observe that for larger 
values of Pr the CSF temperature decreases it is due to the fact that increasing Pr results a decrease in thermal 
conductivity of the fluid as a result the temperature of the fluid decreases. The influence of Reynolds umber on 
temeprature profile is shown in Fig. 15. From the figure it can be observed that greater values of Reynolds number 
decrease the temperature of CSF in channel.

The comparison of fractal-fractional, fractal and fractional concentration is highlighted in Fig. 16. From the 
figure one can noticed that the magnitude of classical concentration is higher than the concentration for fractal 
and fractional concentration. The effect of fractional parameter α and fractal parameter β on concentration profile 
is highlighted in Figs. 17 and 18 respectively. From both the figures it can be noticed that for the greater values of 
fractional parameter α and fractal parameter β in both the cases the concentration profile of the CSF in channel 
reduces. The influence of Reynolds number Re on concentration profile is highlighted in Fig. 19. From this figure 
the greater values of Reynolds number decreases the concentration of the CSF in channel it is due to the fact 
that greater Reynolds number decreases the CSF motion as a result the concentration of the fluid decreases. The 
effect of Schmidth number Sc on concentration profile is highlighted in Fig. 20. Form the figure it can be notice 
that increasing the values of Sc result a decrease in the CSF concentration profile. The comparison between the 
present solution to the already published result is highlighted in Fig. 21. From the figure it can be seen that by 
putting (Gr = 0), (Gm = 0), P = 0 and 1K → 0 our solutions reduced to the solutions recently obtained by Akgul 
and  Siddique12 which verify our obtained solutions.

The skin friction for left and right plate are evaluated and presented in Tables 1 and 2 respectively. From these 
tables skin friction variation can be noticed for varying different parameters. The bold values in the tables show 

Figure 5.  The impact of Gr on fractal-fractional couple stress fluid velocity in channel when, α = 0.5 , β = 0.5 , 
Gm = 3 , M = 2 , K = 3 , ηA = 1 , P = 1.5 , Pr = 1.5 , Re = 2.5 and Sc = 0.3.

Figure 6.  The impact of Gm on fractal-fractional couple stress fluid velocity in channel when, α = 0.5 , β = 0.5 , 
Gr = 2 , M = 2 , K = 3 , ηA = 1 , P = 1.5 , Pr = 1.5 , Re = 2.5 and Sc = 0.3.
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the change in skin friction in that specific parameter. Similarly, Table 3 shows the Nusselt number variation for 
different parameters. Table 4 shows the variation in Sherwood number for different parameters. In the Tables 1, 
2, 3 and 4 bold values represents the changes in the specific parameter and its effect on the ski friction, Nusselt 
number and Sherwood number. 

Conclusion
The present paper is focused to study the applications of fractal and fractional derivative on the unsteady MHD 
CSF in channel with power law kernel. The fractal-fractional CSF is assumed to flow in channel embedded in 
porous medium. The unsteady CSF with heat and mass transfer passes through the channel in the presence 
of external pressure. The implicit finite difference method is applied to obtain the numerical solutions of the 

Figure 7.  The impact of M on fractal-fractional couple stress fluid velocity in channel when, α = 0.5 , β = 0.5 , 
Gr = 2 , Gm = 3 , K = 3 , ηA = 1 , P = 1.5 , Pr = 1.5 , Re = 2.5 and Sc = 0.3.

Figure 8.  The impact of K on fractal-fractional couple stress fluid velocity in channel when, α = 0.5 , β = 0.5 , 
Gr = 2 , Gm = 3 , M = 2 , ηA = 1 , P = 1.5 , Pr = 1.5 , Re = 2.5 and Sc = 0.3.
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proposed fractal-fractional CSF model of generalized Couette flow. During the analysis of the present study the 
following results are obtaiend.

• The velocity, temperature and concentration of the magnetohydrodynamics CSF in porous channel decreases 
for the greater values of both fractional parameter α and fractal parameter β respectively.

• In the fluid dynamics the fractal-fractional model of CSF explain good memory effect as compared to frac-
tional model of CSF.

• CSF velocity in porous channel decrease with the increase in α,β,M and ηA .
• CSF velocity in porous channel increases with the higher values of Gr,Gm and K.
• The temperature of the CSF is decreases with the higher values of α,β,Pr and Re.
• The concentration of the CSF is decreases with the higher values of α,β,Sc and Re.

Figure 9.  The impact of ηA on fractal-fractional couple stress fluid velocity in channel when, α = 0.5 , β = 0.5 , 
Gr = 2 , Gm = 3 , M = 2 , K = 3 , P = 1.5 , Pr = 1.5 , Re = 2.5 and Sc = 0.3.

Figure 10.  The impact of external pressure P on fractal-fractional couple stress fluid velocity in channel when, 
α = 0.5 , β = 0.5 , Gr = 2 , Gm = 3 , M = 2 , K = 3 , ηA = 1 , Pr = 1.5 , Re = 2.5 and Sc = 0.3.
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Figure 11.  The comparison between fractal-fractional, fractal ,fractional and classical temperature when 
α = 0.5 , β = 0.5 , Re = 3.2 , t = 0.2 and Pr = 0.5.

Figure 12.  The impact of α on the temperature of couple stress fluid when, β = 0.5 , Re = 3.2 , t = 0.2 and 
Pr = 0.5.

Figure 13.  The impact of β on the temperature of couple stress fluid when, α = 0.5 , Re = 3.2 , t = 0.2 and 
Pr = 0.5.
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Figure 14.  The impact of Pr on the temperature of couple stress fluid when,α = 0.3 , β = 0.3 , Re = 4 and 
t = 0.7.

Figure 15.  The impact of Re on the temperature of couple stress fluid when α = 0.3 , β = 0.3 , t = 0.2 and 
Pr = 2.

Figure 16.  The comparison between fractal-fractional, fractal, fractional and classical concentration when 
α = 0.5 , β = 0.5 , t = 0.2 , Sc = 0.5 and Re = 3.
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Figure 17.  The impact of α on couple stress fluid concentration profile when,β = 0.5 , t = 0.2 , Sc = 0.5 and 
Re = 3.

Figure 18.  The impact of β on couple stress fluid concentration profile when, α = 0.5 , t = 0.2 , Sc = 0.5 and 
Re = 3.

Figure 19.  The impact of Re on couple stress fluid concentration profile when α = 0.5 , β = 0.5 , t = 0.2 and 
Sc = 0.5.
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Figure 20.  The impact of Sc on couple stress fluid concentration profile when, α = 0.5 , β = 0.5 , t = 0.2 and 
Re = 3.

Figure 21.  Comparison of the present solution to solution of Akgul and  Siddique12 when, α = 0.5 , β = 0.5 , 
Gr = 0 , Gm = 0 , M = 2 , 1

K
→ 0 , ηA = 1 , P = 0 , Pr = 1.5 , Re = 2.5 and Sc = 0.3.

Table 1.  The skin friction of couple stress fluid at left plate.

α β τ Gr Gm Pr Sc M K ηA P Re Sflp

0.4 0.4 1.2 10 8 14 2.5 5 1.5 2.2 3 2.5 2.0631

0.5 0.4 1.2 10 8 14 2.5 5 1.5 2.2 3 2.5 1.9375

0.4 0.5 1.2 10 8 14 2.5 5 1.5 2.2 3 2.5 1.8402

0.4 0.4 2 10 8 14 2.5 5 1.5 2.2 3 2.5 3.821

0.4 0.4 1.2 15 8 14 2.5 5 1.5 2.2 3 2.5 4.0592

0.4 0.4 1.2 10 12 14 2.5 5 1.5 2.2 3 2.5 3.8743

0.4 0.4 1.2 10 8 20 2.5 5 1.5 2.2 3 2.5 1.2751

0.4 0.4 1.2 10 8 14 3 5 1.5 2.2 3 2.5 1.9281

0.4 0.4 1.2 10 8 14 2.5 6 1.5 2.2 3 2.5 2.0321

0.4 0.4 1.2 10 8 14 2.5 5 2 2.2 3 2.5 2.0582

0.4 0.4 1.2 10 8 14 2.5 5 1.5 3 3 2.5 1.8573

0.4 0.4 1.2 10 8 14 2.5 5 1.5 2.2 4 2.5 2.0825

0.4 0.4 1.2 10 8 14 2.5 5 1.5 2.2 3 3.5 2.7352
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Table 2.  The skin friction of couple stress fluid at right plate:

α β τ Gr Gm Pr Sc M K ηA P Re Sflp

0.4 0.4 1.2 10 8 14 2.5 5 1.5 2.2 3 2.5 0.8083

0.5 0.4 1.2 10 8 14 2.5 5 1.5 2.2 3 2.5 0.6352
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0.4 0.4 1.2 15 8 14 2.5 5 1.5 2.2 3 2.5 1.6201

0.4 0.4 1.2 10 12 14 2.5 5 1.5 2.2 3 2.5 1.1401

0.4 0.4 1.2 10 8 20 2.5 5 1.5 2.2 3 2.5 0.6731

0.4 0.4 1.2 10 8 14 3 5 1.5 2.2 3 2.5 0.7031

0.4 0.4 1.2 10 8 14 2.5 6 1.5 2.2 3 2.5 0.7481

0.4 0.4 1.2 10 8 14 2.5 5 2 2.2 3 2.5 0.9202

0.4 0.4 1.2 10 8 14 2.5 5 1.5 3 3 2.5 0.5375

0.4 0.4 1.2 10 8 14 2.5 5 1.5 2.2 4 2.5 0.8821

0.4 0.4 1.2 10 8 14 2.5 5 1.5 2.2 3 3.5 0.9383

Table 3.  Nusselt number variation against different parameters.

α β τ Pr Re NuLeft Plate

0.5 0.5 1 14 2.5 1.511

0.7 0.5 1 14 2.5 1.06

0.5 0.7 1 14 2.5 1.061

0.5 0.5 1.5 14 2.5 1.424

0.5 0.5 1 16 2.5 1.848

0.5 0.5 1 14 3 1.654

Table 4.  Sherwood number variation against different parameters.

α β τ Sc Re ShLeft Plate

0.5 0.5 1.2 0.8 2.2 0.9

0.7 0.5 1.2 0.8 2.2 0.719

0.5 0.7 1.2 0.8 2.2 0.493

0.5 0.5 1.5 0.8 2.2 0.894

0.5 0.5 1.2 1.2 2.2 0.938

0.5 0.5 1.2 0.8 3 0.925
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